Economics 442 Macroeconomic Policy 10/5-7/2020 (rev'd 10/6)

Instructor: Prof. Menzie Chinn UW Madison Fall 2020

Outline

- Yield curve inversions and recessions
- Derivation of EHTS
- Regression analysis using probit
- Is this time different?
- Alternative term spreads
- Alternatives using credit spreads
- Recession forecasting by economists
- Survey of economists in 2019

Yield Curve Inversions & Recessions

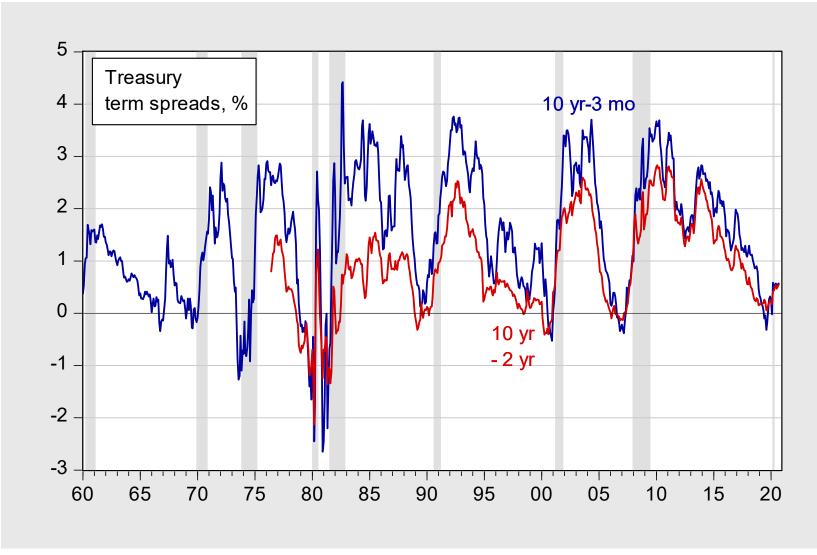
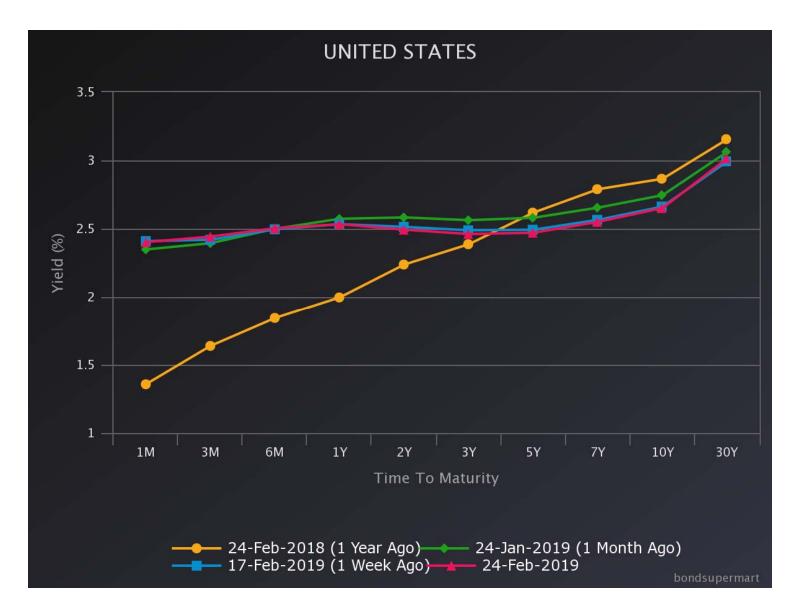



Figure legend corrected 10/5

Yield Curve: Snapshot

Why Do Yield Curve Inversions Precede Recessions?

- The long term rate is an average of expected future short term rates
- Plus a term to account for risk at the longer term
- Hence, inversion means future short rates expected to be lower than current short rate (which is often raised just before a recession)

Derivation of Expectations Hypothesis of Term Structure (EHTS)

Derivation of EHTS

If agents are risk neutral.

$$P_{1t} = \frac{\$100}{1+i_{1t}}$$
(1)
$$P_{2t} = \frac{\$100}{(1+i_{1t})(1+i_{1t+1}^{e})}$$
(2)

To see this, consider what is true if both one year and two year bonds offer the same one-year return (by arbitrage), then:

$$1 + i_{1t} = \frac{P_{1t+1}^e}{P_{2t}}$$
Rearranging: (3)

$$P_{2t} = \frac{P_{1t+1}^{e}}{1+i_{1t}} \tag{4}$$

What is the numerator of the right hand side of (4)? Iterating (1) forward, and taking expectations:

$$P_{1t+1}^{e} = \frac{\$100}{1+i_{1t+1}^{e}}$$

This can be substituted into (4) to obtain:

$$P_{2t} = \frac{\$100}{(1+i_{1t+1}^{e})(1+i_{1t})}$$
(5)

We know in fact:

$$P_{2t} = \frac{\$100}{(1+i_{2t})^2}$$
(6)
What will set (5) equal to (6)?

$$\frac{\$100}{(1+i_{2t})^2} = P_{2t} = \frac{\$100}{(1+i_{1t+1}^e)(1+i_{1t})}$$
Which implies:

$$(1+i_{2t})^2 = (1+i_{1t+1}^e)(1+i_{1t})$$

$$(1+2i_{2t}+i_{2t})^2 = (1+i_{1t+1}^e+i_{1t}+i_{1t+1}^ei_{1t+1}i_{1t})$$

$$2i_{2t} \approx i_{1t+1}^e + i_{1t}$$

$$i_{2t} \approx \frac{1}{2}(i_{1t+1}^e+i_{1t})$$

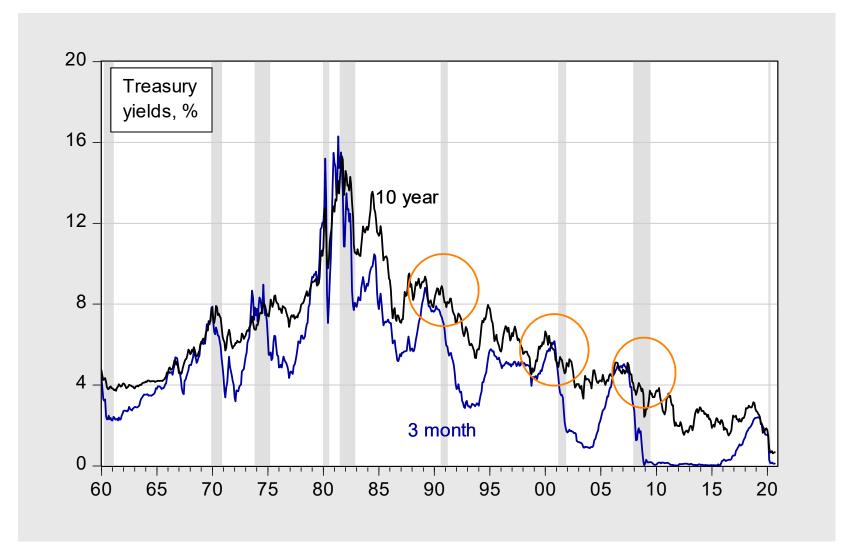
$$(7)$$

$$i_{1t+1}^e = 2i_{2t} - i_{1t}$$
In general:
(8)

$$i_{nt} = \frac{(i_{1t} + i_{1t+1}^e + \dots + i_{1t+n-1}^e)}{n}$$
(9)

The Liquidity Premium Theory of the Term Structure

The linkage between the long-term and short-term interest rates can be decomposed thus:


$$i_{nt} = \frac{(i_{1t} + i_{1t+1}^e + \dots + i_{1t+n-1}^e)}{n} + tp_{nt}$$
(10)

When Are Long Rates below Current Short Rates?

$$i_{nt} = \frac{(i_{1t} + i_{1t+1}^e + \dots + i_{1t+n-1}^e)}{n} + tp_{nt}$$

- When the *t*+*n*-*1* short rates are expected to be low
- And when period *t* short rate is high
- As in just before a recession

When Are Long Rates below Current Short Rates?

Inversion & Recession in Other Countries

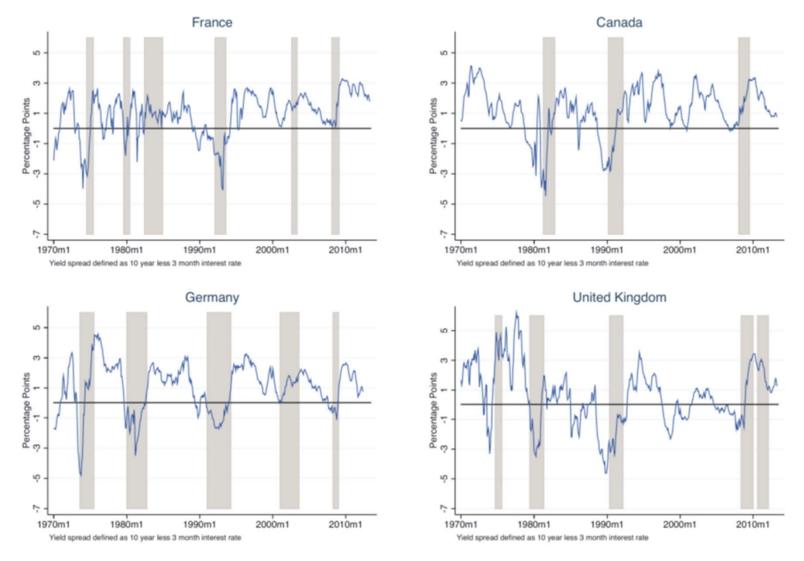


Figure 1: Yield curves and recessions: selected countries.

Chinn, Kucko (2015).

Regression Analysis Using Probit

Recession

- Define recession as binary variable: 1, 0
- Use ECRI definition (similar to NBER's)
- Estimate "Probit" regression on lagged spread

	(1) Canada	(2) France	(3) Germany	(4) Italy	(5) Japan	(6) Sweden	(7) UK	(8) US
Next 6 months								
Spread	-0.39 [0.11]***	-0.37 [0.091]***	-0.68 $[0.17]^{***}$	-0.094 [0.093]	-0.059 [0.095]	-0.29 [0.12]**	-0.067 [0.10]	-0.46 [0.085]***
Constant	-0.73 [0.23]***	-0.43 [0.19]**	0.11 [0.23]	-0.51 [0.19]***	-0.42 [0.18]**	-0.21 [0.19]	-0.68 [0.19]***	-0.64 [0.19]***
R^2	0.18	0.12	0.34	0.016	0.0045	0.10	0.0094	0.27
Observations	519	519	509	505	519	519	519	519
Next 12 months								
Spread	-0.49	-0.44	-0.63	-0.053	-0.020	-0.29	-0.11	-0.69
	[0.12]***	[0.10]***	[0.15]***	[0.089]	[0.099]	[0.13]**	[0.099]	[0.12]***
Constant	-0.50	-0.14	0.31	-0.36	-0.23	-0.047	-0.51	-0.29
	[0.22]**	[0.20]	[0.24]	[0.19]	[0.18]	[0.19]	[0.19]***	[0.20]
R^2	0.24	0.15	0.29	0.0050	0.00051	0.11	0.025	0.38
Observations	519	519	509	505	519	519	519	519

 Table 5: Current Yield Spread as Predictor of Future Recession: Full Sample (1970–2013)

Chinn, Kucko (2015).

Growth

	(1) Canada	(2) France	(3) Germany	(4) Italy	(5) Japan	(6) Neth.	(7) Sweden	(8) UK	(9) US
12-month growth									
Spread	1.81	1.22	1.52	0.85	1.23	1.03	0.99	0.69	1.14
	[0.23]***	[0.38]***	[0.30]***	[0.31]***	[0.47]***	[0.27]***	[0.41]**	[0.22]***	[0.22]**
Constant	0.079	-0.022	-0.059	0.84	1.26	0.26	-1.54	0.38	1.71
	[0.65]	[0.72]	[0.71]	[0.80]	[0.95]	[0.58]	[1.02]	[0.49]	[0.61]**
R^2	0.27	0.13	0.23	0.064	0.068	0.11	0.068	0.11	0.20
Observations	501	507	507	495	507	474	495	507	508
Durbin-Watson	0.142	0.245	0.314	0.272	0.133	0.848	0.351	0.286	0.069
White	0.004	0.031	0.001	0.776	0.813	0.050	0.209	0.738	0.002

Table 1: Current Yield Spread as Predictor of Future IP Growth: Full Sample (1970-2013)

Table 3: Current Yield Spread as Predictor of Future IP Growth: Late Sample (1998-2013)

	(1) Canada	(2) France	(3) Germany	(4) Italy	(5) Japan	(6) Neth.	(7) Sweden	(8) UK	(9) US
12-month growth									
Spread	1.60	2.45	5.04	2.57	5.86	1.95	6.04	0.44	1.19
	[0.89]	[1.26]	[1.40]***	[1.49]	[5.92]	[1.19]	[1.67]***	[0.53]	[0.50]**
Constant	-1.75	-4.49	-4.25	-5.01	-6.74	-0.99	-8.51	-0.99	-0.38
	[2.27]	[2.72]	[2.22]	[3.00]	[8.53]	[2.01]	[3.00]***	[0.78]	[1.48]
R^2	0.10	0.21	0.46	0.19	0.035	0.13	0.45	0.041	0.14
Observations	165	171	171	171	171	171	171	171	172
Durbin-Watson	0.082	0.202	0.233	0.142	0.152	0.611	0.386	0.178	0.059
White	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002

Chinn, Kucko (2015).

US Extended to 2019M01

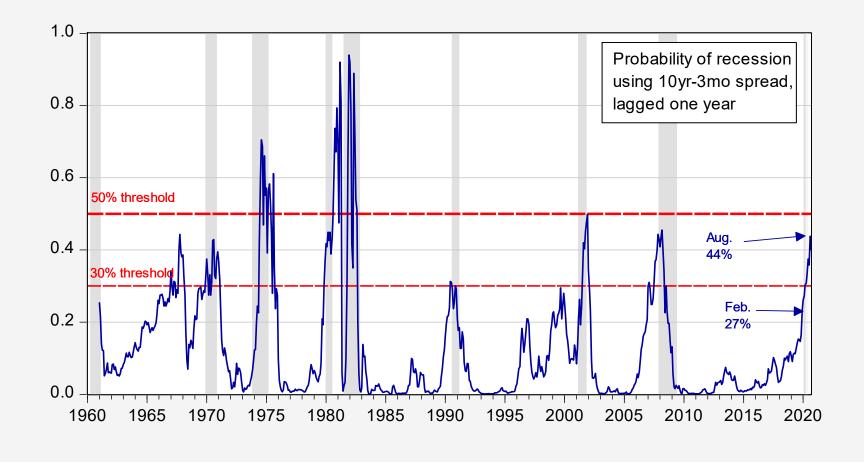
Dependent Variable: RECESSIONLEAD Method: ML - Binary Probit (Newton-Raphson / Marquardt steps) Date: 10/03/20 Time: 23:13 Sample: 1960M01 2019M01 Included observations: 709 Convergence achieved after 7 iterations

Coefficient covariance computed using observed Hessian

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	-0.392682 -0.733325	0.086983 0.072119	-4.514467	0.0000
SPREAD	-0.733325	0.072119	-10.16824	0.0000
McFadden R-squared	0.272469	Mean deper	ident var	0.129760
S.D. dependent var	0.336277	S.E. of regre	ession	0.291729
Akaike info criterion	0.567195	Sum square	d resid	60.16968
Schwarz criterion	0.580069	Log likelihoo	bd	-199.0705
Hannan-Quinn criter.	0.572168	Deviance		398.1410
Restr. deviance	547.2497	Restr. log lik	kelihood	-273.6248
LR statistic	149.1086	Avg. log like	lihood	-0.280776
Prob(LR statistic)	0.000000			
Obs with Dep=0	617	Total obs		709
Obs with Dep=1	92			

Calculations

Table IV Standard Normal Distribution Table


Plug in data: Prob(Rec) = $= -0.393 - 0.733 \times (0.29)$ = -0.393 - 0.213= -0.606→ 27.3% prob

-	: 0	the	of z with	to the left	mulative a nal curve alues of z	norr				
.09	.08	.07	.06	.05	.04	.03	.02	.01	.00	5
.0002	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	-3.4
.0003	,0004	.0004	.0004	.0004	.0004	.0004	.0005	.0005	.0005	-3.3
.0005	.0005	.0005	.0005	.0006	.0006	.0006	.0006	.0007	.0007	-3.2
.0007	.0007	.0008	.0008	.0008	.0008	.0009	.0009	.0009	.0010	-3.1
.0010	.0010	.0011	.0011	1100.	.0012	.0012	.0013	.0013	.0013	-3.0
.0014	.0014	0015	.0015	.0016	.0016	.0017	.0018	.0018	.0019	-2.9
.0019	.0020	.0021	.0021	.0022	.0023	.0023	.0024	.0025	.0026	-2.8
.0026	.0027	.0028	.0029	.0030	.0031	.0032	.0033	.0034	.0035	-2.7
.0036	.0037	.0038	.0039	.0040	.0041	.0043	.0044	.0045	.0047	-2.6
.0048	.0049	.0051	.0052	.0054	.0055	.0057	.0059	.0060	.0062	-2.5
.0064	.0066	.0068	.0069	.0071	.0073	.0075	.0078	.0080	.0062	-2.4
.0084	.0087	.0089	.0091	.0094	.0096	.0099	.0102	.0104	.0107	-2.3
.0110	.0113	0116	.0119	.0122	.0125	.0129	.0132	.0136	.0139	-2.2
.0143	.0146	0150	.0154	.0158	.0162	.0166	.0170	.0174	.0179	-2.1
.0183	.0188	.0192	.0197	.0202	.0207	.0212	.0217	.0222	.0228	-2.0
.0233	.0239	0244	.0250	.0256	.0262	.0268	.0274	.0281	.0287	-1.9
.0294	.0301	.0307	.0314	.0322	.0329	.0336	.0344	.0351	0359	-1.8
.0361	.0375	.0384	.0392	.0401	.0409	.0418	.0427	.0436	.0446	-1.7
.0455	.0465	0475	.0485	.0495	.0505	.0516	.0526	.0537	.0548	-1.6
.0555	.0571	.0582	.0594	.0606	.0618	.0630	.0643	.0655	.0668	-1.5
.0681	.0694	.0708	.0721	.0735	.0749	.0764	.0778	.0793	.0808	-1.4
.0823	.0838	.0853	.0869	.0885	.0901	.0918	.0934	.0951	.0968	-1.3
.0985	.1003	.1020	.1038	.1056	.1075	.1093	.1112	.1131	.1151	-1.2
.1170	.1190	.1210	.1230	.1251	.1271	.1292	.1314	.1335	.1357	-1.1
.1379	.1401	.1423	.1446	-1469	.1492	.1515	.1539	.1562	.1587	-1.0
.1611	.1635	.1660	.1685	-1711	.1736	1762	.1788	.1814	.1841	-0.9
.1867	.1894	.1922	.1949	.1977	.2005	2033	.2061	.2090	.2119	-0.8
.2148	2177	.2206	.2236	.2266	.2296	.2327	2358	2389	2420	-0.7
.2451	.2483	.2514	.2546	.2578	.2611	.2643	2676	2709	2743	-0.6
.2776	.2810	.2843	.2877	2912	.2946	.2981	.3015	.3030	.3085	-0.5
.3121	.3156	.3192	.3228	3264	.3300	.3336	3372	.3409	.3446	-0.4
.3483	3520	.3557	.3594	3632	.3669	.3707	3745	.3783	3821	-0.3
.3859	.3897	.3936	.3974	.4013	.4052	.4090	4129	.4168	.4207	-0.2
.4247	4286	.4325	.4364	.4404	.4443	.4483	.4522	.4562	.4602	-0.1
.464	.4681	.4721	.4761	.4801	.4840	.4880	.4920	.4960	.5000	0.0

The entries in this table give the

(continued on next page)

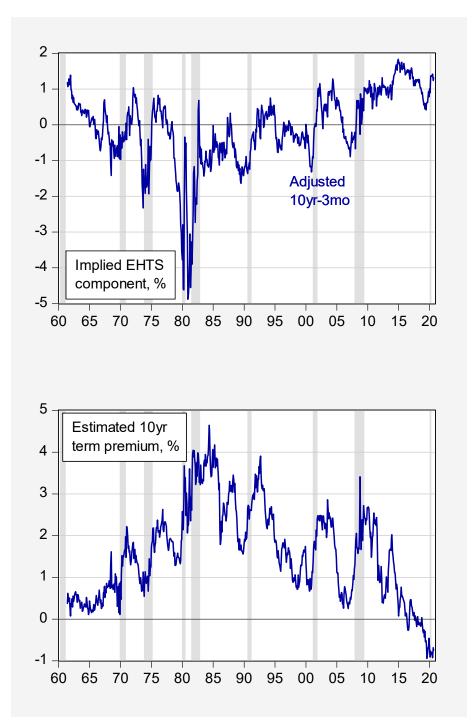
Forecasting using 2019M02 Spread

Expectation-Prediction Evaluation for Binary Specification Equation: STD_PROBIT_NEW Date: 10/03/20 Time: 23:28 Success cutoff: C = 0.5

		Estimated Equation Dep=0 Dep=1 Total			Constant Probability Dep=0 Dep=1 Total			
	Dep-0	Dep-1	Total	Dep-0	Dep-1	Total		
P(Dep=1)<=C	607	77	684	617	92	709		
P(Dep=1)>C	10	15	25	0	0	0		
Total	617	92	709	617	92	709		
Correct	607	15	622	617	0	617		
% Correct	98.38	16.30	87.73	100.00	0.00	87.02		
% Incorrect	1.62	83.70	12.27	0.00	100.00	12.98		
Total Gain*	-1.62	16.30	0.71					
Percent Ga	NA	16.30	5.43					
	Esti	imated Eq	uation	Cor	nstant Pro	bability		
	Dep=0	Dep=1	Total	Dep=0	Dep=1			
		-			Deb-1	Total		
E(# of Dep=0)	556.80	60.95	617.75					
E(# of Dep=0) E(# of Dep=1)	556.80 60.20	60.95 31.05	617.75 91.25	536.94 80.06	80.06 11.94	617.00 92.00		
E(# of Dep=0) E(# of Dep=1) Total				536.94	80.06	617.00		
E(# of Dep=1)	60.20	31.05	91.25	536.94 80.06	80.06 11.94	617.00 92.00		
E(# of Dep=1) Total	60.20 617.00	31.05 92.00	91.25 709.00	536.94 80.06 617.00	80.06 11.94 92.00	617.00 92.00 709.00		
E(# of Dep=1) Total Correct	60.20 617.00 556.80	31.05 92.00 31.05	91.25 709.00 587.85	536.94 80.06 617.00 536.94	80.06 11.94 92.00 11.94	617.00 92.00 709.00 548.88		
E(# of Dep=1) Total Correct % Correct	60.20 617.00 556.80 90.24	31.05 92.00 31.05 33.75	91.25 709.00 587.85 82.91	536.94 80.06 617.00 536.94 87.02	80.06 11.94 92.00 11.94 12.98	617.00 92.00 709.00 548.88 77.42		

*Change in "% Correct" from default (constant probability) specification **Percent of incorrect (default) prediction corrected by equation

Expectation-Prediction Evaluation for Binary Specification Equation: STD_PROBIT_NEW Date: 10/03/20 Time: 23:29 Success cutoff: C = 0.3

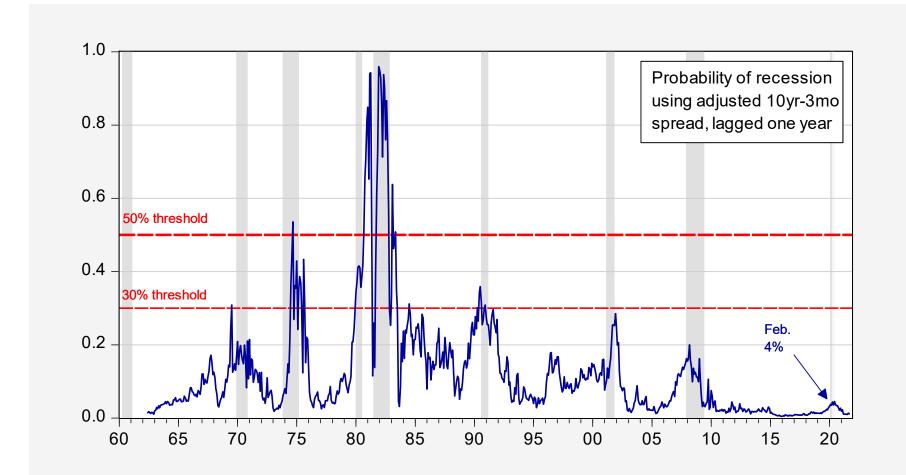

	Esti	mated Eq	uation	Cor	nstant Pro	bability
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Total
P(Dep=1)<=C	580	42	622	617	92	709
P(Dep=1)>C	37	50	87	0	0	0
Total	617	92	709	617	92	709
Correct	580	50	630	617	0	617
% Correct	94.00	54.35	88.86	100.00	0.00	87.02
% Incorrect	6.00	45.65	11.14	0.00	100.00	12.98
Total Gain*	-6.00	54.35	1.83			
Percent Ga	NA	54.35	14.13			
	Esti	mated Eq	uation	Cor	nstant Pro	bability
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Total
E(# of Dep=0)	556.80	60.95	617.75	536.94	80.06	617.00
E(# of Dep=1)	60.20	31.05	91.25	80.06	11.94	92.00
Total	617.00	92.00	709.00	617.00	92.00	709.00
Correct	556.80	31.05	587.85	536.94	11.94	548.88
% Correct	90.24	33.75	82.91	87.02	12.98	77.42
0/1 is a sum of				40.00	\mathbf{a}	
% Incorrect	9.76	66.25	17.09	12.98	87.02	22.58
% Incorrect Total Gain*	9.76 3.22	66.25 20.78	17.09 5.50	12.98	87.02	22.58

*Change in "% Correct" from default (constant probability) specification **Percent of incorrect (default) prediction corrected by equation

Is This Time Different?

Is This Time Different?

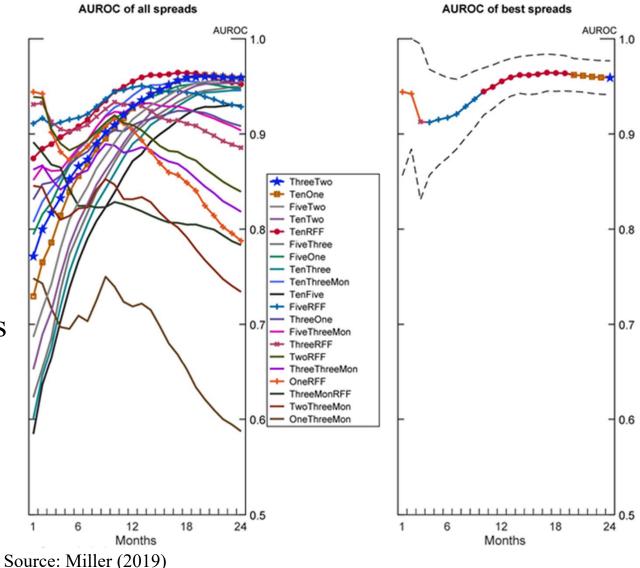
- Inversion implies lower future short rates, when term premium is positive
- Term premium is positive presumably because of inflation risk
- But there is greater risk of deflation
- And quantitative easing/credit easing might've pushed downward premium



Consider term spread subtracting estimated term premium **If EHTS** component is predictive, we can use as predictor

Dependent Variable: RECESSIONLEAD Method: ML - Binary Probit (Newton-Raphson / Marquardt steps) Date: 10/04/20 Time: 21:19 Sample (adjusted): 1961M06 2019M01 Included observations: 692 after adjustments Convergence achieved after 5 iterations Coefficient covariance computed using observed Hessian

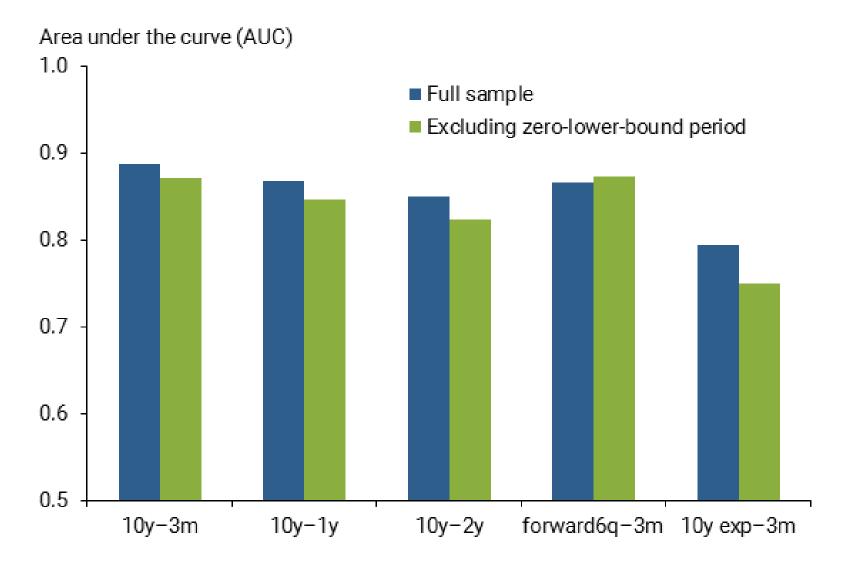
Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-1.423055	0.079985	-17.79142	0.0000
EHTS10	-0.649620	0.067377	-9.641558	0.0000
McFadden R-squared S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Restr. deviance LR statistic Prob(LR statistic)	0.219682 0.336610 0.608961 0.622081 0.614035 534.9113 117.5105 0.000000	Mean deper S.E. of regre Sum square Log likelihoo Deviance Restr. log like Avg. log like	ession ed resid od kelihood	0.130058 0.303687 63.63587 -208.7004 417.4007 -267.4556 -0.301590
Obs with Dep=0 Obs with Dep=1	602 90	Total obs		692


Adjusted Spread Predicted No Recession

Alternative Term Spreads

Many Different Spreads

- AUROC -- area under receiver characteristic curve – maximum ratio of true positives to false positives
- Different term spreads work at different horizons (1984-2018)



Alternative Term Spreads

Bauer & Mertens (August 2018), Figure 1

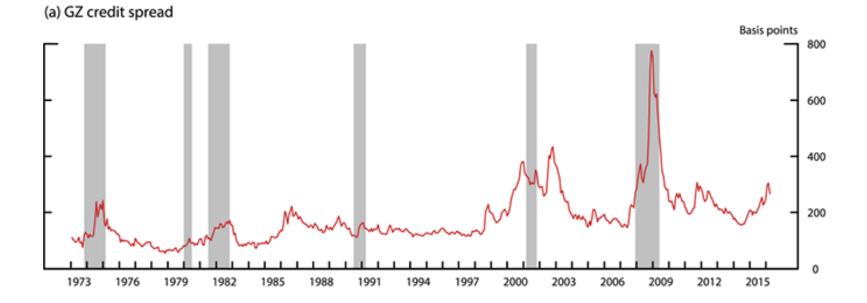
Alternative Term Spreads

Bauer & Mertens (August 2018), Figure 1

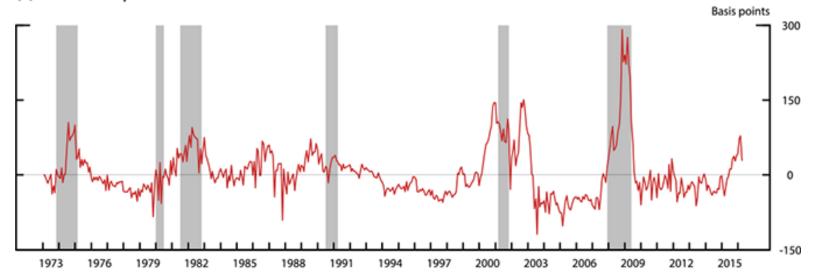
Alternatives Using Credit Spreads

Combining Term and Credit Spreads

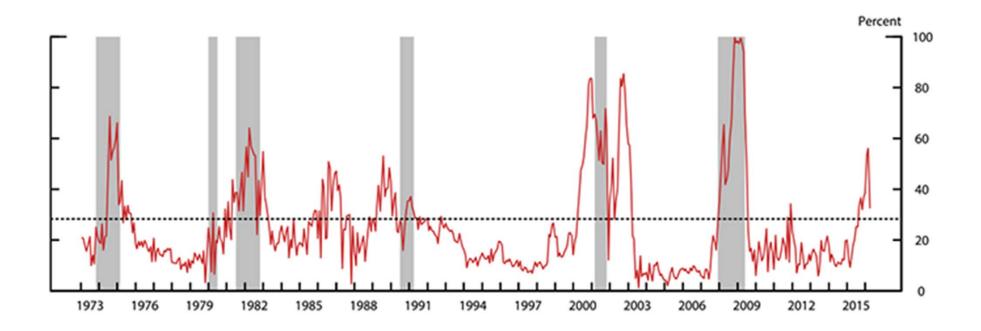
Giovanni Favara, Simon Gilchrist, Kurt F. Lewis, and Egon Zakrajšek

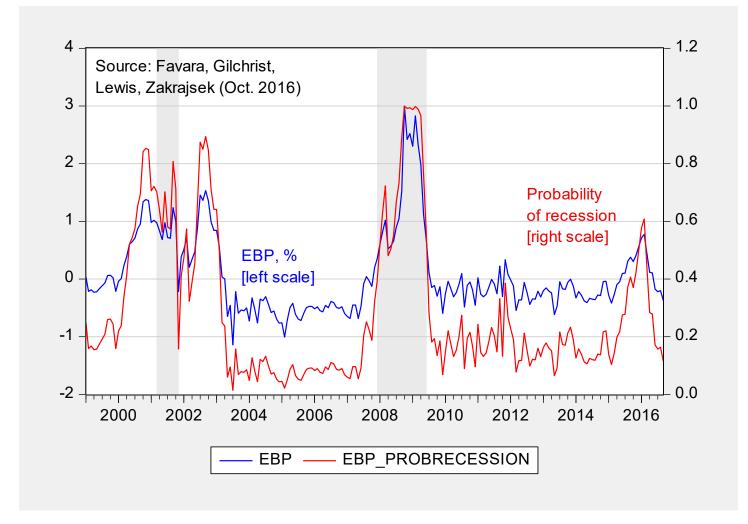

- Use corporate bond credit spread adjusted for maturity.
- Strip out investor attitude to risk, retain default risk.
- Run probit regression:

 $P(NBERt,t+12=1)=\Phi(\alpha+\beta 1SGZt+\gamma 1TSt+\gamma 2RFFt)$


P(NBERt,t+12=1)=Φ(α + β 1S^{α}GZt+ β 2EBPt+ γ 1TSt+ γ 2RFFt).

Probit Regression Results


Explanatory Variables	(1)	(2)	(3)
GZ credit spread (SGZt)	0.140***		
	(0.037)		
Term spread (TSt)	-0.079**	-0.092***	
	(0.034)	(0.029)	
Real federal funds rate (RFFt)			
	0.047**	0.017	
	(0.021)	(0.016)	
Predicted GZ credit spread (S^GZt)			
		-0.018	
		(0.057)	
Excess bond premium (EBPt)		0.300***	0.327***
		(0.055)	(0.075)
Pseudo R ²	0.426	0.527	0.288


(b) Excess bond premium

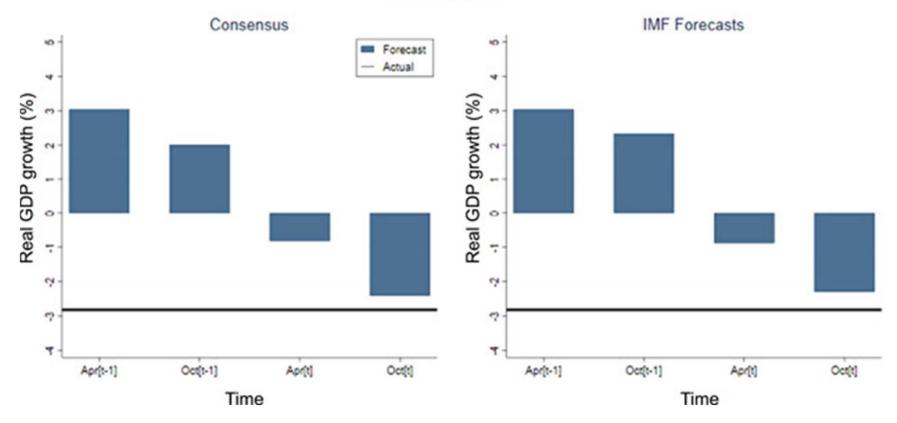
Recession Probability Based on EBP Only

Latest Avail. Recession Probabilities

https://www.federal reserve.gov/econresdata/notes/feds-notes/2016/updating-the-recession-risk-and-the-excess-bond-premium-20161006.html

Recession Forecasting by Economists

An, Jalles, Loungani (2018)


"We find that the ability to predict turning points is limited. While forecasts in recession years are revised each month, they do not capture the onset of recessions in a timely way and the extent of output decline during recessions is missed by a wide margin. This holds true for both private sector and official sector forecasts."

An, Jalles, Loungani

- What is rare is a recession that is forecast in advance.
- (Recession defined differently negative output decline for year)
- Examine forecasts for 63 countries from 1992 to 2014
- It is only as the year is ending that forecasts catch up with reality
- F'casting performance of int'l organisations similar to surveys of private analysts

An, Jalles, Loungani

All Countries

Evolution of forecasts in the run-up to recessions

An, Jalles, Loungani

Actual	Consensus foreca	asts: Apr [t-1]		Consensus forecasts: Oct [t]			
	Non-recession	Recession	Total	Non-recession	Recession	Total	
Non-recession	1145	8	1153	1120	33	1153	
Recession	148	5	153	35	118	153	
Total	1293	13	1306	1155	151	1306	

TABLE 1 Recessions in actual and consensus forecasts

Source: IMF World Economic Outlook and Consensus Forecasts.

AJL: Information Rigidity

- Forecasts look like they are over-smoothed
- Efficient forecasts (full information, RatEx) imply f'cast revisions should follow martingale

$$Rev_{it,h} = \alpha_h + \beta_h Rev_{it,h+k} + \mu_{i,h} + \varepsilon_{it,h}$$
(1)

• Under H0: $\beta h = 0$

AJL: Informational Rigidities

Dependent variable:	Consensus	5		IMF		
Revision	All	Advanced	Emerging	All	Advanced	Emerging
Lagged revision	0.35***	0.29***	0.38***	0.21***	0.09*	0.27***
	(0.04)	(0.04)	(0.06)	(0.04)	(0.05)	(0.05)
Constant	0.06***	0.03*	0.07***	0.05**	0.02	0.05**
	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)
No. of obs.	1306	639	667	1306	639	667
R^2	0.18	0.12	0.21	0.08	0.01	0.13

TABLE 5 Information rigidity—Nordhaus (1987)

Source: IMF World Economic Outlook, Consensus Forecasts, and authors' estimates.

Note: The dependent variable is the forecast revision made between Oct[t] and Apr[t]. The independent variables are the forecast revision made between Apr[t] and Oct[t-1], dummy variable for recession, and their interaction. Country fixed effects are included but omitted for reasons of parsimony. Robust standard errors are reported in parentheses. *, **, *** denote statistical significance at the 10, 5, and 1 percent levels, respectively

AJL: Info. Rigidities around Recessions

(2)

Is there serial correlation when recession is underway?

$$Rev_{it,h} = \alpha_h + \beta_h Rev_{it,h+k} + \gamma_h Rec_{it} + \theta_h Rev_{it,h+k} * Rec_{it} + \mu_{i,h} + \varepsilon_{it,h}$$

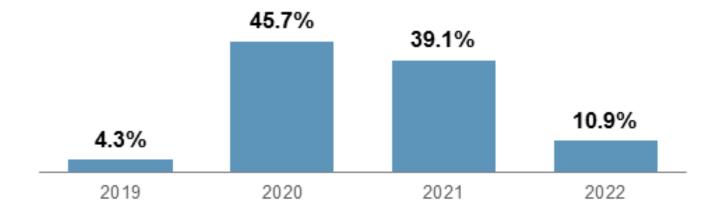
Dependent variable:	Consensus			IMF			
Revision	All	Advanced	Emerging	All	Advanced	Emerging	
Lagged revision	0.35***	0.36***	0.33***	0.13**	0.22**	0.07	
	(0.06)	(0.12)	(0.06)	(0.05)	(0.09)	(0.06)	
Lagged Rev.*Rec.	-0.26*	-0.34	-0.29*	-0.11	-0.45**	0.00	
	(0.14)	(0.25)	(0.16)	(0.12)	(0.21)	(0.12)	
Recession	-1.59***	-1.10**	-2.61***	-1.60***	-1.46***	-2.44***	
	(0.32)	(0.42)	(0.34)	(0.34)	(0.46)	(0.38)	
Constant	0.15***	0.10***	0.21***	0.16***	0.12***	0.20***	
	(0.02)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	
No. of obs.	1306	639	667	1306	639	667	
R^2	0.25	0.17	0.35	0.15	0.12	0.27	
<i>p</i> -Value	0.40	0.90	0.76	0.82	0.11	0.34	

TABLE 6 Information rigidity during recession episodes—Nordhaus (1987)

Source: IMF World Economic Outlook, Consensus Forecasts, and authors' estimates.

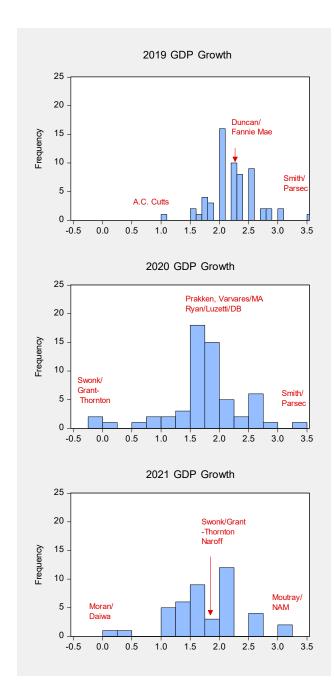
Note: The dependent variable is the forecast revision made between Oct[t] and Apr[t]. The independent variables are the forecast revision made between Apr[t] and Oct[t-1], dummy variable for recession, and their interaction. Country fixed effects are included but omitted for reasons of parsimony. Robust standard errors are reported in parentheses. *, **, *** denote statistical significance at the 10, 5, and 1 percent levels, respectively.

Surveys of Economists in 2019


Normative Assessments

• Survey of Professional Forecasters (quarterly)

https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/


• WSJ February 2019 survey (monthly)

http://projects.wsj.com/econforecast/

WSJ February Survey:

- Tight f'cast in 2019
- 2020 has some negative growth
- 2021 is recovery
- Notice: Outliers (James Smith/Parsec)
- There are institutional incentives, that have ambiguous effects

