Economics 442 Macroeconomic Policy (11/16/2020)

Instructor: Prof. Menzie Chinn UW Madison Fall 2020

Outline

- The flattening Phillips curve
- Hysteresis

Two Stylized Facts: Blanchard, Cerutti, Summers

- While inflation has decreased, it has decreased less than anticipated, suggesting a breakdown of the relation between inflation and activity.
- In most advanced countries, output remains far below the pre-recession trend, suggesting hysteresis.

The Flattening Phillips Curve

Analysis

- 122 recessions
- Sample 1960-2014
- •23 (advanced) countries
- Quarterly data

Flattening Phillips Curve

Figure 7: Advanced Economies CPI Headline Inflation (percent, year over year)

Source: IMF, Global Data Source.

Phillips Curve Estimation

$$\pi_t = \theta_t (u_t - u_t^*) + \lambda_t \pi_t^e + (1 - \lambda_t) \pi_{t-1}^* + \mu_t \pi_{mt} + \varepsilon_t$$
(1)

Where π_t is headline CPI inflation (defined as quarterly inflation, annualized), u_t is the unemployment rate, u_t^* is the natural rate, π_t^e is long-term inflation expectations, π_{t-1}^* is the average of the last four quarterly inflation rates, and π_{mt} is import price inflation relative to headline inflation. Consensus Forecasts

The parameters λ_t (the coefficient reflecting the stability of inflation expectations), θ_t (the slope of the Phillips curve), and μ_t (the coefficient reflecting the importance of import-price inflation), as well as the natural rate, u_t^* , which is unobservable, are all assumed to follow constrained random walks (the constraints being θ_t and $\mu_t \ge 0$, and $0 \le \lambda_t \le 1$).¹⁵

Time varying parameters estimated using Kalman filter Note that estimation allows time variation of u*, which might be hard to distinguish from variation in θ

Stability of Inflation Expectations, λ

Phillips Curve Slope, θ

Question: Is it variation in θ or variation in u^* ?

Figure 9: Estimates for Germany and the US

```
United States
```

Germany

Unemployment Rate (black line) and Natural Rate (red line, dotted blue line +/- 1 standard deviation)

United States Germany

Anchoring of Inflation to Long Term Expectations (λ) (dotted blue line +/- 1 standard deviation)

TVP vs OLS approach

- 1990-2014 (also subperiods, 1990-2007; 2007-14)
- Estimate via Kalman filter, and holding u* constant at sample average

Table 6: Slope of the Phillips Curve

Country	Sample Period	Natural rate: U*		Natural Rate: Ū	
		Coefficient 1/	Standard Deviation	Coefficient 1/	Standard Deviation
United States	1990-2014	-0.29 ***	0.07	-0.25 ***	0.07
	2007-2014	-0.26 *	0.13	-0.24 *	0.12
Japan	1990-2014	-1.09 ***	0.17	-0.50 ***	0.09
	2007-2014	-2.37 ***	0.64	-1.54 ***	0.43
Germany	1990-2014	-0.11	0.09	-0.12	0.07
	2007-2014	0.15	0.20	0.11	0.14
United Kingdom	1990-2014	0.04	0.11	0.02	0.10
	2007-2014	-0.04	0.30	-0.04	0.28
France	1990-2014	-0.49 ***	0.14	-0.32 ***	0.08
	2007-2014	-0.63 ***	0.20	-0.52 ***	0.16
Italy	1990-2014	-0.12	0.09	-0.15 ***	0.06
	2007-2014	-0.30 ***	0.10	-0.25 ***	0.08
Canada	1990-2014	-0.32 ***	0.16	-0.21	0.13
	2007-2014	-0.52	0.45	-0.50	0.41
Australia	1990-2014	-0.68 ***	0.14	-0.49 ***	0.10
	2007-2014	-0.78 **	0.38	-0.79 **	0.36

Country	Sample Period	Natural rate: U*		Natural Rate:Ū	
		Coefficient 1/	Standard Deviation	Coefficient 1/	Standard Deviation
Spain	1000-2014	-0.08 **	0.04	-0.07 ***	0.03
	2007-2014	-0.09 *	0.05	-0.07 *	0.04
Netherlands	1990-2014	-0.40 ***	0.12	-0.31 ***	0.10
	2007-2014	0.01	0.20	-0.01	0.16
Sw itzerland	1990-2014	-0.71 ***	0.15	-0.64 ***	0.08
	2007-2014	-0.59	0.79	-0.65	0.60
Sw eden	1990-2014	-0.55 ***	0.12	-0.48 ***	0.09
	2007-2014	-1.21 ***	0.32	-1.10 ***	0.26
Belgium	1990-2014	-0.62 ***	0.20	-0.37 ***	0.14
	2007-2014	-1.13 *	0.62	-0.74 **	0.30
Norw ay	1990-2014	-0.06	0.20	-0.07	0.20
	2007-2014	-0.80	1.52	-0.73	1.41
Austria	1990-2014	-0.68 ***	0.25	-0.11	0.14
	2007-2014	-1.62 ***	0.42	-1.26 ***	0.36
Denmark	1990-2014	-0.17	0.12	-0.13	0.10
	2007-2014	1.72 ***	0.49	1.53 ***	0.44
reland	1990-2014	-0.28 ***	0.04	-0.21 ***	0.03
	2007-2014	-0.26 ***	0.08	-0.22 ***	0.07
Greece	1990-2014	-0.15 **	0.07	-0.14 ***	0.03
	2007-2014	-0.19 ***	0.06	-0.11 ***	0.04
Portugal	1990-2014	-0.23 ***	0.07	-0.17 ***	0.05
	2007-2014	-0.01	0.11	-0.02	0.08
New Zealand	1990-2014	-0.50 ***	0.09	-0.33 ***	0.11
	2007-2014	-0.60 *	0.34	-0.58 *	0.28

1/ *** indicates significance at 1 percent, ** at 5 percent, and * at 10 percent, respectively, based on robust standard errors.

Conclusions

- Phillips curve is indeed flatter than previously
- But most of the change occurred between the mid-1970's and early 1990's
- Phillips curve slope mostly constant since early 1990's
- But there is still a significant relationship
- I.e., the Phillips curve is not dead

Policy Conclusions

- Stabilizing inflation might require much larger changes in the unemployment gap than previously
- But without knowing why θ is smaller, we don't have further implications

Update

Hysteresis

Hysteresis (from physics)

the phenomenon in which the value of a physical property lags behind changes in the effect causing it

In terms of economics

- "[The] hysteresis hypothesis, defined as the hypothesis that recessions may have permanent effects on the level of output relative to trend."
- "super-hysteresis' effects (the term used by Laurence Ball (2014) for the impact of a recession on the growth rate rather than just the level of output).

Recessions and After-Effects

Figure 3: United States - Evolution of log real GDP and Extrapolated Trends

Three Possible Reasons

- Recessions cause hysteresis/superhysteresis
- Third factor causes recession and slower growth
- True reverse causation anticipated slower growth induces recession

Use 23 countries, 50 years (ex 1960s, 2010's) for 122 recessions

Summary

- In 31% of all cases, sustained (adjusted) output gap does not follow recession
- In 69% of all cases, a sustained (adjusted) output gap follows recession
- In 33% of all cases, the (adjusted) output gap grows over time

Explanations

- For hysteresis: (1) insider/outsider-labor unions, (2) lower capital investment, (3) reduced R&D, (4) lower job creation/destruction -> slower reallocation
- For super-hysteresis: (1) legal/self-imposed restrictions on finance, (2) changes in taxation
- For common shock, supply shocks obvious candidate (incl. financial crises)
- For reverse causality, productivity slowdowns precede recessions (Gordon).

Characteristics by Shock

- More with sustained output gaps if supply (oil)
- More with sustained output gaps if financial shocks.
- More with sustained output gaps if intentional disinflation

Policy Implications

- If due to hysteresis/super-hysteresis, implies that monetary policy should be more active in offsetting recessions, as costs are greater
- If due to reverse causality, then there's a greater risk of overshooting (the new) potential output

Implies Aggressive Action to Counter Deep/Persistent Recession

