Economics 390
Topics in Macroeconomics
(11/18/2013)

Instructor: Prof. Menzie Chinn
UW Madison
Fall 2013
The Government Budget Constraint

The Arithmetic of Deficits and Debt

- The budget deficit in year t equals:

$$\text{deficit}_t = rB_{t-1} + G_t - T_t$$

- B_{t-1} is government debt at the end of year, $t - 1$ or, equivalently, at the beginning of year t; r is the real interest rate, which we shall assume to be constant here. Thus rB_{t-1} equals the real interest payments on the government debt in year t.

- G_t is government spending during year t.

- T_t is taxes minus transfers during year t.

In words: The budget deficit equals spending, including interest payments on the debt, minus taxes net of transfers.
The Government Budget Constraint

• Note two characteristics of $\text{deficit}_t = rB_{t-1} + G_t - T_t$:

 – We measure interest payments as real interest payments rather than as actual interest payments. The correct measure of the deficit is sometimes called the inflation-adjusted deficit.

 – G does not include transfer payments.
The Government Budget Constraint

The government budget constraint states that the change in government debt during year \(t \) is equal to the deficit during year \(t \):

\[
B_t - B_{t-1} = \text{Deficit}_t
\]

Using the definition of the deficit

\[
\text{deficit}_t = rB_{t-1} + G_t - T_t
\]

we can rewrite the government budget constraint as

\[
B_t - B_{t-1} = rB_{t-1} + G_t - T_t
\]
The Government Budget Constraint

Using this decomposition, we can rewrite

\[B_t - B_{t-1} = rB_{t-1} + G_t - T_t \]

Change in the debt = Interest payments + Primary deficit

Primary Deficit

\[B_t = (1+r)B_{t-1} + G_t - T_t \]
The Government Budget Constraint

The Arithmetic of the Debt Ratio

\[
\frac{B_t}{Y_t} = (1 + r) \frac{B_{t-1}}{Y_t} + \frac{G_t - T_t}{Y_t}
\]

\[
\frac{B_t}{Y_t} = (1 + r) \left(\frac{Y_{t-1}}{Y_t} \right) \frac{B_{t-1}}{Y_{t-1}} + \frac{G_t - T_t}{Y_t}
\]

\[
\frac{B_t}{Y_t} = (1 + r - g) \frac{B_{t-1}}{Y_{t-1}} + \frac{G_t - T_t}{Y_t}
\]

\[
\frac{B_t}{Y_t} - \frac{B_{t-1}}{Y_{t-1}} = (r - g) \frac{B_{t-1}}{Y_{t-1}} + \frac{G_t - T_t}{Y_t}
\]

\[
\frac{B_t}{Y_t} - \frac{B_{t-1}}{Y_{t-1}} = (r - g) \frac{B_{t-1}}{Y_{t-1}} + \frac{G_t - T_t}{Y_t}
\]
CBO, Long Term Budget Outlook, September 2013
Figure 1-1.
Federal Debt Held by the Public Under CBO’s Extended Baseline
(Percentage of gross domestic product)

Components of Total Spending

World War II
Great Depression
Civil War
World War I

Actual
Projected

Federal Spending on Major Health Care Programs
Other Noninterest Spending
Social Security
Net Interest

Interest Rates and Debt

\[i_{t,k} - i_{t,j} = -\gamma (\pi_t - \bar{\pi}) - \phi (y_t - \bar{y}_t) + \sigma_t + \epsilon_t \]

(2)

\[\text{SPREAD}_t = \beta_0 + \beta_1 \text{UNGAP}_t + \beta_2 \text{INFL}_t + \beta_3 \text{STRSURP}_t + \beta_4 \text{FOROFFICIAL}_t + \beta_5 \text{FEDLT}_t + e_t, \]

(3)

- SPREAD is long-short interest differential
- UNGAP is unemployment-NAIRU gap
- INFL is the PCE inflation gap (minus 1.8%)
- STRSURP is the structural budget balance, ratio to potential GDP
- FOROFFICIAL is purchases foreign official sector purchases, ratio to potential GDP
- FEDLT is Fed purchases of long term Treasurys, ratio to potential GDP
Empirical Estimates

Table 1: Regression Results for the Treasury Interest Rate Term Spread, Ten-Years and Three Months

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>UNGAP</th>
<th>INFL</th>
<th>STRSURP</th>
<th>FOROFFICIAL</th>
<th>FEDLT</th>
<th>DISCMPOL</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.373**</td>
<td>0.416**</td>
<td>−0.276**</td>
<td>−0.190*</td>
<td></td>
<td></td>
<td></td>
<td>0.553</td>
</tr>
<tr>
<td></td>
<td>(0.278)</td>
<td>(0.143)</td>
<td>(0.072)</td>
<td>(0.106)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.435**</td>
<td>0.481**</td>
<td>−0.383**</td>
<td>−0.291**</td>
<td>−0.445*</td>
<td></td>
<td></td>
<td>0.588</td>
</tr>
<tr>
<td></td>
<td>(0.269)</td>
<td>(0.142)</td>
<td>(0.090)</td>
<td>(0.116)</td>
<td>(0.243)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.358**</td>
<td>0.648**</td>
<td>−0.407**</td>
<td>−0.293**</td>
<td>−0.147</td>
<td>−0.561**</td>
<td></td>
<td>0.680</td>
</tr>
<tr>
<td></td>
<td>(0.238)</td>
<td>(0.137)</td>
<td>(0.080)</td>
<td>(0.102)</td>
<td>(0.237)</td>
<td>(0.189)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.331**</td>
<td>0.565**</td>
<td>−0.420**</td>
<td></td>
<td>−0.349**</td>
<td></td>
<td></td>
<td>0.685</td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
<td>(0.091)</td>
<td>(0.070)</td>
<td></td>
<td>(0.086)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.265**</td>
<td>0.608**</td>
<td>−0.385**</td>
<td>−0.306**</td>
<td>−0.254</td>
<td>−0.442**</td>
<td>0.748</td>
<td>0.699</td>
</tr>
<tr>
<td></td>
<td>(0.238)</td>
<td>(0.135)</td>
<td>(0.079)</td>
<td>(0.099)</td>
<td>(0.239)</td>
<td>(0.198)</td>
<td>(0.461)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.223**</td>
<td>0.557**</td>
<td>−0.382**</td>
<td></td>
<td>−0.335**</td>
<td>0.847**</td>
<td></td>
<td>0.717</td>
</tr>
<tr>
<td></td>
<td>(0.188)</td>
<td>(0.086)</td>
<td>(0.069)</td>
<td></td>
<td>(0.082)</td>
<td>(0.413)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Ordinary least squares, sample 1979–2010.

Source: Kitchen and Chinn (2012)
The Dangers of Very High Debt

• The higher the ratio of debt to GDP, the larger the potential for catastrophic debt dynamics.

• Expectations of higher and higher debt give a hint that a problem may arise, which will lead to the emergence of the problem, thereby validating the initial expectations.

• Debt repudiation consists of canceling the debt, in part or in full.
Debt Crises: GHHM

\[B_{t+1} = (1 + R_t)(B_t - S_t). \] (1)

Dividing both sides of (1) by GDP in year \(t+1 \) gives

\[\frac{B_{t+1}}{Y_{t+1}} = \frac{Y_t}{Y_{t+1}} \frac{1}{Y_t} (1 + R_t)(B_t - S_t). \] (2)

Let lower-case symbols denote magnitudes as a fraction of GDP,

\[b_t = \frac{B_t}{Y_t} \]

\[s_t = \frac{S_t}{Y_t}, \]

and let \(r_t \) be defined by

\[1 + r_t = \frac{(1 + R_t)Y_t}{Y_{t+1}} \] (3)

so that (2) can be written

\[b_{t+1} = (1 + r_t)(b_t - s_t). \] (4)

If \(g_t \) denotes the nominal GDP growth rate between \(t \) and \(t+1 \),

\[Y_{t+1} = (1 + g_t)Y_t, \] (5)
\[r_i = R_i - g_i. \] (6)

Suppose that a country faces a constant net borrowing cost \(r^* \) and wants to maintain a constant debt-to-GDP ratio \(b^* \). Then (4) implies that this would require a primary surplus \(s^* \) satisfying \(^2\)

\[b^* = (1 + r^*)(b^* - s^*) \] (7)

\[s^* = \frac{r^*b^*}{1 + r^*}. \] (8)

\[R_{it} = \hat{\alpha}_i + \hat{\gamma}_t + 0.0313 b_{i,t-1} + 0.0142 b_{i,t-1}^n - 0.184 c_{i,t-1} + e_{it} \]
\[(3.95) \quad (2.30) \quad (5.16) \]
\[R^2 = 0.69 \quad \text{log likelihood} = -288.32. \]

\[R_{it} = \hat{\alpha}_i + \hat{\gamma}_t + 0.0029 b_{i,t-1} + 0.245 c_{i,t-1} + 0.000203 b_{i,t-1}^2 \]
\[(0.30) \quad (4.29) \quad (4.81) \]
\[+ 0.00793 c_{i,t-1}^2 - 0.00636 c_{i,t-1} b_{i,t-1} + e_{it} \]
\[(2.98) \quad (10.18) \]
\[R^2 = 0.82 \quad \text{log likelihood} = -224.28. \]

\[R_{it} = \hat{\alpha}_i + \hat{\gamma}_t + 0.0370 b_{i,t-1}^n - 0.157 c_{i,t-1} + 0.0000365 (b_{i,t-1}^n)^2 \]
\[(7.14) \quad (3.65) \quad (0.89) \]
\[+ 0.0101 c_{i,t-1}^2 - 0.00124 c_{i,t-1} b_{i,t-1}^n + e_{it} \]
\[(2.35) \quad (2.10) \]
\[R^2 = 0.76 \quad \text{log likelihood} = -259.74. \]
Implications

Figure 3.1 Response of Sovereign yields to Debt Ratios under alternative current account balances
Do Other Factors Matter?

Source: IMF, WEO, October 2013
Gross Government Debt

Source: IMF, WEO, October 2013
Sovereign Yields

Source: OECD via FRED
Is It the Current Account?

Source: IMF, WEO, October 2013
Reinterpreting GHHM