Selling the American Dream: The Effect of Advertising on Enrollment at Less-Selective Colleges

> Elise Marifian University of Wisconsin - Madison marifian@wisc.edu

> > **AEFP** Annual Meeting

March 2023, Denver, CO

1. Disclaimer: The content of this presentation is the researcher's own analyses calculated (or derived) based in part on data from The Nielsen Company (US), LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen data are those of the researcher and do not reflect the views of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in analyzing and preparing the results reported herein.

2. Financial Support Acknowledgments:

The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Award #R305B150003 to the University of Wisconsin-Madison. The opinions expressed are those of the authors and do not represent views of the Department of Education.

This research also was supported by a grant from the American Educational Research Association which receives funds for its "AERA-NSF Grants Program" from the National Science Foundation under NSF award NSF-DRL #1749275. Opinions reflect those of the author and do not necessarily reflect those of AERA or NSF.

3. Media Statement: Findings are preliminary, so please do not record, disseminate, cite, or share on social media, including on Twitter.

+ Driven by for-profit colleges

+ Driven by for-profit colleges

Years of controversy surrounding marketing practices of for-profit colleges

+ FTC investigations of deceptive ads by large chains

+ Driven by for-profit colleges

Years of controversy surrounding marketing practices of for-profit colleges

+ FTC investigations of deceptive ads by large chains

Research question:

What is the effect of advertising on demand for college?

+ Driven by for-profit colleges

Years of controversy surrounding marketing practices of for-profit colleges

+ FTC investigations of deceptive ads by large chains

Research question:

What is the effect of advertising on demand for college?

+ Effects of own and rival ads

This Project

Empirical setting: Less-selective colleges in the US, 2010-2015

+ Enroll over half of undergraduates, local markets

+ Enroll over half of undergraduates, local markets

Data: Create novel panel of college advertising

+ Link local TV ads from Nielsen to annual college data from IPEDS

+ Enroll over half of undergraduates, local markets

Data: Create novel panel of college advertising

+ Link local TV ads from Nielsen to annual college data from IPEDS

Theory-informed identification: Exploit exogeneity embedded in TV advertising: Advertisers are unable to precisely predict viewership

+ Enroll over half of undergraduates, local markets

Data: Create novel panel of college advertising

+ Link local TV ads from Nielsen to annual college data from IPEDS

Theory-informed identification: Exploit exogeneity embedded in TV advertising: Advertisers are unable to precisely predict viewership

 \rightarrow Use control function to absorb the endogenous part of realized TV views or impressions

What I find

+ Own advertising \uparrow new enrollments, rival adv effects undetectable

What I find

- + Own advertising \uparrow new enrollments, rival adv effects undetectable
- + Heterogeneous effects by institution level and control
 - + Business-stealing: Public CCs harmed by for-profit rival ads
 - + Positive enrollment spillovers of for-profits ads on rival for-profits

What I find

- + Own advertising \uparrow new enrollments, rival adv effects undetectable
- + Heterogeneous effects by institution level and control
 - + Business-stealing: Public CCs harmed by for-profit rival ads
 - + Positive enrollment spillovers of for-profits ads on rival for-profits

Contributions

- 1. First to estimate effects of own and rival advertising on enrollment
- 2. New way to identify effect of TV adv on demand w/o policy variation
 - + Generalizable to other settings, allows identification of rival effects

Empirical Approach

Identifying the Effect of Advertising on Demand for College

Advertising is a choice by firms, likely correlates w/ unobserved demand

Credible approaches in the literature:

- + Border design: Good identification, but infeasible with current data
- + Political IV: Good strategy for own effects, but rival effects not identified

My approach:

- + Insight: Given an ad spot, advertisers expect a certain # of views, but they always face uncertainty (i.e., realized impressions is stochastic)
- + Idea: Exploit the deviations between expected and realized viewership
- + Key assumption: Factors that shift the viewership of an institution's ads are uncorrelated with other determinants of its enrollment

Naive Model

Let *j* =institution, *t* =year

$$y_{jt} = \psi + \mathbf{a}'_{jt}\boldsymbol{\beta} + \mathbf{x}'_{jt}\boldsymbol{\gamma} + \rho_j + \tau_t + u_{jt}$$
(1)

- $y_{jt} = j$'s new enrollment in year t
- $\mathbf{a}'_{jt} = \begin{bmatrix} a_{jt} & a_{-jt} \end{bmatrix}$ = own and rival TV impressions
- x_{jt} = time-varying college attributes
- ρ_j = unobserved institutional features/student tastes for j
- τ_t = aggregate/common shocks to college enrollment in t
- u_{jt} = mean zero error
- β is the parameter of interest

Empirical Strategy

Step 1: Use ad spending s_{jt} to form a prediction of impressions \hat{a}_{jt}

$$\hat{a}_{jt} = f(s_{jt})$$

Assumption: \hat{a}_{jt} captures all predictable variation in a_{jt} (when ads purchased)

Step 1: Use ad spending s_{jt} to form a prediction of impressions \hat{a}_{jt}

$$\hat{a}_{jt} = f(s_{jt})$$

Assumption: \hat{a}_{jt} captures all predictable variation in a_{jt} (when ads purchased)

Step 2: Use the predicted impressions in a control function $C(\hat{a}_{jt})$ to isolate exogenous variation in realized impressions

Estimating equation:

$$y_{jt} = \psi + \mathbf{a}'_{jt} \boldsymbol{\beta} + C(\hat{\mathbf{a}}_{jt}) + \mathbf{x}'_{jt} \boldsymbol{\gamma} + \theta_j + \sigma_t + \varepsilon_{jt}$$
(2)

Step 1: Use ad spending s_{jt} to form a prediction of impressions \hat{a}_{jt}

$$\hat{a}_{jt} = f(s_{jt})$$

Assumption: \hat{a}_{jt} captures all predictable variation in a_{jt} (when ads purchased)

Step 2: Use the predicted impressions in a control function $C(\hat{a}_{jt})$ to isolate exogenous variation in realized impressions

Estimating equation:

$$y_{jt} = \psi + \mathbf{a}'_{jt}\boldsymbol{\beta} + C(\hat{\mathbf{a}}_{jt}) + \mathbf{x}'_{jt}\boldsymbol{\gamma} + \theta_j + \sigma_t + \varepsilon_{jt}$$
(2)

Intuition: $C(\hat{a}_{jt})$ controls for the part of a_{jt} that correlates with u_{jt} , so the remaining component of the error, ε_{jt} , is uncorrelated with a_{jt} .

$$\beta$$
 is identified if $E(\varepsilon_{jt}|\boldsymbol{a}_{jt}, C(\hat{\boldsymbol{a}}_{jt}), \boldsymbol{x}_{jt}, \theta_j, \sigma_t) = 0$

Data and Descriptive Statistics

- + Key variables: Fall new enrollment (outcome), prior year tuition, ave. instructional spend, majors offered
- + Restrict to less-selective public/private (admit ≥80%, no test/GPA requirements), community/tech, and for-profit colleges

- + Key variables: Fall new enrollment (outcome), prior year tuition, ave. instructional spend, majors offered
- + Restrict to less-selective public/private (admit ≥80%, no test/GPA requirements), community/tech, and for-profit colleges

Ad Intel: All local TV ads aired in top 25 DMAs by colleges and institutes • DMAs

+ Key variables: brand, date/time/market aired, duration, spot cost (spend), and impressions/GRPs (# 18-34 year olds who see the ad)

- + Key variables: Fall new enrollment (outcome), prior year tuition, ave. instructional spend, majors offered
- + Restrict to less-selective public/private (admit ≥80%, no test/GPA requirements), community/tech, and for-profit colleges

Ad Intel: All local TV ads aired in top 25 DMAs by colleges and institutes • DMAs

- + Key variables: brand, date/time/market aired, duration, spot cost (spend), and impressions/GRPs (# 18-34 year olds who see the ad)
- + Restrict to ads aired in institution j's own DMA
 - + Rival Advertising = Ads aired by colleges located in *j*'s DMA and CZ

- + Key variables: Fall new enrollment (outcome), prior year tuition, ave. instructional spend, majors offered
- + Restrict to less-selective public/private (admit ≥80%, no test/GPA requirements), community/tech, and for-profit colleges

Ad Intel: All local TV ads aired in top 25 DMAs by colleges and institutes • DMAs

- + Key variables: brand, date/time/market aired, duration, spot cost (spend), and impressions/GRPs (# 18-34 year olds who see the ad)
- + Restrict to ads aired in institution j's own DMA
 - + Rival Advertising = Ads aired by colleges located in *j*'s DMA and CZ

Annual county economic data: To control for variation in local college demand ⁸

Sample Statistics - Institution Characteristics

	Publics		Fo	For-Profits		All Insts			
	Non – Adv	Adv	All	Non – Adv	Adv	All	Non – Adv	Adv	All
Fall Undergraduates	8, 591	13,359	9,701	324	1,434	708	1,851	2,807	2,159
	(7, 983)	(12, 879)	(9, 565)	(905)	(9,015)	(5, 378)	(4,761)	(10, 099)	(6, 962)
Fall New Enrollments	2,149	3,131	2,377	115	325	187	489	650	541
	(1, 925)	(3,038)	(2, 271)	(297)	(1, 379)	(852)	(1, 172)	(1, 868)	(1, 436)
Tuition and Fees	3, 309	3,737	3,409	13,340	16,967	14,595	11,514	15,254	12,721
	(2, 414)	(1, 662)	(2, 268)	(5, 997)	(5,714)	(6, 147)	(6,864)	(6, 906)	(7,096)
Instruct. Spend/Student	4,205	3,798	4,110	5,610	4,920	5,375	5,946	5,357	5,758
	(3,539)	(1, 918)	(3,240)	(5, 728)	(4,200)	(5, 269)	(9, 196)	(8, 391)	(8,951)
Student-Faculty Ratio	22	21	22	16	22	18	17	22	18
	(8)	(7)	(7)	(8)	(11)	(9)	(8)	(10)	(9)
Offers Weekend/Evening Class (%)	63	70	65	43	65	50	46	66	53
	(48)	(46)	(48)	(49)	(48)	(50)	(50)	(47)	(50)
Offers Distance Education (%)	86	96	88	12	42	23	27	49	34
	(35)	(20)	(33)	(33)	(49)	(42)	(45)	(50)	(47)
Retention Rate (FT)	64	60	63	73	63	69	71	63	68
	(13)	(12)	(13)	(19)	(21)	(20)	(19)	(20)	(20)
Observations	2,006			9,572			12,327		

Sample Statistics - Advertising

	2-Year Publics Mean/SD.	2-Year For-Profits Mean/SD.	4-Year Publics Mean/SD.	4-Year For-Profits Mean/SD.	Private Non-Profits Mean/SD.	All Mean/SD.
Own TV Ad Spend (000)	81	321	378	434	180	332
	(177)	(459)	(1, 225)	(479)	(273)	(486)
Own GRPs	161	867	509	939	371	792
	(319)	(1, 122)	(1, 353)	(1, 139)	(473)	(1,088)
# TV Ads	391	3,029	648	2,677	1,063	2,502
	(603)	(3,782)	(1, 521)	(3,396)	(1,723)	(3, 453)
Own TV Ads Duration (hours)	3	26	5	29	9	24
	(5)	(33)	(12)	(35)	(15)	(32)
# Rivals Advertising	21	26	17	27	22	25
	(11)	(16)	(14)	(15)	(13)	(15)
Rival TV Ad Spend (000)	6,620	9,123	5,737	9,251	7,478	8,764
	(5,059)	(9,213)	(6,025)	(8,153)	(7, 196)	(8,424)
Rival GRPs	14,603	17,876	13,667	19,127	15,687	17,782
	(10, 601)	(11,451)	(13,567)	(10,904)	(10,644)	(11, 301)
Observations	374	1,942	101	1,367	199	3,983

Results

	Percent Effect on New Enrollment				
	Units: 100 GRPs	Units: 1 SD GRPs			
Own GRPs	1.22***	8.75***			
	(0.25)	(1.77)			
Rival GRPs	0.01	1.05			
	(0.01)	(1.65)			
Ave Enrollment	547				
Inst-Year Obs	12,559				
Unique Insts	2,439				

Effects	of Own	Adve	rtising
---------	--------	------	---------

Advertiser Control			
Publics	0.058***	(0.018)	[0.022, 0.093]
Private Non-Profits	0.012	(0.064)	[-0.113, 0.138]
For-Profits	0.111***	(0.023)	[0.066, 0.157]
Ave. Enrollment	547		
Unique Insts	2,439		
Inst-Year Obs	12,559		

Cross-Control Effects of Rival Advertising

		on New Enrollment at			
Effect of GRPs by	2 Year Publics	2 Year For-Profits	4 Year Publics	4 Year For-Profits	All Private Non-Profits
2 Year Publics	0.017	0.003	-0.044	0.000	0.021
	(0.015)	(0.017)	(0.051)	(0.035)	(0.036)
2 Year For-Profits	-0.101	0.028	-0.032	0.083	-0.016
	(0.029)	(0.025)	(0.047)	(0.057)	(0.062)
4 Year Publics	0.023	-0.021	0.068	-0.060	0.077
	(0.022)	(0.022)	(0.028)	(0.057)	(0.052)
4 Year For-Profits	-0.036	-0.006	-0.070	0.135	-0.005
	(0.018)	(0.019)	(0.060)	(0.063)	(0.032)
All Private Non-Profits	-0.011	0.045	0.035	0.044	-0.015
	(0.016)	(0.016)	(0.035)	(0.032)	(0.036)
Ave Enrollment	547				
Inst-Year Obs	12,559				
Unique Insts	2,439				

Why are estimated own effects larger at for-profit colleges?

Why are estimated own effects larger at for-profit colleges?

- + Differential value of ads as increasing awareness?
- + Differences in content? e.g. more informative or persuasive?

Why are estimated own effects larger at for-profit colleges?

- + Differential value of ads as increasing awareness?
- + Differences in content? e.g. more informative or persuasive?

Advertising especially beneficial to for-profit colleges. Does it benefit the students?

Why are estimated own effects larger at for-profit colleges?

- + Differential value of ads as increasing awareness?
- + Differences in content? e.g. more informative or persuasive?

Advertising especially beneficial to for-profit colleges. Does it benefit the students?

- + Those diverted away from community college pay more out of pocket
- + But costs could be outweighed by higher degree completion rates

Why are estimated own effects larger at for-profit colleges?

- + Differential value of ads as increasing awareness?
- + Differences in content? e.g. more informative or persuasive?

Advertising especially beneficial to for-profit colleges. Does it benefit the students?

- + Those diverted away from community college pay more out of pocket
- + But costs could be outweighed by higher degree completion rates
- + Responsiveness to for-profit ads may help explain recent growth of for-profit colleges despite plummeting enrollment at community colleges

Why are estimated own effects larger at for-profit colleges?

- + Differential value of ads as increasing awareness?
- + Differences in content? e.g. more informative or persuasive?

Advertising especially beneficial to for-profit colleges. Does it benefit the students?

- + Those diverted away from community college pay more out of pocket
- + But costs could be outweighed by higher degree completion rates
- + Responsiveness to for-profit ads may help explain recent growth of for-profit colleges despite plummeting enrollment at community colleges

More research needed to understand how student outcomes affected

Summary of Findings

I find that students have varied responses to ads by different types of colleges

Summary of Findings

I find that students have varied responses to ads by different types of colleges

1. Constant effects model masks heterogeneity by institution type

I find that students have varied responses to ads by different types of colleges

- 1. Constant effects model masks heterogeneity by institution type
- 2. Effect of rival advertising differs by the level of institution
 - + Among 2 year institutions, evidence of cross-sector business stealing:
 2 year for-profit advertising especially harms community colleges (-0.10)
 - + Among 4 year colleges, evidence of w/in sector positive spillovers
 Public on public: 0.06
 For-profit on for-profit: 0.135

I find that students have varied responses to ads by different types of colleges

- 1. Constant effects model masks heterogeneity by institution type
- 2. Effect of rival advertising differs by the level of institution
 - + Among 2 year institutions, evidence of cross-sector business stealing:
 2 year for-profit advertising especially harms community colleges (-0.10)
 - + Among 4 year colleges, evidence of w/in sector positive spillovers
 Public on public: 0.06
 For-profit on for-profit: 0.135

3. Ads by private non-profits have insignificant own effect but positive impact on enrollment at for-profit competitors Alternative control function: Use rich spot attributes + ML to nonparametrically predict impressions

- + Train random forest on ads aired in prior year (all products)
- + Leverage detailed data on media type, channel/distributor, TV program name and genre, commercial pod, day of week, and time of day to predict impressions
- + Predict impressions separately by demographic group
- + Estimate impacts using impressions and enrollment by sex

Comments welcome!

• marifian@wisc.edu

Appendix

The U.S. has 210 media markets known as DMAs

Return

Empirical Strategy (Details)

Identifying the causal effects of advertising on demand

Empirical Challenge: TV advertising is endogenous

- Advertising choices part of firm's optimization problem
- Possibility of strategic responses to competing firms
- Unobserved factors affecting both ad choices and college-going

Identifying the causal effects of advertising on demand

Empirical Challenge: TV advertising is endogenous

- Advertising choices part of firm's optimization problem
- Possibility of strategic responses to competing firms
- Unobserved factors affecting both ad choices and college-going

Direction of bias is ambiguous

- Firm advertises more, anticipating a drop in future enrollments due to a nearby plant opening (\downarrow bias)
- Firm advertises more, anticipating increased demand because a rival is closing (↑ bias)

Identifying the causal effects of advertising on demand

Empirical Challenge: TV advertising is endogenous

- Advertising choices part of firm's optimization problem
- Possibility of strategic responses to competing firms
- Unobserved factors affecting both ad choices and college-going

Direction of bias is ambiguous

- Firm advertises more, anticipating a drop in future enrollments due to a nearby plant opening (\downarrow bias)
- Firm advertises more, anticipating increased demand because a rival is closing (↑ bias)

 \rightarrow Need exogenous variation in advertising to identify effect on enrollment

Model of college enrollment with advertising

Let *j* =institution, *t* =year

$$y_{jt} = \psi + \mathbf{a}'_{jt}\boldsymbol{\beta} + \mathbf{x}'_{jt}\boldsymbol{\gamma} + \rho_j + \tau_t + u_{jt}$$
(3)

where y = new enrollment, $\mathbf{a}'_{jt} = \begin{bmatrix} a_{jt} & a_{-jt} \end{bmatrix}$ = own and rival impressions, $\mathbf{x} =$ college attributes, $\rho_j =$ student tastes for j, $\tau_t =$ aggregate demand shocks, $u_{jt} =$ mean zero error, and $\boldsymbol{\beta}$ is the estimand

Model of college enrollment with advertising

Let *j* =institution, *t* =year

$$y_{jt} = \psi + \mathbf{a}'_{jt}\boldsymbol{\beta} + \mathbf{x}'_{jt}\boldsymbol{\gamma} + \rho_j + \tau_t + u_{jt}$$
(3)

where y = new enrollment, $\mathbf{a}'_{jt} = \begin{bmatrix} a_{jt} & a_{-jt} \end{bmatrix} =$ own and rival impressions, $\mathbf{x} =$ college attributes, $\rho_j =$ student tastes for j, $\tau_t =$ aggregate demand shocks, $u_{jt} =$ mean zero error, and $\boldsymbol{\beta}$ is the estimand

Identification challenge:

 $E(u_{jt}|\boldsymbol{a}_{jt},\boldsymbol{x}_{jt},\rho_j,\tau_t)\neq 0.$

I need exogenous variation in advertising to identify β

When buying ads, colleges choose spots based on a prediction $\mu_{jt} := \hat{a}_{jt}$ of the impressions a_{jt} .

When buying ads, colleges choose spots based on a prediction $\mu_{jt} := \hat{a}_{jt}$ of the impressions a_{jt} .

Because colleges consider demand shocks u_{jt} when deciding what ads to buy, predicted impressions is endogenous with respect to enrollment:

 $E(u_{jt}|\mu_{jt}, \boldsymbol{x}_{jt}, \rho_j, \tau_t) \neq 0$

When buying ads, colleges choose spots based on a prediction $\mu_{jt} := \hat{a}_{jt}$ of the impressions a_{jt} .

Because colleges consider demand shocks u_{jt} when deciding what ads to buy, predicted impressions is endogenous with respect to enrollment:

 $E(u_{jt}|\mu_{jt}, \boldsymbol{x}_{jt}, \rho_j, \tau_t) \neq 0$

...but realized impressions is stochastic:

 $a_{jt} \coloneqq \mu_{jt} + \eta_{jt}$, where $\mu_{jt} \perp \eta_{jt}$

Interpretation: η_{jt} are random fluctuations in TV viewing that cannot be predicted at time of purchase.

When buying ads, colleges choose spots based on a prediction $\mu_{jt} := \hat{a}_{jt}$ of the impressions a_{jt} .

Because colleges consider demand shocks u_{jt} when deciding what ads to buy, predicted impressions is endogenous with respect to enrollment:

 $E(u_{jt}|\mu_{jt}, \boldsymbol{x}_{jt}, \rho_j, \tau_t) \neq 0$

...but realized impressions is stochastic:

 $a_{jt} \coloneqq \mu_{jt} + \eta_{jt}$, where $\mu_{jt} \perp \eta_{jt}$

Interpretation: η_{jt} are random fluctuations in TV viewing that cannot be predicted at time of purchase.

What causes $\eta_{jt} \neq 0$? Traffic jams, weather, March Madness, power outages

My strategy is to exploit η_{jt} to identify the effect of impressions on enrollment

Step 1: Predict the impressions that advertisers could expect when ads purchased

Step 2: Use the predicted impressions as a **control function**, which isolates exogenous variation in realized impressions