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application to the adoption of biotechnology in agriculture. The empirical analysis relies on 

experimental and survey data measuring risk preferences, learning processes, and the 

adoption of genetically modified (GM) seeds among US grain farmers. While controlling for 

risk aversion, we link individual learning rules with the cognitive abilities of each decision 

maker and their actual GM adoption decisions. We find evidence that very few individuals 

are Bayesian learners, and that the population of farmers is quite heterogeneous in terms of 

learning rules. This suggests that Bayesian learning (as commonly assumed in the analysis of 

agricultural technology adoption) is not an appropriate characterization. In addition, we do 

not find a strong relationship between observed learning styles and the timing of GM seed 

adoption. To the extent that learning is a key part of the process of technology adoption, this 

suggests the presence of much unobserved heterogeneity in learning among farmers.  
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Risk, Learning, and Technology Adoption 

1. Introduction 

There has been much interest in analyzing the roles of risk and learning in economic 

decision-making (for reviews, see Feder et al., 1985; Foster and Rosenzweig, 2010). These 

features are pivotal in adoption choices where new technologies are imperfectly known and 

managers seek to acquire important information before deciding whether or not to adopt.  In 

particular, economic agents need to learn about how a new technology works, how it might or 

might not be adapted to local environmental and market conditions, what its return and risk 

profile might be for them, and how this profile compares with other options (Rogers, 1962; Feder 

et al., 1985; Conley and Udry, 2010). While the roles of risk and especially risk aversion in 

technology adoption have been emphasized in the previous literature, the interaction between 

risk and learning remains poorly understood (Marra et al., 2003). This is largely because of the 

empirical difficulty in jointly analyzing risk and learning styles and then creating direct links to 

technology adoption. Such difficulties have led previous adoption analyses to focus mostly on 

models of Bayesian learning (Barenklau, 2005; Foster and Rosenzweig, 1995, 2010).  

We examine the common case of the expected utility model. In this context, risk 

exposure is evaluated using probability assessments, while risk preferences are represented by 

the manager's von Neumann-Morgenstern utility function. Learning is represented by the 

evolution of assessed subjective probabilities, as new information becomes available over time. 

We examine the commonly assumed Bayesian learning rule while also evaluating alternative 

learning rules that allow for the overweighting or underweighting of new information.  

 Unpacking the interactions between risk and learning requires experimental methods to 

test how agents behave under controlled conditions. Our experimental and survey data were 
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collected from almost 200 Minnesota and Wisconsin farmers facing similar agro-climatic and 

economic conditions. Our analysis focuses on farmers’ decisions regarding whether or not to 

adopt genetically modified (GM) seeds.  

GM technology is part of the biotechnology revolution that has contributed to improving 

US agricultural productivity over the last 15 years (Fernandez-Cornejo, 2010). Approximately 90 

percent of the farmers we surveyed have adopted GM corn and soy seeds since they first became 

available in 1996. A similar share of corn and soy acreage in the Midwest is currently planted in 

GM varieties. Understanding who adopts and when is important in order to assess the process of 

technological change in US agriculture.  

While Bayesian learning is strongly grounded in probability theory, learning can be 

complex. Previous research has found empirical evidence suggesting that individuals rely on a 

variety of learning heuristics (e.g., Cheung and Friedman, 1997; Camerer and Ho, 1999; 

Camerer, 2003; Gans, Knox, and Croson, 2007). Our analysis finds similar evidence and 

documents the diversity of learning styles. We observe that most farmers are not Bayesian 

learners: many farmers either forget old information or ignore new information.  

The data collection and analysis proceed in four steps. First, we observe how each farmer 

chooses between risky and safe prospects and use this information to estimate individual risk 

preferences. Then, in a series of controlled learning experiments, we study how each farmer’s 

decisions evolve with new information. Given the individual risk preferences evaluated in step 1, 

the second set of decisions is used to determine individual learning rules. Besides finding 

evidence that most individuals are not Bayesian learners, we document the presence of 

significant heterogeneity in learning styles across farmers.  
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The third step involves a set of tests of cognitive ability. Even after controlling for 

cognitive ability, we find significant unobserved heterogeneity in learning styles across 

individuals. This outcome both highlights the need for direct measures of learning styles and the 

challenges of explaining heterogeneity in learning. Finally, we combine survey data on farm 

characteristics and biotechnology use with the experimental results to examine how risk 

preferences (evaluated in step 1) and learning rules (evaluated in step 2) relate to farmer 

decisions to adopt biotechnology on their farms.  

Somewhat surprisingly, we do not find a strong relationship between observed learning 

styles and the timing of GM seed adoption. To the extent that learning plays a key role in 

technology adoption, this is consistent with the presence of much unobserved heterogeneity in 

learning styles among farmers.3 We interpret our findings as indirect evidence that individual 

learning styles are complex, and that they may involve social learning that our experiments did 

not measure. 

In Section 2, we review the relevant literature on both learning and technology adoption. 

Section 3 introduces our data and experiments while Section 4 introduces the learning models. 

Sections 5 and 6 present results, with the former focusing on assigning learning rules to farmers 

and the latter relating learning rules to technology adoption. Finally, we conclude in Section 7. 

 

2. Literature Review on Individual Learning and Technology Adoption 

Individuals can employ a variety of learning rules. Bayesian learning is strongly 

grounded in probability theory. Under Bayesian learning, as new information becomes available, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Another possibility is that we do not have enough statistical power, both in assigning learning styles to farmers 
(with 10 decisions per farmer) and in then correlating that with adoption decisions (with fewer than 200 farmers). 
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the updating of (possibly subjective) probabilities is done in a way consistent with Bayes 

theorem. Departures from Bayesian learning are possible in at least two directions. On the one 

hand, some individuals may underutilize older information and, instead, rely more on recent 

observations. On the other hand, some individuals may find it difficult to process new 

information and, as a result, rely on older information while paying less attention to new 

information. Cheung and Friedman (1997) develop a model in which individuals can exhibit 

different types of learning. They find that “players are quite heterogeneous in crucial dimensions 

such as effective memory length and responsiveness to evidence.” As shown below, we find 

similar evidence of individual heterogeneity with regards to learning rules and the relationship 

between cognitive measures and learning rules.  

Gans, Knox, and Croson (2007) use experiments to evaluate which of six different 

learning rules fit the individuals in their sample. They find that the simpler learning rules 

perform the best while the most complicated learning rule (Bayesian learning) performs the 

worst. They also document significant heterogeneity in learning rules across individuals.4 

While much research has been conducted on learning rules, few papers have examined 

the linkages between learning styles and decisions made in the real world. As far as we know, no 

previous research has examined how alternative learning rules may affect technology adoption 

among farmers. Thus, despite the importance of technological progress and its effects on 

economic growth, the fundamental role of learning styles in shaping technology adoption 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Additional analyses of learning rules find that different learning heuristics are simultaneously important and can 
reinforce or conflict with each other (Charness and Levin, 2005), that individuals who underreact to information will 
eventually converge on accurate beliefs but that individuals who overreact may or may not do so (Epstein, Noor, and 
Sandroni, 2010), and that the performance of various learning heuristics often depends on the types of experiments 
being analyzed (Camerer, 2003). Furthermore, the experience-weighted attraction model, which integrates various 
heuristics as special cases, often outperforms other models (Camerer and Ho, 1999; Camerer, 2003), but it is 
infeasible to estimate in this paper due to the limited number of observations per farmer. 	  
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remains underexplored. This motivates our efforts to provide a deeper analysis of learning styles 

and their potential role in adoption decisions. 

Previous research has examined the factors affecting the rate and speed of adoption 

among farmers (Griliches, 1957; Rogers, 1962; Feder et al., 1985; Marra et al., 2003; Foster and 

Rosenzweig, 2010). This literature typically views technology adoption as a gradual process 

based on the presence of heterogeneity among potential adopters. This heterogeneity can stem 

from supply-side factors, such as when a new technology becomes available in a particular 

location. It also arises from demand-side factors that reflect how individuals obtain information 

about the new technology, how they use this information in the process of deciding whether or 

not to adopt it, what types of preferences they have, and what types of constraints they face. We 

are particularly interested in the extent to which the presence of individual heterogeneity in 

learning styles could help to explain differential adoption rates. 

The technology adoption literature has long recognized the impact of heterogeneity on 

adoption (Feder et al., 1985); however, most of the attention has been on observable 

heterogeneity of farm and farmer characteristics or unobserved risk aversion (Nielsen et al., 

2013). The impact of learning styles is difficult to observe, rarely incorporated, and hence 

remains poorly understood.  

Recent research on the role of learning in technology adoption has focused mostly on 

what individuals can learn from experience with technologies (Foster and Rosenzweig, 2010; 

Aldana et al., 2011) or from other information sources including neighbors (Barenklau, 2005; 

Conley and Udry, 2010, Kabunga et al. 2012). These efforts, however, use Bayesian learning to 

motivate their modeling frameworks, in effect assuming away the potential for distinctive 

learning rules to shape adoption choices.  Other studies, such as de Mel et al. (2008), find that 
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cognitive abilities can shape entrepreneurial success, but they also do not explore explicitly the 

learning mechanisms or different learning styles that might generate these individual differences.  

 

3. Data Source and Experimental Procedure 

Experimental methods have recently been applied to technology adoption, using farmers 

as participants (Engle-Warnick et al., 2011; Liu, 2013; Barham et al., 2014). These experimental 

procedures allow researchers to evaluate farmer risk preferences in a controlled environment 

while linking those results directly to actual technology choices of farmers.  

Our data were collected from 191 corn and soybean farmers in Minnesota and Wisconsin 

between January and August of 2010 (see Barham et al., 2014 for more details). Each farmer 

participated in one of 16 experimental sessions and received winnings from the games and 

reimbursement for travel (averaging $73 and $30, respectively) as well as the opportunity to 

participate in an outreach presentation. Farmers were recruited either from a list of respondents 

to a random 2006 GM seed use survey, the 2010 list of “Pesticide Application Training” 

certification, or Wisconsin Agricultural Statistics Service farmer lists. In addition, a few farmers 

were recruited from corn conferences and by extension agents. When comparing our sample with 

census data on Wisconsin farmers, we found that farmers in our sample managed larger farms 

and were more likely to be full-time farmers (see Barham et al., 2014).  

As noted in the introduction, the field experiments proceeded in several steps. First, we 

conducted an uncertainty game (with unknown probabilities) and a risk game (with known 

probabilities). Second, we implemented two controlled experiments studying how each farmer’s 

decisions evolved with new information. These experiments were followed by a survey which 

included a section measuring cognitive ability. The experiments were programmed in z-Tree 
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(Fischbacher, 2007) and computer training was provided to the 19% of farmers who requested it. 

Instructions were read aloud and appeared on the computer screens.  

 

Risk and Uncertainty Games: 

The aforementioned risk and uncertainty games both involved a series of choices between 

a certain payout and a gamble (similar to experiments conducted by Moore and Eckel (2006) and 

Ross et al. (2010) and influenced by Holt and Laury (2002)). In each game, farmers had to make 

11 decisions choosing between a sure payoff and a risky payoff. The sure payoff was $10 while 

the risky payoff involved drawing a chip from a bag of red and black chips, with a payoff of $20 

if a red chip was drawn and a lower amount – that decreased in each decision – if a black chip 

was drawn (see Table 1). In the uncertainty game, no information was provided about the 

number of red and black chips while, in the risk game, farmers were told that there were 50 chips 

of each color. The uncertainty game was conducted first to ensure that the risk game did not 

provide a focal point for farmers. At the end of the entire session, a die was rolled to select one 

of the 11 rounds from each game and each farmer was paid the corresponding payoff.  

**Table 1** 

Assuming that risk preferences exhibit constant relative risk aversion (CRRA) with utility 

function ( )
( )1

1
U

απ
π

α

−

=
−

 (see Pratt, 1964), we used the information from the risk game to estimate 

a coefficient of relative risk aversion α  for each farmer. These CRRA coefficients, presented in 

Table 1, measure the farmer’s minimum coefficient given that he accepted the gamble in that 
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row and turned down the subsequent one.5 For example, farmers who chose the gamble three 

times and then chose the sure thing in the fourth decision row were assigned a coefficient of 

relative risk aversion equal to one.6 Some farmers exhibited multiple-switching behavior, 

moving back and forth more than once from the risky to the safe option and these farmers are 

excluded from the analysis.  

In the uncertainty game with uninformative prior beliefs, we assume a subjective 

expectation of a 50/50 distribution of red and black chips. In this context, we calculate an 

uncertainty aversion coefficient similar to the CRRA coefficient with the same values given in 

Table 1. Note that if the decision maker were ambiguity neutral, she would make the same 

choice in the risk game and the uncertainty game. In that case the uncertainty aversion measure 

would equal our CRRA coefficient. Alternatively, if a person were ambiguity averse, then the 

difference between the measure of uncertainty aversion and the CRRA coefficient would be 

positive and reflect the strength of her ambiguity aversion. Thus, the difference between the 

uncertainty aversion measure and the CRRA coefficient is used as a measure of ambiguity 

preferences. The analysis of ambiguity and its role in technology adoption is presented in 

Barham et al. (2014).  

The average coefficient of relative risk aversion in our sample is 0.8, which indicates that 

risk aversion is prevalent. This magnitude aligns with results from many other experiments (see 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 This gives a lower bound value for the coefficient of relative risk aversion. Using the upper bound or the midpoint 
would not change our qualitative results. 
6 The data do not provide information to estimate the risk aversion coefficient for those farmers who always chose 
either the safe option or the risky option. For the farmers that always chose the risky option, we set their risk 
preferences to be -0.09. Always choosing the safe option means the farmers chose a dominated option, and these 
farmers are excluded from the analysis.  
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the survey in Cardenas and Carpenter (2008)). Furthermore, the average measure of ambiguity 

preferences is approximately 0.1. 

  

Drawing Game:   

Next, we conducted two learning games to evaluate how farmers learn as new 

information becomes available. We call the first one the “drawing game.” In the drawing game, 

we drew chips from a bag containing 100 black and red chips, but we did not tell the farmers the 

composition of the chips. (In reality, there were 72 red chips and 28 black chips in the bag.) We 

simultaneously drew five chips with replacement from the bag and, after observing this new 

information, asked each farmer whether he preferred the sure thing or the risky payoff. We then 

drew another five chips with replacement and asked the farmer which option he preferred and 

repeated this process 10 times in total. At the conclusion of the experiments, we paid the farmers 

randomly for one of their 10 decisions.  

The risky payoffs in this experiment differed across individuals.7 The experimental 

payoffs were designed so that each player should prefer the sure thing before learning any 

information about the bag, but once he knew that the bag actually contained 72 red chips, he 

ought to prefer the uncertain gamble to the sure thing. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 Each player was assigned risky payoffs in the drawing game equal to those from the uncertainty game in the 
highest row for which the person still preferred the sure thing over the uncertain gamble. If the person preferred the 
uncertain gamble in all rows, the payoffs for the gamble in the learning game were $17 if red and $0 if black. Thus, 
the payoffs for each person were those of an uncertain gamble for which the order of preference would be i) the 
risky gamble with known probabilities, ii) the sure thing, iii) the uncertain gamble with unknown probabilities. 
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Seed Game: 

Following the drawing game, we conducted another game involving a significantly more 

complex learning process which more closely resembles the seed choice that farmers face. We 

call this game the “seed game.” In the seed game, each farmer had a field that he could sow with 

one of four possible seeds. The farmer was initially provided information about six years of 

yields for each seed and had to choose which seed to plant for the first round. Following this 

decision, each farmer then observed six more years’ worth of yields for each seed. With this new 

information, the farmer again chose which seed to plant and then again observed six more years 

of yields for each seed. This process was repeated until each farmer had made 11 decisions. At 

the end of the game, a round was randomly selected to determine each farmer’s payoff, with the 

first yield for that round (out of the six total yields) being the payoff.  

The seed game was designed such that there was one high performing seed, with a high 

mean yield and medium variance. There were two less-good seeds with lower means but the 

same variance as the higher performing seed. And, there was one safe seed (with a low mean and 

low variance). While risk-averse farmers may have preferred the safe seed to the good seed, the 

game was designed such that this would only occur with implausibly high risk aversion.	  

 

Cognitive Ability Tests and Survey Data:   

Summary statistics of our data are presented in Table 2. The measures of cognitive ability 

provide direct information on each individual’s ability to process information. First, participants 

answered the Cognitive Reflection Test (CRT), a series of three logic questions developed by 

Frederick (2005). Second, participants performed a digit span exercise testing short-term 

memory. Digit span is a sign of sequential processing ability that measures how able a person is 
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to take in and process information in an orderly fashion (Dempster, 1981). In our digit span 

exercise, they saw a number for the same number of seconds as the quantity of digits of that 

number. Then, they were asked to re-enter the number they had just seen. This exercise started 

with three-digit numbers and continued up to a maximum of 11 digits. If a farmer made a 

mistake at a certain level, he was given a second chance with a different number. After the 

second mistake at the same level, the exercise ended. Previous research has shown that 

entrepreneurs in Russia have higher digit-span scores than non-entrepreneurs (Djankov et al., 

2005) and that Sri Lankan entrepreneurs with higher digit-span scores earn higher profits (de Mel 

et al., 2008). After completing the digit span, farmers were given five minutes to solve 12 

Raven’s Standard Progressive Matrices. Each matrix contained a series of shapes with one item 

missing, and farmers had to pick the correct piece to complete the series from eight options.	   

**Table 2** 

Table 2 shows that there is a significant amount of heterogeneity across farmers’ 

cognitive ability. They have an average digit span of seven digits, which is similar to Miller’s 

(1956) finding that an average adult has a digit span of seven digits. Similarly, we find that the 

average farmer correctly answered seven Raven’s matrices although there was a large standard 

deviation. The average score out of the three CRT questions was approximately one with a 

standard deviation of one.  

Our survey collected data on other variables including the numbers of years since the 

farmer first planted GM corn or soybean. The average is 7.1 years for GM corn and 8.4 years for 

GM soy, excluding farmers who have never planted corn or soy at all, but including farmers who 

have only planted conventional corn or soy. (For these farmers, the number of years planting GM 

is 0). Table 2 shows that approximately 89% of the farmers who have ever planted corn have 
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planted GM corn. Similarly, 92% of the farmers who have ever planted soybeans have planted 

GM soybeans. These adoption rates (at the farmer level) are comparable to state averages (at the 

acreage level), which in 2010 were 80% for corn and 88% for soy (Fernandez-Cornejo, 2010).  

Table 2 also shows that the farmers are of diverse ages, education levels, and wealth 

levels. The majority of participants were male, and almost half of the sample (44%) had obtained 

at least a 2-year college degree. Around 16% of the respondents do not consider farming to be 

their principal occupation. Farmers in the sample are relatively experienced in farming: on 

average, they have been making decisions on their farm for 28 years.  

Overall, the combination of our experimental games, cognitive questions, and survey 

comprises a rich data set with which we can analyze learning, risk, and technology adoption. The 

risk experiment provides a measure of individual risk preferences while the learning games 

enable us to evaluate learning styles for each individual. Furthermore, we examine how cognitive 

ability is associated with the heterogeneity of learning styles and we analyze whether the timing 

of GM seed adoption depends on learning styles.  

 

4. Learning Models 

We analyze learning at the individual level to explore learning styles, recalling that 

previous literature has found strong evidence of heterogeneity (Cheung and Friedman, 1997; 

Gans, Knox, and Croson, 2007). The main challenge, in our case, is the relatively small number 

of observations (ten) in each game with which to estimate individual learning rules. We use a 

goodness-of-fit measure to match each individual with the rule which provides the best 

explanation for his behavior. 
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Estimation of Learning Rules: 

 Previous literature on learning has shown that Bayesian learning applies in some contexts, 

but that many individuals rely on alternative heuristics when formulating beliefs. In this section, 

we define various learning rules.8 We focus our attention on three learning rules: Bayesian 

learning, first-1 learning, and last-1 learning.9 This will enable us to test whether individuals 

equally balance all information, overweight initial information, or overweight recent 

information.10  

We assume that each individual chooses the option that maximizes her expected utility. 

Under a random utility model, we add an error term to the expected utility, with the error term 

reflecting factors that are unobservable to the econometrician. Assuming an extreme value 

distribution for the unobserved terms motivates using a logit model for the drawing game and the 

conditional logit model for the seed game.  

 In the drawing game, where individuals choose between a safe and a risky option, we 

analyze a logit model and focus on the probability of choosing the risky option in round t  

(Cheung and Friedman, 1997):  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  Cheung and Friedman (1997) evaluate learning rules including Cournot, fictitious (equal weights), and adaptive 
learning in which the weights decline for older observations. Gans, Knox, and Croson (2007) evaluate six learning 
rules: a) perfect Bayesian updating; b) myopic Bayesian updating in which the individual does not take into account 
that current experimentation can contribute to future learning; c) simple myopic updating in which the agent 
categorizes options as being only either 'good' or 'bad'; d) the subject remembers only the last n trials; e) the “hot 
hand” rule under which subjects stick with a choice until it loses in n consecutive trials; and f) exponential 
smoothing in which subjects update beliefs taking a weighted average of past beliefs and the current outcome. 	  
9	  We also examined alternative learning heuristics, including “hot-hand.” However, we found that the Bayes, first-1, 
and last-1 rules had the best explanatory power. On that basis, the discussion presented in the rest of the paper 
focuses on these three learning rules. 	  
10 Note that these three rules are specific cases of the weighted fictitious play model (Cheung and Friedman, 1997), 
where the weights are a function of parameters characterizing each learning rule. But this more flexible 
parameterization proved difficult to implement empirically given that we only observe ten decisions per individual.    
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where tP  measures the assessed probability of drawing a red chip, W is the winning payoff if 

drawing a red chip, and L is the losing payoff if drawing a black chip. We assume CRRA 

preferences using the individual relative risk aversion coefficient estimated in the risk game.11 

Using a conditional logit for the seed game, the probability that an individual chose seed j 

out of the 4 seed options in round t  can be written as:  

 { }
( )
( )4

1

exp
Pr choose seed  in round 

exp
tj

tii

x
j t

x
=

=
∑

 

where xti = ∑s∈S PtsiU(πsi) is the expected utility for seed i at round t. The probability of state of 

nature s for seed i as assessed by the farmer in round t is Ptsi. In state of nature s, the payoff from 

seed i is πsi . 

Our learning models define various ways in which each individual calculates the 

probability of red chips (in the drawing game) and the anticipated yields (in the seed game) as 

new information becomes available. In the drawing game, we consider alternative updating rules 

for tP , the assessed probability of drawing a red chip in round t. We proceed similarly in the seed 

game, where we consider alternative learning rules for Ptsi, the assessed probability associated 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 Note that our measures of risk aversion are consistent estimates of each individual's relative risk aversion 
coefficient. Possible efficiency gains could be obtained by considering a joint estimation of risk preferences and 
learning styles. This appears to be a good topic for future research.  
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with receiving πtsi. For both games, we test how farmers form their beliefs under three learning 

rules, as discussed next.  

Bayesian learning: Assuming uninformative priors, Bayesian learning occurs when all 

observations are weighted equally to determine the probability of red chips or seed yields in any 

given round. In the drawing game, the subjective probability of drawing a red chip in round t 

under Bayesian learning is 1

t

i
i

t

R
P

t
==
∑

, where Ri denotes the share of red chips drawn in the i-th 

round. Similarly, in the seed game, the subjective probability of each possible yield s is Ptsi = nts 

/(6t), where nts is the number of times yield s has been observed as an outcome for seed i up 

through round t.  

First-1 learning: Under the first-1 learning rule, the individual only pays attention to the 

first round, and she ignores all observations obtained subsequently.12 First-1 learning is 

appropriate for individuals that form strong and persistent beliefs and/or find learning too 

difficult and thus ignore later information. In first-1 learning, the associated subjective 

probabilities are 1tP R=  for the drawing game, and Ptsi = 1 / 6
0
sn⎧ ⎫

⎨ ⎬
⎩ ⎭

 when 1

1

s S
s S
∈⎧ ⎫

⎨ ⎬
∉⎩ ⎭

 for the seed 

game, S1 being the set of yields observed in round 1. Note that Bayesian learning and first-1 

learning are the same in the first round, and only become distinct thereafter. 

Last-1 learning: Under the last-1 learning rule, we assume that the individual only 

remembers the immediately preceding round. Last-1 learning is appropriate if individuals either 

have short memories or choose to focus on less information given the difficulty in calculating 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 We also considered the more general case of first-n learning, where the individual pays attention only to 
observations from the first n rounds. We found that choosing n = 1 generated the best explanatory power.  



17	  

	  

probabilities from more complete learning rules. In last-1 learning, the corresponding subjective 

probabilities for drawing red chips are t tP R=  for the drawing game, and Ptsi = 
/ 6
0
tsn⎧ ⎫

⎨ ⎬
⎩ ⎭

 when 

t

t

s S
s S
∈⎧ ⎫

⎨ ⎬
∉⎩ ⎭

 for the seed game, St being the set of yields observed in round t. Again, note that this 

rule becomes distinct from both Bayesian learning and first-1 learning only after the first round.  

Collectively, these three rules provide a balanced framework for analysis. They identify 

different weightings schemes on observations: equal weighting of all observations under 

Bayesian learning; overweighting of initial information under first-1 learning; and overweighting 

of recent information under last-1 learning.  

 

Evaluating the Models: 

As in Gans, Knox, and Croson (2007) we calculate the log-likelihood for each learning 

rule and for each individual across all ten decisions and evaluate the Bayesian Information 

Criterion (BIC): BIC= -2 LL where LL is the standard logit log-likelihood function.13 This 

estimate provides a basis to determine which learning rule provides the best fit for each 

individual.  

While the BIC tells us which learning rule is the best fit, we use a likelihood-ratio (LR) 

based test to determine whether or not that rule is significantly better at estimating the true 

decision making process. Vuong (1989) developed the LR-based “Vuong statistic” which can be 

used to test whether two models perform equivalently well or whether one performs better than 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13	  Usually the formula is BIC= -2*LL + k*ln(n) where k is the number of parameters and n is the number of 
observations. Note that our analysis of individual learning rules does not involve the estimation of any parameters so 
in our setting k=0.	  
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the other.  By using the Vuong statistic, we are able to compare each pair-wise combination of 

learning rules within each learning game to determine whether one rule dominates the other two, 

whether two rules dominate a third rule but not each other, and whether all rules perform equally 

well. For example, if Bayes is shown to out-perform both of the first-1 and last-1 learning rules, 

then we classify a farmer as a Bayesian learner. If both Bayes and last-1 out-perform the first-1 

rule, but neither Bayes nor last-1 significantly outperforms each other, then we classify a farmer 

as being a Bayesian/last-1 learner.  

 

5. Learning Rule Results  

The results in Table 3 reveal how many farmers are classified in each learning rule 

assuming that farmers’ risk preferences exhibit constant relative risk aversion, with the CRRA 

parameter for each individual estimated from the risk game. The sample includes the 151 farmers 

for whom we were able to estimate CRRA measures.14 Focusing first on the Vuong results, 

Table 3 shows that Bayesian learning performs poorly relative to the other rules. No farmers can 

be classified as being a pure Bayesian learner in either game according to the Vuong method. 

The last-1 rule performs the best in both games, with 36 last-1 learners (24%) in the drawing 

game and 19 (13%) in the seed game. There are also a large number of farmers for whom 

Bayesian and last-1 learning jointly perform the best. This is true for 15 farmers (10%) in the 

drawing game and 42 farmers (28%) in the seed game. Overall, these results indicate that 

Bayesian learning is unlikely to accurately describe many people and, instead, provide evidence 

that individuals tend to overweight recent information and discount older information rather than 

equally weighting all information sources.   
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 This reduces to 147 in the drawing game due to difficulties of calculating utility when payoffs are 0.	  
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**Table 3** 

The Vuong statistic, however, does not provide definitive evidence on specific individual 

learning rules. Indeed, over half of the farmers in either game are estimated to have no single 

dominant rule.15 While it may be the case that additional learning rules could describe many of 

these farmers, we tested alternative learning rules (including various simple rules of thumb, hot-

hand rules, and both first-n and last-n rules with n values larger than one) and found consistent 

evidence that these alternative rules did not perform particularly well. In other words, by 

including more rules, it became even more difficult to significantly predict best learning rules. 

As noted earlier, we only have ten decisions per farmer in each game, which makes it more 

challenging to significantly differentiate the learning rules if we consider too many potential 

learning rules at the same time. Still, it is interesting to note that our general results are consistent 

with Gans, Knox, and Croson (2007) in showing that rules which are simpler and more myopic 

than Bayesian updating are the most common in both games.16 

Looking at the BIC numbers in Table 3, we find similar results. Again, Bayes performs 

relatively poorly (with 17 farmers (12%) in the drawing game and 45 farmers (30%) in the seed 

game) while last-1 performs the best (with 89 farmers (60%) in the drawing game and 95 farmers 

(63%) in the seed game).  

**Table 4** 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15	  Remember that the Vuong method tests if one of the rules performs significantly better than the others for each 
individual. The BIC method assigns each individual to the rule which fits him best, whether or not it fits him 
statistically better than any of the other rules. Thus, using the BIC method, each farmer is assigned to one, and only 
one, rule. 	  
16 In addition to analyzing individual learning rules, we pooled farmers and calculated the weight associated with 
each learning rule. These results provided some evidence that last-1 is the most important learning style, but large 
standard errors indicate significant unobservable heterogeneity and provided relatively little additional information.  
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 We cross-tabulate the individual learning rules in the two games in Tables 4a and 4b, 

and the results show that outcomes are generally not consistent across games. Focusing initially 

on the BIC rankings, only two farmers are classified as Bayesian learners in both games, and no 

farmers are classified as first-1 learners in both games. Last-1, however, is a slightly more 

consistent learning style with 59 of the 147 following this rule in both games.  

Combining the BIC and Vuong comparisons, we find strong evidence that significant 

heterogeneity occurs both within and across games. Learning styles are difficult to classify and 

these results indicate that individual learning styles may also shift as environments change. 

These complexities related to learning styles pose a particular challenge for researchers using 

experimental learning evidence to explain real-life decisions. This issue is explored in the next 

section where we attempt to incorporate these estimates of learning styles into econometric 

models of GM adoption.  

Although learning styles are difficult to determine, it could be that additional information 

can help predict learning styles.  For example, we might predict that individuals who perform 

better on cognitive ability tests or who have higher levels of education would be more likely to 

be Bayesian learners. In order to analyze the connection between learning styles and both 

cognitive ability and demographic information, we used multinomial logits to test whether or not 

these variables are significantly related to learning styles. These results are presented in 

Appendix Tables A1 and A2 for the drawing and seed games, respectively.  

We do not find any variable which consistently and significantly predicts learning style. 

There is weak evidence that individuals with higher cognitive ability are more likely to be 

Bayesian learners and less likely to be last-1 learners, especially in the seed game. Overall, these 

results imply that it is difficult to predict individual learning styles, even when cognitive and 
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demographic information are available. This may be due to the complexity of human learning 

and the presence of unobserved heterogeneity in the determinants of individual learning styles 

across agents. Given such high levels of heterogeneity, much larger sample sizes might help in 

gaining some traction on these questions. 

 

6. Technology Adoption and Learning Results 

In this final empirical section, we use data on the year of adoption of GM seeds to 

estimate survival models that predict the probability that someone who has not yet adopted then 

decides to adopt in each time period. Let ( ),S z t  denote the probability that a farmer exhibiting 

attributes z would not adopt a new technology before time t. In a standard survival model, the 

associated hazard function is ( ) ( )ln ,
,

d S z t
z t

dt
λ

−
= , which measures the adoption rate at time t 

conditional on not having adopted before time t. Let ( ) ( )( ), expz t g zλ β= −  where β  is a vector 

of parameters capturing the effects of z on ( ).λ . Different specifications of the hazard rate have 

been proposed in the literature. We use the Weibull distribution with ( )
1

,
kz zz t e k e tβ βλ
−− −⎡ ⎤= ⎣ ⎦  

because this allows the probability of adoption to either increase or decrease over time. It 

includes the exponential distribution as a special case when k = 1, which restricts the probability 

of adopting to be constant over time. Evidence that k is greater than 1 implies that the probability 

of adopting increases with time.  

In our analysis, t represents years in which a farmer could have adopted GM technologies. 

In our sample, the first farmers using GM technologies started adopting in 1996. And yet, a few 

farmers were not yet farming in 1996. For those who were already farming by 1996, we set the 
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earliest possible year of GM adoption to be 1996. For those who began farming after 1996, their 

first year making decisions on a farm was treated as the earliest possible adoption year. Because 

the adoption of GM technologies started slowly in the first few years and then increased rapidly 

in later years, we include dummies for calendar year. We also include crop reporting district 

dummies to control for local agro-climatic conditions that may influence the adoption decision.    

In our application of the survival model, we measure the probability of adopting in any 

year, with a higher value reflecting earlier adoption. For any given regressor, a hazard ratio 

greater than one hastens adoption, while a hazard ratio of less than one is associated with slower 

adoption. We present several model specifications. In the first specification, we include only 

learning rules, using the first-1 rule as the base case. Next, we include learning rules while 

controlling for risk preferences as well as additional cognitive and demographic variables. Also, 

to compare with Barham et al. (2014), we include ambiguity preferences to see how the addition 

of learning style estimates might affect the result that ambiguity aversion hastens the adoption of 

GM corn. Each of these models is estimated using learning rules from the drawing and seed 

games, and the survival analysis is applied separately to the adoption decisions of GM corn and 

GM soybean.17 Due to the high number of ties between learning rules when using the Vuong 

analysis, we utilize the BIC-based learning rules in this section.18 We analyze whether or not 

learning styles impact the timing of adoption. The results of our adoption estimations are 

reported in Tables 5 and 6 for GM corn and soy, respectively. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17	  Our econometric investigation of technology adoption makes use of the coefficient of relative risk aversion and 
the learning rules estimated in earlier stages of our analysis. To the extent that each prior stage generated consistent 
estimates, this consistency property applies to the estimation of parameters in our adoption model. Dealing with 
possible measurement errors associated with the estimates from prior stages is more complex: it would require 
assessing the distribution of these measurement errors. In our case, this appears to be a difficult task.  
18 The advantage of using the BIC criterion is that it does not allow ties. When the analysis is conducted using the 
Vuong categories (as shown in Appendix Tables A3 and A4), our results are similarly inconclusive.  
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**Table 5**  

Corn results: 

In Table 5 learning styles are not significantly related to the timing of GM corn adoption. 

Regardless of whether learning rules from the drawing or seed game are analyzed, there is no 

significant connection to adoption. Learning about new GM corn seeds is arguably difficult due 

to the many available GM traits (Useche et al. 2009) including the specific uncertainty associated 

with pest populations and control. Because of this, we might expect adoption of GM corn seed to 

be closely related to learning. However, we find that learning rules are not significantly 

correlated with the adoption of GM corn. Perhaps our estimated learning rules are too simple to 

accurately analyze complex adoption decisions that involve both individual learning (e.g., from 

experimentation) and social learning. Alternatively, the complexity of human learning may make 

it difficult to uncover simple relationships between learning and decision making. 

The coefficient estimates provide some evidence that cognitive ability – as measured by 

the digit-span exercise – enables faster adoption of GM corn. However, education level is 

unrelated to adoption, thus providing inconclusive evidence overall with regards to how 

cognitive ability, as represented by these alternative measures, influences adoption.  

Other estimation results are what we would expect from previous work on technology 

adoption (Aldana et al., 2011). Full time farmers and farmers cultivating more acreage adopt 

more quickly. We also find evidence that the time trend k is greater than one, implying that the 

probability of adoption increases over time. In regressions where we include risk and ambiguity 

aversion preferences, we find evidence confirming Barham et al. (2014) that more ambiguity-

averse farmers are faster adopters of GM corn.  

**Table 6**  
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Soybean results: 

As with GM corn, we find no significant relationship between learning styles and the 

timing of soybean adoption in Table 6. Again, we see evidence that farmers on large farms are 

the early adopters and that k is greater than one, implying that the probability of adopting GM 

soybeans increases with time. In contrast to the GM corn results, we find evidence that farmers 

with higher digit spans are not faster adopters, full-time farmers are not faster adopters, farmers 

who have been making decisions for longer may be slower adopters, and ambiguity preferences 

are not significant in the soybean regression. This last result is also consistent with the findings 

in Barham et al. (2014). Incorporating learning style measures does not alter significantly our 

previous results which omitted these measures. 

 

7. Conclusion 

We combine data from economic experiments on learning and risk preferences with 

survey data on biotechnology adoption among corn and soybean farmers in Minnesota and 

Wisconsin. Learning and risk seem to both be central aspects of technology adoption and this 

paper integrates the two.  

We provide strong evidence against Bayesian learning, and in favor of a heuristic based 

on more recent information; but primarily we find a great deal of heterogeneity in learning styles, 

consistent with the results of previous authors (Cheung and Friedman, 1997; Gans, Knox, and 

Croson, 2007). Even with detailed information on education and cognitive ability, we find it 

difficult to predict what learning style an individual will utilize.  

We then link learning styles with technology adoption. Learning provides an important 

pathway for reducing risk and determining the benefits of alternative technologies. However, we 
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do not find much evidence connecting the learning styles of individuals with the timing of 

adoption. There are several possible explanations for this non-result.  

First, given that each farmer only made ten decisions in each game, it may have been 

difficult to accurately calculate the best learning rule for each individual. Similarly, with only 

150 farmers and significant heterogeneity, we may not have enough power to get significant 

results in our adoption regressions.  

Second, assuming the learning rules are accurately calculated within games, we provide 

evidence that learning styles differ across games and, by extension, may also differ when making 

real-life decisions. This poses a unique challenge for experimental researchers using learning 

games to explain real-life decisions.  

Third, even if consistent learning rules were defined for individuals, learning styles may 

influence adoption in different directions. For example, first-1 learners form strong and persistent 

beliefs. If they hold strong positive beliefs about conventional seeds they will be unlikely to 

adopt new seeds. However, if they form strong positive initial beliefs about GM seeds, they may 

be faster adopters. Thus, we might need much more specific information about priors and 

learning experiences than was captured in our experimental games. 

Fourth, our learning rules explain how individuals process new information, but this is 

only part of the story about how learning drives technology adoption. Farmers may also differ 

with regards to the types of information that they seek and how they learn in social situations. If 

farmers are not Bayesian learners and the order of information matters, then an accurate adoption 

analysis would require much more precision on the information available to farmers and when 

this information became available and from whom.  
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Together, these factors create a context in which unobservable heterogeneity remains 

important in adoption decisions and, even with our experimental evidence, it remains difficult to 

relate learning styles and technology adoption. Our analysis indicates that individual learning 

styles are complex and may well vary across situations, thus offering a possible explanation for 

the difficulties in predicting learning behavior.   

This paper is, to the best of our knowledge, the first to integrate an analysis of learning 

styles with technology adoption using both experimental and survey data. While this paper 

provides compelling evidence against Bayesian learning, calling into question many theoretical 

and some recent empirical analyses of technology adoption, we mostly find that this line of 

research requires stronger data. This would include more information about individual learning 

as well as social learning. 
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Table 1: Risk Experiments

CRRA
Red	  chip Black	  chip (relative	  risk	  

aversion	  
parameter)

1 $10.00	   $20.00	   $10.00	   ∞
2 $10.00	   $20.00	   $8.00	   3.76
3 $10.00	   $20.00	   $6.50	   1.86
4 $10.00	   $20.00	   $5.00	   1
5 $10.00	   $20.00	   $4.00	   0.65
6 $10.00	   $20.00	   $3.50	   0.52
7 $10.00	   $20.00	   $3.00	   0.4
8 $10.00	   $20.00	   $2.50	   0.31
9 $10.00	   $20.00	   $2.00	   0.22
10 $10.00	   $20.00	   $1.00	   0.09
11 $10.00	   $20.00	   $0.00	   0

Decision Sure	  payoff	  

Risky	  prospect



Table 2: Summary Statistics

Variables Obs Mean Min Max
Uncertainty,	  Risk,	  and	  Ambiguity	  Aversion
Uncertainty	  aversion 131 0.79 -‐0.09 3.76
Risk	  aversion 151 0.77 -‐0.09 3.76
Ambiguity	  aversion=uncertainty	  -‐	  risk 123 0.06 -‐1.34 3.11
Individual	  Characteristics
Age 191 53.2 20 80
Gender:	  Female 191 6.3% 0 1
Education

High	  school	  or	  less 191 31.9% 0 1
No	  degree	  or	  2-‐year	  college 191 35.6% 0 1
4-‐year	  college	  degree 191 20.4% 0 1
Some	  graduate	  school 191 12.0% 0 1

Family	  size 191 2.7 1 7
Household	  Income	  before	  taxes	  2009	  (Thousands)

Under	  $20 191 9.9% 0 1
$20	  -‐	  $59 191 33.5% 0 1
$60	  -‐	  $99 191 27.7% 0 1
$100	  or	  more 191 28.8% 0 1

Requested	  computer	  training 191 18.8% 0 1
Cognitive	  Measures
Digit-‐span:	  digit	  memory 189 7.3 3 11
Figures 191 7.1 0 12
Cognitive	  Reflection	  Test	  (CRT) 191 1.1 0 3
Farming	  Characteristics
Farming	  is	  not	  the	  principal	  occupation 191 16.2% 0 1
Acres	  of	  cropland	  operated	  2009 191 600.2 10 8000
Share	  of	  dairy	  sales 187 25.8% 0% 99%
Years	  farmer	  has	  made	  decisions	  on	  farm 191 28.3 2 72
Corn

Have	  never	  planted	  corn 191 2.1% 0 1
Planted	  conventional	  but	  not	  GM	  corn 191 10.5% 0 1
Have	  planted	  GM	  corn 191 87.4% 0 1

Years	  planting	  GM	  corn1 187 7.1 0 15
Soybean

Have	  never	  planted	  soybeans 191 18.8% 0 1
Planted	  conventional	  but	  not	  GM	  soy 191 6.3% 0 1
Have	  planted	  GM	  soybeans 191 74.9% 0 1

Years	  planting	  GM	  soybeans1 155 8.4 0 15
1	  Excludes	  those	  farmers	  who	  have	  not	  planted	  corn	  or	  soybeans	  respectively.	  

	  	  



Table 3: Learning Rules

Number Percent Number Percent Number Percent Number Percent
No	  Best	  Rule 75 51 86 57
Bayes 0 0 0 0 17 12 45 30
First-‐1 16 11 3 2 41 28 11 7
Last-‐1 36 24 19 13 89 60 95 63
Bayes/First-‐1 3 2 1 1
Bayes/Last-‐1 15 10 42 28
First-‐1/Last-‐1 2 1 0 0
Total: 147 100 151 100 147 100 151 100
1	  Using	  10%	  significance	  level

Drawing	  Game Seed	  Game
Vuong	  Method1 BIC	  Method

Drawing	  Game Seed	  Game



Table 4a: Drawing and Seed Game Learning Rules - BIC Rankings

Bayes Firstn1 Lastn1 Total
Bayes 2 5 10 17
Firstn1 19 0 22 41
Lastn1 24 6 59 89
Total 45 11 91 147

Table 4b: Drawing and Seed Game Learning Rules - Vuong Tests

No	  Best	  Rule Bayes First-‐1 Last-‐1 Bayes/First-‐1 Bayes/Last-‐1 First-‐1/Last-‐1 Total:
No	  Best	  Rule 44 0 2 9 1 19 0 75
Bayes 0 0 0 0 0 0 0 0
First-‐1 7 0 0 2 0 7 0 16
Last-‐1 18 0 1 5 0 12 0 36
Bayes/First-‐1 2 0 0 0 0 1 0 3
Bayes/Last-‐1 11 0 0 1 0 3 0 15
First-‐1/Last-‐1 2 0 0 0 0 0 0 2
Total: 84 0 3 17 1 42 0 147
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Table 5: Hazard ratios, survival model for GM corn adoption

(1) (2) (3) (4)
Learning	  rules,	  risk,	  and	  ambiguity
Bayes	  learner	  (=	  1) 0.698 0.824 0.876 0.822

[0.241] [0.305] [0.297] [0.339]
Last-‐1	  learner	  (=	  1) 1.192 1.149 0.904 0.88

[0.227] [0.267] [0.273] [0.300]
Risk	  aversion 0.975 1.016

[0.151] [0.159]
Ambiguity	  aversion 2.15 2.014

[0.420]*** [0.438]***
Individual	  characteristics
Age 0.988 0.988

[0.020] [0.020]
Gender:	  Female 0.813 0.814

[0.294] [0.301]
Education:	  No	  degree	  or	  2-‐year	  college 1.235 1.222

[0.355] [0.370]
Education:	  4-‐year	  college	  degree 1.383 1.373

[0.362] [0.364]
Education:	  Some	  graduate	  school 1.194 1.209

[0.461] [0.460]
Acres	  of	  cropland	  operated	  '09	  (thousands) 1.391 1.371

[0.155]*** [0.161]***
Farming	  is	  not	  principal	  occupation 0.435 0.441

[0.147]** [0.139]***
Years	  farmer	  has	  made	  decisions	  on	  farm 1.001 1

[0.020] [0.021]
Received	  computer	  training 0.879 0.894

[0.256] [0.243]
Longest	  number	  of	  digits	  right	  (out	  of	  11) 1.218 1.216

[0.098]** [0.097]**
Observations 144 119 148 120
k 1.22 1.63 1.22 1.64

[0.154] [0.255]*** [0.153] [0.270]***
Log-‐likelihood -‐137.8 -‐89.83 -‐142.99 -‐93.28
All	  regressions	  assume	  a	  Weibull	  survival	  distribution	  and	  include	  year	  and	  crop-‐reporting	  district	  fixed	  effects	  as	  controls.	  
Excluded	  learning	  rule	  is	  First-‐1.	  Excluded	  education	  level	  is	  high	  school	  or	  less.	  
Learning	  rules	  determined	  using	  BIC	  rankings.
Robust	  standard	  errors	  in	  brackets.
*	  significant	  at	  10%;	  **	  significant	  at	  5%;	  ***	  significant	  at	  1%.
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Table 6: Hazard ratios, survival model for GM soybean adoption

(1) (2) (3) (4)
Learning	  rules,	  risk,	  and	  ambiguity
Bayes	  learner	  (=	  1) 0.933 1.113 1.668 1.67

[0.334] [0.458] [0.568] [0.834]
Last-‐1	  learner	  (=	  1) 1.118 0.761 1.428 1.026

[0.311] [0.258] [0.447] [0.467]
Risk	  aversion 1.491 1.252

[0.278]** [0.230]
Ambiguity	  aversion 1.401 1.378

[0.299] [0.292]
Individual	  characteristics
Age 1.001 1.004

[0.022] [0.022]
Gender:	  Female 1.122 0.979

[0.748] [0.574]
Education:	  No	  degree	  or	  2-‐year	  college 1.082 0.894

[0.430] [0.359]
Education:	  4-‐year	  college	  degree 1.021 0.845

[0.388] [0.326]
Education:	  Some	  graduate	  school 1.86 1.748

[0.894] [0.784]
Acres	  of	  cropland	  operated	  '09	  (thousands) 1.439 1.44

[0.250]** [0.229]**
Farming	  is	  not	  principal	  occupation 0.802 0.702

[0.279] [0.225]
Years	  farmer	  has	  made	  decisions	  on	  farm 0.962 0.967

[0.018]** [0.018]*
Received	  computer	  training 1.101 0.923

[0.518] [0.450]
Longest	  number	  of	  digits	  right	  (out	  of	  11) 0.925 0.944

[0.118] [0.120]
Observations 119 99 122 100
k 1.02 1.61 1.06 1.6

[0.109] [0.239]*** [0.113] [0.217]***
Log-‐likelihood -‐145.85 -‐104.93 -‐148.87 -‐106.44
All	  regressions	  assume	  a	  Weibull	  survival	  distribution	  and	  include	  year	  and	  crop-‐reporting	  district	  fixed	  effects	  as	  controls.	  
Excluded	  learning	  rule	  is	  First-‐1.	  Excluded	  education	  level	  is	  high	  school	  or	  less.	  
Learning	  rules	  determined	  using	  BIC	  rankings.
Robust	  standard	  errors	  in	  brackets.
*	  significant	  at	  10%;	  **	  significant	  at	  5%;	  ***	  significant	  at	  1%.
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Appendix Table A1: Odds ratios from multinomial logit of drawing game rules

(1) (2) (3) (4) (1) (2) (3) (4)
Individual	  cognitive	  measures
General	  questions 1.26 1.45 1.56 1.14 1.20 1.15 0.97 1.32
Longest	  number	  of	  digits	  right	  (out	  of	  11) 0.82 0.87 0.84 0.86 1.08 1.10 1.04 1.10
Figures 0.91 1.05 0.87 0.91 0.99 0.85 0.96 0.93
Individual	  characteristics
Age 1.00 0.99 0.98 0.97
Gender:	  Female 1.21 0.00 2.71 2.19
Education:	  No	  degree	  or	  2-‐year	  college 1.86 2.96 0.88 0.55
Education:	  4-‐year	  college	  degree 1.18 2.41 1.08 1.25
Education:	  Some	  graduate	  school 1.92 3.60 1.38 1.13
Acres	  of	  cropland	  operated	  '09	  (thousands) 0.83 0.77 0.72 0.86
Farming	  is	  not	  principal	  occupation 0.53 0.70 0.82 1.03
Years	  farmer	  has	  made	  decisions	  on	  farm 1.04 1.03 0.97 0.98
Received	  computer	  training 2.58 2.21 1.88 0.40
Risk	  and	  ambiguity
Risk	  aversion 0.19 0.82
Ambiguity	  aversion 0.65 0.85
Session	  fixed	  effects No No No Yes No No No Yes
Observations 145 145 121 145
Log-‐likelihood -‐130.8 -‐122.49 -‐93.78 -‐96.78
Excluded	  learning	  rule	  is	  Last-‐1.
*	  significant	  at	  10%;	  **	  significant	  at	  5%;	  ***	  significant	  at	  1%.
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Appendix Table A2: Odds ratios from multinomial logit of seed game rules

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
Individual	  cognitive	  measures
General	  questions 1.39* 1.46* 1.30 1.54* 1.67** 1.07 1.40 2.82* 1.14 2.51*
Longest	  number	  of	  digits	  right	  (out	  of	  11) 1.18 1.25 1.12 1.18 1.25 0.86 0.93 0.93 0.84 0.72
Figures 1.18 1.15 1.00 1.17 1.16 1.02 1.17 1.58 1.02 2.07**
Individual	  characteristics
Age 0.98 1.00 0.97 0.96 0.76 0.94
Gender:	  Female 2.20 2.04 2.05 5.12 92.59* 6.30
Education:	  No	  degree	  or	  2-‐year	  college 1.13 1.42 1.30 2.17 1.69 3.62
Education:	  4-‐year	  college	  degree 0.74 1.14 0.61 0.46 0.44 0.05
Education:	  Some	  graduate	  school 1.85 2.05 1.85 0.00 0.00 0.00
Acres	  of	  cropland	  operated	  '09	  (thousands) 0.81 0.84 0.78 1.40 0.40 1.86*
Farming	  is	  not	  principal	  occupation 0.88 1.06 0.69 0.78 3.04 3.21
Years	  farmer	  has	  made	  decisions	  on	  farm 0.99 0.96 1.00 1.09 1.33 1.23*
Received	  computer	  training 3.00 1.24 2.90 1.78 39.65 20.61
Risk	  and	  ambiguity
Risk	  aversion 0.99 0.01**
Ambiguity	  aversion 0.62 0.03
Session	  fixed	  effects No No No Yes Yes No No No Yes Yes
Observations 149 149 122 149 149
Log-‐likelihood -‐120.1 -‐110.83 -‐81.86 -‐101.24 -‐89.5
Excluded	  learning	  rule	  is	  Last-‐1.
*	  significant	  at	  10%;	  **	  significant	  at	  5%;	  ***	  significant	  at	  1%.
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Appendix Table A3: Hazard ratios, survival model for GM corn adoption using Vuong statistic-based learning rules

(1) (2) (3) (4)
Learning	  rules,	  risk,	  and	  ambiguity
Bayes	  learner 2.24 5.947 1.39 0.458

[1.385] [5.005]** [0.960] [0.299]
Last-‐1	  learner 1.066 1.319 3.729 1.206

[0.321] [0.477] [1.806]*** [0.673]
Risk	  aversion 1.037 0.993

[0.162] [0.149]
Ambiguity	  aversion 2.326 2.008

[0.434]*** [0.390]***
Individual	  characteristics
Age 0.988 0.992

[0.020] [0.020]
Gender:	  Female 1.039 0.838

[0.392] [0.319]
Education:	  No	  degree	  or	  2-‐year	  college 1.157 1.196

[0.339] [0.350]
Education:	  4-‐year	  college	  degree 1.384 1.304

[0.383] [0.354]
Education:	  Some	  graduate	  school 1.32 1.186

[0.498] [0.461]
Acres	  of	  cropland	  operated	  '09	  (thousands) 1.506 1.41

[0.185]*** [0.153]***
Farming	  is	  not	  principal	  occupation 0.474 0.448

[0.165]** [0.141]**
Years	  farmer	  has	  made	  decisions	  on	  farm 1 0.999

[0.021] [0.020]
Received	  computer	  training 0.708 0.869

[0.227] [0.251]
Longest	  number	  of	  digits	  right	  (out	  of	  11) 1.229 1.223

[0.097]*** [0.108]**
Observations 144 119 148 120
k 1.2 1.67 1.28 1.66

[0.153] [0.255]*** [0.163]* [0.264]***
Log-‐likelihood -‐138.5 -‐87.34 -‐139.16 -‐92.46
All	  regressions	  assume	  a	  Weibull	  survival	  distribution	  and	  include	  year	  and	  crop-‐reporting	  district	  fixed	  effects	  as	  controls.	  
Excluded	  learning	  rule	  is	  First-‐1.	  Excluded	  education	  level	  is	  high	  school	  or	  less.	  
Learning	  rules	  determined	  using	  Vuong	  significance	  tests.
Robust	  standard	  errors	  in	  brackets.
*	  significant	  at	  10%;	  **	  significant	  at	  5%;	  ***	  significant	  at	  1%.
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The	  learning	  rule	  variables	  equal	  1	  if	  a	  farmer	  is	  classified	  as	  being	  that	  type	  of	  learner.	  In	  the	  case	  of	  ties	  between	  two	  rules,	  the	  
learning	  rule	  variables	  are	  set	  to	  1/2.	  	  In	  the	  case	  of	  ties	  between	  all	  three	  rules,	  then	  each	  learning	  rule	  variables	  takes	  a	  value	  of	  
1/3.	  	  



Appendix Table A4: Hazard ratios, survival model for GM soybean adoption using Vuong statistic-based learning rules

(1) (2) (3) (4)
Learning	  rules,	  risk,	  and	  ambiguity
Bayes	  learner 1.646 2.311 2.517 0.759

[1.346] [2.948] [1.812] [0.883]
Last-‐1	  learner 1.751 5.585 4.025 1.619

[0.752] [3.699]*** [2.141]*** [1.135]
Risk	  aversion 1.313 1.358

[0.218] [0.231]*
Ambiguity	  aversion 1.513 1.29

[0.325]* [0.281]
Individual	  characteristics
Age 1.014 0.996

[0.023] [0.021]
Gender:	  Female 0.916 1.13

[0.573] [0.726]
Education:	  No	  degree	  or	  2-‐year	  college 1.051 1.075

[0.448] [0.423]
Education:	  4-‐year	  college	  degree 1.007 1.023

[0.403] [0.415]
Education:	  Some	  graduate	  school 2.003 1.809

[1.026] [0.909]
Acres	  of	  cropland	  operated	  '09	  (thousands) 1.363 1.38

[0.226]* [0.236]*
Farming	  is	  not	  principal	  occupation 0.404 0.737

[0.189]* [0.261]
Years	  farmer	  has	  made	  decisions	  on	  farm 0.95 0.969

[0.019]** [0.018]*
Received	  computer	  training 0.775 1.055

[0.432] [0.487]
Longest	  number	  of	  digits	  right	  (out	  of	  11) 0.919 0.935

[0.119] [0.134]
Observations 119 99 122 100
k 1.01 1.64 1.05 1.58

[0.109] [0.247]*** [0.109] [0.235]***
Log-‐likelihood -‐145.04 -‐101.15 -‐146.19 -‐107.33
All	  regressions	  assume	  a	  Weibull	  survival	  distribution	  and	  include	  year	  and	  crop-‐reporting	  district	  fixed	  effects	  as	  controls.	  
Excluded	  learning	  rule	  is	  First-‐1.	  Excluded	  education	  level	  is	  high	  school	  or	  less.	  
Learning	  rules	  determined	  using	  Vuong	  significance	  tests.
Robust	  standard	  errors	  in	  brackets.
*	  significant	  at	  10%;	  **	  significant	  at	  5%;	  ***	  significant	  at	  1%.
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The	  learning	  rule	  variables	  equal	  1	  if	  a	  farmer	  is	  classified	  as	  being	  that	  type	  of	  learner.	  In	  the	  case	  of	  ties	  between	  two	  rules,	  the	  
learning	  rule	  variables	  are	  set	  to	  1/2.	  	  In	  the	  case	  of	  ties	  between	  all	  three	  rules,	  then	  each	  learning	  rule	  variables	  takes	  a	  value	  of	  
1/3.	  	  


