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Abstract

A number of researchers have recently proposed a variety of different ‘vulnerability’ mea-
sures designed to capture the welfare consequences of risk for poor households, and also
proposed a variety of different approaches to estimating these various measures of household
vulnerability. However, it’s possible to ‘mix-and-match’ estimators and measures. Here we
conduct Monte Carlo experiments designed to explore the performance of different estima-
tors with different measures, under different assumptions regarding the underlying economic
environment.

We find that when the environment is stationary and consumption expenditures are mea-
sured without error that the best estimator is one proposed by Chaudhuri (2001), regardless
of what measure of vulnerability is employed. If the vulnerability measure is risk-sensitive,
but consumption is measured with error, a simple estimator proposed by Ligon and Schechter
(2003) generally performs best. However, when the distribution of consumption is non-
stationary, a modification of an estimator proposed by Pritchett et al. (2000) performs best.

Future research should focus on combining the efficiency of the Chauduri estimator with
the good properties of the Ligon-Schechter (in environments with measurement error) and
Pritchett (in non-stationary environments) estimators. However, even with present technol-
ogy estimating vulnerability is simple and much more informative and useful than are static
poverty measures, provided one has at least two rounds of panel data.

∗Associate Professor, Dept. of Agricultural and Resource Economics, University of California, Berkeley.
†PhD. Candidate, Dept. of Agricultural and Resource Economics, University of California, Berkeley.
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1. Introduction

Economists have long used measures of poverty to summarize the well-being of less fortu-
nate households in a population. Typically either income or consumption expenditures are
measured over some relatively short period of time (e.g., a year), and these are regarded as
a proxy for the material well-being of the household. Policies are often explicitly crafted to
reduce these poverty measures.

At the same time, economists have long recognized that a household’s sense of well-being
depends not just on its average income or expenditures, but on the risk it faces as well,
particularly for households with fewer resources. To consider an extreme case, a household
with very low expected consumption expenditures but with no chance of starving may well
be poor, but it still might not wish to trade places with a household having a higher expected
consumption but greater consumption risk. It seems desirable to have a measure of household
welfare which takes into account both average expenditures and the risk households bear.

Although numerous commonalities have been identified in the above approaches to esti-
mating vulnerability, the current state of the literature is a collection of papers, each paper
with its own vulnerability measure, its own approach to estimation, and its own dataset—
we are in what Hoddinott and Quisumbing (2003) call the “let a hundred flowers bloom”
phase of research on vulnerability. Though this has been useful for exploring the set of
possible approaches to measuring vulnerability, it may be time to begin weeding the flower
bed. The difficulty is that no one has yet systematically tried to compare approaches to esti-
mating vulnerability on the same datasets, or tried using different estimators with different
vulnerability measures.

Recent research on household ‘vulnerability’ has led to an increased appreciation of the
welfare costs of risk. The key idea is simply that risk averse households will have lower levels
of expected utilility ex ante when those same households face greater variation in future
consumption.

Hoddinott and Quisumbing (2003) describe several alternative definitions and approaches
to estimating “vulnerability” using large scale household-level datasets. The survey provided
by Hoddinott and Quisumbing draws on several different recent papers which seek to measure
vulnerability (Chaudhuri et al., 2001; Ligon and Schechter, 2003; Pritchett et al., 2000). For
each of these papers there are two steps involved in estimating vulnerability. First, one must
estimate the distribution of future consumption expenditures for every household; second,
one must construct a statistic (e.g., EPα) from this estimated distribution, meant to cap-
ture the reduction in household welfare due to risk in household consumption expenditures.
Although different authors use different methods at each of these steps, within limits it’s
possible to mix and match. In particular, there’s no reason one couldn’t use, e.g., Chaud-
huri’s methods for estimating the distribution of expenditures, but with Ligon-Schechter’s
vulnerability measure. Another way of putting this: different approaches to defining vulner-
ability need not imply differences in methods for estimation, since the object which must be
estimated is simply the distribution of consumption.

Unfortunately, because there’s considerable variety in the definition of vulnerability, in
the estimators employed, and in the datasets used in example applications, the comparisons
among approaches detailed in Hoddinott and Quisumbing (2003) are often comparisons be-
tween apples and oranges; one can’t easily evaluate the practical merits of various definitions
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of vulnerability, the value of different estimators, or the power of different tests. Here, we ad-
dress this problem by combining various definitions of vulnerabilility described in Hoddinott
and Quisumbing (2003) with various of the different estimators also described therein. The
various combinations of definitions and estimators will then be used to measure the vulner-
ability of households both in artificially generated data (where the actual ex ante welfare of
households is known), and in two ‘real’ datasets, one from Viet Nam belonging to the LSMS
family of household surveys, and another using data from the Bulgarian Household Budget
Survey. Our aim is to provide the practitioner with—not a catalog of possible approaches
(this is accomplished by Hoddinott and Quisumbing, 2003)—but with specific advice regard-
ing what the best approach is to measuring vulnerability in any given dataset.

2. Measures of Vulnerability

As noted above, one can think of there being two steps to estimating vulnerability. The
first has to do with characterizing consumption expenditures; the second in summarizing the
welfare consequences of this variation. We’ll call the first step ‘predicting consumption’; the
second ‘measuring vulnerability’.

In this section we describe several measures of vulnerability. These are drawn from the
existing literature, but for some we’ll make minor changes (mostly pertaining to changes in
units and notation) so as to facilitate comparisons across measures.

2.1. An enumeration of vulnerability measures. A number of papers have, in recent
years, sought to define and measure something called “vulnerability.” The earliest efforts
(Amin et al., 1999; Glewwe and Hall, 1998) attempted to measure the exposure households
have to shocks observed by the econometrician—the basic idea is, using household panel
data, to regress some measure of changes in consumption expenditures on possible sources
of shocks, and to look for a response; if variation in the shock can account for a significant
proportion of the variation in expenditures, the household is said to be vulnerable to the
shock. Later approaches (Chaudhuri et al., 2001; Ligon and Schechter, 2003; Pritchett et al.,
2000) instead attempt to estimate expected welfare, variously defined. Households with es-
timated expected welfare below some threshold are said to be vulnerable. It’s worth noting
that when panel data are available welfare realizations can be substituted for expenditures
in a regression of possible sources of shocks, so that after describing some particular contri-
butions to the ‘vulnerability-as-exposure’ literature in Section 2.2 we’ll focus entirely on the
later ‘vulnerability-as-reduction-in-well-being’ contributions and extensions.

2.2. Exposure to observed risks. This approach to the measurement of vulnerability
(Amin et al. (1999); Dercon and Krishnan (2000); Glewwe and Hall (1998)) focuses on the
response of households’ consumption expenditures to various observable shocks, such as
drought or idiosyncratic fluctuations in income. If household consumption expenditures co-
vary with income shocks, then one may infer that a risk-averse household lacks the means to
smooth or insure away these shocks to its expenditures. Note that this measure of vulnerabil-
ity does not depend directly on a household’s level of consumption. Neither does it depend
directly on the risk a household bears—a household with large variation in consumption
which does not stem from variation in observables would have a low measured vulnerability.
Of course, this latter feature could be regarded as a virtue; the method seems useful for
identifying particular sources of risk, which may then be an appropriate focus of policy.
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Amin, Rai, and Topa (1999). Amin, Rai, and Topa (1999) use panel data from Bangladesh
to identify households whose consumption vary with income, after controlling for household
fixed effects and aggregate variation in mean consumption. Accordingly, they estimate (in
differences) a simple prediction equation with the idiosyncratic vector of variables xit simply
equal to household income,

(1) E(ci|x̄, xi) = αi + ηt + xitβ
i.

Note the use of a household-specific coefficient β i, which the authors call the estimated
“vulnerability” of household i. This is meant to capture the reduction in welfare associated
with the additional risk a household bears if its consumption co-moves with risky (or time-
varying) income. Thus, if two households have precisely the same consumption realizations
in every state, but the second household has a more variable income stream, then Amin,
Rai, and Topa (1999) would regard the second household as the less vulnerable.
Glewwe and Hall (1998). Glewwe and Hall (1998) and Glewwe and Hall (1995) measure
something they call “vulnerability” in Peru, but in contrast to Amin, Rai, and Topa (1999),
are particularly interested in the response of households’ consumptions to aggregate shocks.
In particular, Glewwe and Hall (1995) estimate (in differences) a prediction equation with
the idiosyncratic vector of time-invariant household characteristics xi, but with time-varying
coefficients,

(2) E(cit|x̄, xi) = αi + ηt + xiβt.

Contrast this with the prediction equation (1) of Amin, Rai, and Topa (1999). The key
difference is that Glewwe and Hall focus on household level consumption responses to ag-
gregate shocks (which they identify with βt), while Amin, Rai, and Topa (1999) focus on
household response to idiosyncratic shocks (which they identify with β i).
Dercon and Krishnan (2000). Dercon and Krishnan (2000) take an approach similar to
that of Amin, Rai, and Topa (1999) and Glewwe and Hall (1998), but estimate households’
exposure to both idiosyncratic and village level shocks. The authors work with an estimating
equation of the form

cit = αi + γxit + βxt + eit
where xit contains aggregate, time-varying variables such as wages and prices, and where
xt contains observed idiosyncratic shocks faced by individuals and households (e.g. animal
disease, personal illness). Thus β is a measure of households’ exposure to aggregate shocks,
while γ is a measure of how vulnerable households are to assorted idiosyncratic shocks.

2.3. Expected poverty. Recall that Foster et al. (1984) define a family of decomposable
poverty measures Pα

2 A second approach to the measurement of vulnerability has been
to adapt these standard poverty measures to a non-deterministic setting by estimating the
expected value of Pα. Although methods for estimating these expected measures vary consid-
erably, several papers share this approach to defining a measure of vulnerability. We divide
these papers into two groups, depending on their favored choice of the parameter α, which
governs the property of the poverty measure. Several authors have chosen to work with
the headcount measure of poverty (α = 0); others have chosen to work with the “squared

2Let z denote a “poverty line” level of consumption expenditures. For any household i, let P i
α =

max{z−ci,0}α

zα
be the poverty of household i; then for any set of households I the poverty of the set is

simply
∑

i∈I P
i
α.
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poverty gap” (α = 2). Each of these alternatives has differing strengths and weaknesses, and
so we discuss each in turn below.
Expected headcount (α = 0). A number of authors (Chaudhuri (2001); Chaudhuri et al.
(2001); Christiaensen and Boisvert (2000); Pritchett et al. (2000)) use a measure of household
vulnerability which is simply the expected headcount measure of poverty. This measure is
simple and comprehensive—it varies with households’ wealth and aggregate and idiosyncratic
sources of risk. However, the measure suffers some of the same shortcomings of the headcount
measure of poverty. Consider a household whose present consumption is somewhat above
the poverty line, but which receives a very bad shock with small probability. Consistent with
this story, we can imagine that expected consumption for the household might lie slightly
below the poverty line, despite the fact that the probability of the household falling into
poverty was small. If the household is risk averse, with von Neumann-Morgenstern utility,
then it would prefer to consume its expected consumption with certainty. Thus, if offered
the choice (say via the offer of actuarially fair insurance) the household would choose the
consumption stream which would cause it to be ‘vulnerable’ according to this definition.
Expected poverty gap (α = 1). We’re not aware of any author who has adopted the
expected poverty gap as their preferred measure of vulnerability, but this choice seems at
least as defensible as the adoption of EP0, and we include this measure in the experiments we
conduct later in this paper. Like the expected headcount measure, the measured vulnerability
of poor households will be smaller when these households face large risks, and won’t vary at
all if these same poor households face only small risks (too small, that is, for there to be any
chance for the household to vault over the poverty line).
Expected squared poverty gap (α = 2). Finally, we turn our attention to Ravallion
(1988). Ravallion doesn’t use the term “vulnerability,” preferring to think about “expected
poverty.” Thus, Ravallion’s measure is intended to be the expected value of a concave
function of household consumption.3

Pα still seems ill-suited to representing household risk attitudes. The first problem arises
because these measures assign no weight to the welfare of households whose consumption
is (perhaps only momentarily) greater than the poverty line. The second has to do with
the nature of the risk preferences implicit in this measure—Foster, Greer and Thorbecke’s
poverty measure Pα implies an absolute risk aversion of (α−1)z/(z−c), where z is the poverty
line, c is household consumption, and α is a non-negative parameter. However, even if α > 1
(so that households are risk-averse), this implies that households have increasing absolute
risk aversion, which is sharply at odds with existing research on the risk preferences of poor
households. Even more unreasonably, both absolute and relative risk aversion approach
infinity as consumption approaches the poverty line (from below).

2.4. Expected Utility. Quite recently, a number of authors have proposed using some
variant of “expected utility” as the basis of a vulnerability measure. The basic logic is
simply that, since the class of von Neumann-Morgenstern utility functions was originally
designed to capture risk preferences, and since these functions are widely esimated and used
in actual applications, it seems sensible to adopt these functions to measure the welfare
loss associated with risk. In particular, members of the HARA (“Hyperbolic Absolute Risk

3In practice, Ravallion uses time series variation in consumption to estimate dynamics in realized poverty,
rather than attempting to capture the welfare consequences of risk; accordingly, though we consider the
measure he employs we do not use his estimator.
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Aversion”) family of utility functions have found favor in applications throughout economics,
and so these seem suitable for use in evaluating vulnerability. The family can be described
by the function

(3) U(c) =
(c− z)1−γ − 1

1− γ
,

γ ≥ 0, c ≥ z. Thus, the HARA bears a close resemblance to the Pα family, differing in that
the parameter z is interpreted as a lower bound of consumption for all households, rather
than as the lower bound only for wealthy households, and differing also in allowable values
for the curvature parameter γ—in this case, the welfare costs of risk are decreasing as γ falls,
while the opposite obtains for the Pα family.
Ligon and Schechter (2003). For their measure of vulnerability, Ligon and Schechter
(2003) adopt a simple transformation of (3). The idea behind the normalization is simple:
if there is no inequality and no uncertainty, then there can be no vulnerability.

To operationalize this idea, Ligon and Schechter (2003) let c̄ denote per capita expendi-
tures. Then the vulnerability of household i is defined by

V i = U i(c̄)− EU i(ci).

Ligon and Schechter choose units for consumption expenditures so that c̄ = 1; this nor-
malization solves the problem of units, just as normalization by poverty line expenditures
solves the problem for the Pα measure. Vulnerability for the population is computed by
summing household vulnerability across all households. Note, then, that if every household
consumes c̄ for sure, then there is no vulnerability ; no household bears any risk, and there is
no inequality (and hence no relative poverty).

Ligon and Schechter (2003) extend this idea by decomposing their measure of vulnerability
into distinct (but not necessarily orthogonal) measures of poverty and risk, as follows: Taking
expectations of an increasing, concave function of consumption expenditures has the effect
of making vulnerablity depend not only on the mean of a household’s consumption, but
also on variation in consumption. To better understand the balance between poverty and
risk in this measure of vulnerability, note that one can decompose the measure into distinct
components reflecting poverty and risk, respectively:

(4) V i = [U i(c̄)− U i(Eci)] + [U i(Eci)− EU i(ci)].

Note that the first bracketed term, which measures poverty, involves no random variables—it
is simply the difference between a concave function evaluated at the “poverty line” and at
household i’s expected consumption expenditure. The concavity of U i implies that as Eci

approaches the poverty line, an additional unit of expected consumption has diminishing
marginal value in reducing poverty. For any {U i} in the HARA family it’s easy to show that
this poverty measure satisfies all the axiomatic requirements enumerated in Foster et al.
(1984).

The second term of (4), which measures the risk faced by household i, is consistent with
the ordinal measures of risk proposed by Rothschild and Stiglitz (1970). Further, this risk
measure can usefully be further decomposed into two distinct measures of risk, one aggregate,
the other idiosyncratic. Let E(ci|x) denote the expected value of consumption, ci, conditional
on knowledge of a vector of aggregate variables x. Then we can decompose the risk household
i faces into a term expressing the aggregate risk the household faces, and a term expressing



6

the idiosyncratic risk the household faces. Total vulnerability for household i is then given
by

V i = [U i(c̄)− U i(Eci)] (Poverty)

+ [U i(Eci)− EU i(E(ci|x))] (Aggregate risk)

+ [EU i(E(ci|x))− EU i(ci)]. (Idiosyncratic risk)

This decomposition is not peculiar to utility based measures of vulnerability; one can simi-
larly decompose expected values of Pα.

Calvo and Dercon (2003). Calvo and Dercon (2003) follow Ligon and Schechter (2003)
in adopting a utility-based measure of vulnerability, but claim that it’s desirable to add
something to the measure which plays a role more like the poverty line employed by the Pα

measure. Giving some credit to Clark et al. (1981) and Watts (1968) for the basic idea, they
propose a measure of vulnerability

E[min{z, ci}1−γ ]− z1−γ

z1−γ .

It’s easy to verify that this measure differs from the HARA version of the Ligon-Schechter
measure only in that there’s now a “kink” in the function due to the min operator. Calvo
and Dercon argue that this kink is desirable, giving as evidence an example in a household
with expected consumption at or below the poverty line z. This household has a chance p of
having its consumption exceed the poverty line by some amount y next period; Calvo and
Dercon argue that our assessment of the vulnerability of this household ought not to depend
on the magnitude y, despite the fact that clearly the household would prefer that y be larger
rather than smaller.

2.5. Comparing Vulnerability Measures. In this subsection we use artificial data gener-
ated in accordance with Jalan and Ravallion (1999) (see Section 4.1), and compute household
level vulnerability using each of the static measures described above, so as to facilitate com-
parisons.

We first calculate the correlations between various vulnerability measures and also the
actual expected utility for the the households in our artificial sample. The Jalan-Ravallion
data-generating process we exploit doesn’t hinge on the specification of a ‘true’ utility func-
tion, so we explore different possible specifications, including a collection of HARA utility
functions with a range of possible coefficients of relative risk aversion (γ ∈ {1, 2, 3}).

In Table 1 we display correlations between the various measures of vulnerability described
above, where the distribution of consumption expenditures is consistent with a stationary
environment described by Jalan and Ravallion (1999), described in detail in Section 4.1, infra.
The Ligon-Schechter measure is abbreviated “LS”, and the Calvo-Dercon “CD”; the various
expected Foster-Greer-Thorbecke poverty measures are indicated by EPα for α ∈ {0, 1, 2}.
Also shown in Table 1 are correlations between (minus) various HARA expected utilities,
again given the distribution of consumptions described in Section 4.1, and the correlations
between these HARA utilities and the vulnerability measures. Consensus estimates of HARA
utility functions from household panel data suggest values for the parameter γ in the range
of 1–3.

Not surprisingly, all of these measures and expected utilities are highly correlated. How-
ever, there’s considerable range in the degree of correlation. At the high end, in this instance
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LS CD EP0 EP1 EP2 −EU1(c) −EU2(c) −EU3(c)

LS 1.0000 0.9928 0.7852 0.9493 0.9827 0.9146 1.0000 0.9524

CD 1.0000 1.0000 0.7134 0.9203 0.9740 0.8610 0.9928 0.9731

EP0 0.9980 0.9978 1.0000 0.9108 0.8175 0.9390 0.7852 0.5832

EP1 0.9998 0.9998 0.9989 1.0000 0.9806 0.9544 0.9493 0.8150

EP2 0.9999 1.0000 0.9983 0.9999 1.0000 0.9163 0.9827 0.8965

−EU1(c) 0.9999 0.9997 0.9988 0.9999 0.9998 1.0000 0.9146 0.7675

−EU2(c) 1.0000 1.0000 0.9980 0.9998 0.9999 0.9999 1.0000 0.9524

−EU3(c) 0.9999 1.0000 0.9971 0.9995 0.9998 0.9995 0.9999 1.0000

Table 1. Correlations Between Vulnerabilities and Expected Utility. Corre-
lations reported above the diagonal are simple Pearson correlation coefficients,
while those below are Spearman rank correlation coefficients. Utility functions
(denoted by EUγ(c)) are HARA functions with z = −0.1.

the Ligon-Schechter measure happens to be constructed so as to be perfectly correlated with
−EU2(c); at the low end the Pearson correlation of −EU3(c) and EP0 is only 0.5832. Indeed,
if any measure can be said “not to belong” it would be EP0—it would be more highly cor-
related with the various utility measures if households were taken to be risk-seeking, since
while all these functions are decreasing in consumption expenditures only the function P0

is concave. The Ligon-Schechter and Calvo-Dercon measures are very highly correlated, as
one would expect—truncating the distribution of consumption, as the Calvo-Dercon mea-
sure implicitly does, only makes the welfare function slightly more convex at high levels of
consumption, where it’s already nearly flat (for γ = 2, the HARA utility function rapidly
asymptotes to zero). These two measures are also highly correlated with EP2—this is a
little more surprising, until one recalls that these are the three measures we consider which
are convex, so that increases in risk result in increases in vulnerability. We’ll call these
the “risk-sensitive” vulnerability measures—we’ll see in our experiments below that this
shared characteristic seems to be key to determining behavior. Among the expected poverty
measures, the highest correlation is between EP2 and −EU2(c), with a Pearson correlation
coefficient of 0.98.

Correlation coefficients below the diagonal are Spearman rank correlation coefficients.
These give some indication of the extent to which these different measures produce different
orderings of vulnerability across households. For the data-generating process employed here
cross-sectional variation in expected levels of consumption dominates time-series variation
in any particular household’s consumption expenditures. All of these measures and utilities
produce exactly the same ordering of non-random consumptions, and as a consequence the
Spearman statistics all exceed 0.99.

3. Estimating Consumption Distributions

When measuring poverty, one can rely on surveys which measure household income or
expenditures. While fraught with its own difficulties, these observed data are all one needs
to compute static poverty measures. To actually measure the vulnerability of a household (or
population), one cannot rely only on observable data—the whole point of adopting a notion of
vulnerability is that household welfare is presumed to depend not just on what consumption
expenditures are actually realized, but on what consumption expenditures might be.
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Complicating matters, the notion of vulnerability is inherently forward-looking, since
there’s only uncertainty about future consumption expenditures. Of course, we only have
data on past realizations. Accordingly, the estimation problem we face involves using past
realizations of consumption expenditures to estimate the probability of possible future con-
sumption outcomes. When these probabilities remain the same across time, the environment
is said to be stationary, and it’s possible to estimate the probability of different outcomes in a
typical period, and regard this as vulnerability. However, in environments where there’s con-
sumption gowth over time or where institutions exist which permit households to save current
windfalls against future shortfalls, the probabilities associated with different consumption
realizations will vary over time. In such an environment it’s no longer possible to charac-
terize the probability distribution of consumption expenditures in a typical period—change
across periods may be the only constant. An alternative strategy in such an environment
is to assume that the probabilities of changes in consumption expenditures is fixed across
periods—such an environment is said to be difference stationary. Note that any stationary
time series process is difference stationary, so that estimators which only assume difference
stationarity will be correctly specified in a broader range of circumstances. However, there’s
no free lunch: by only using information from changes over time, these estimators will ignore
potentially useful information, and so will be less precise than estimators which exploit this
stationarity.

Returning to the matter at hand, observing actual consumption expenditures cannot,
by itself, provide enough information for us to compute vulnerability. For this, we need
(an estimate of) the probability distribution of what consumption expenditures might have
been, and to compute this estimate we need to make some identifying assumptions to allow
us to map past outcomes into predictions about the future. To date, three different basic
strategies have been adopted in the literature; we’ll consider each in turn, and discuss the
particulars of their implementation by various authors.

3.1. Stationary Time Series. The basic idea behind the estimation strategy here is to
assume that, for any particular household, the probability distribution of consumption in
one period is identical to the probability distribution of consumption in any other period. As
a consequence, if one observes consumption expenditures for each household for two or more
periods, one assumes that each of these observations was just as likely to have happened to
the same household in any other period.

Ligon and Schechter (2003) adopt this strategy to estimate vulnerability in Bulgaria. Using
panel data with T periods of data on N households, they simply use the T observations on
consumption expenditures for each household as evidence of ‘what might have been’ in the
initial period. Accordingly, their main measure of vulnerability (“TS” for short) can be
computed by

(5) V̂ i = U(c̄)− 1

T

T
∑

t=1

U(cit),

where cit is observed consumption expenditures for household i in period t. The chief virtue
of this approach is its transparency and simplicity—since U is assumed to be a known
function, this is a calculation which could be trivially performed using a spreadsheet or
simply a calculator. If the assumption of stationarity is correct, then as T grows large then a
law of large numbers guarantees that the time series average computed here will converge to
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the expected value we’re trying to estimate. A second great virtue is that one doesn’t need to
assume anything about the variation of consumption expenditures across households—the
method is appropriate when there’s great heterogeneity across households, even when this
heterogeneity is unobserved by the analyst.

There are two chief drawbacks to the Ligon-Schechter time-series estimator. First of all,
the assumption of stationarity is crucial. If, for example, consumption expenditures are
expected to grow over time, then observed consumption in one period will not have the
same distribution as expenditures in a different period, and the time series average will not
converge to the expected value. Second, the method obviously requires panel data, which is
usually both expensive and time-consuming to collect.

Ligon and Schechter avoid a third problem, devising an estimator which we’ll call the
“lower bound” (LB) estimator. If measurement error contaminates the data on consumption
expenditures, this will bias estimates of vulnerability, and if some (say wealthier) households
have noisier data on consumption expenditures, this will lead to estimates which overstate
their vulnerability relative to other (say poorer) households. Ligon and Schechter take an
approach which has something of the flavor of instrumental variables to deal with classical
measurement error. Let cit denote the consumption expenditures of household i at time t, and
let xit denote a vector of idiosyncratic variables (which may help to predict consumption).

Let c̃it = cite
εit , with {εit} a measurement error process having the property that E(εit|xit) =

E(εit log c
i
t) = 0. In a sort of “first stage” they use a prediction equation of the form4

(6) log c̃it = αi + ηt + β′xit + uit,

where the {αi} are household fixed effects, the {ηt} are time effects (constrained to sum
to zero) which capture aggregate shocks to consumption, the xit are deviations from the
household mean, and the {uit} are residuals. Using restricted least squares to estimate

this yields parameter estimates (α̂i, η̂t, β̂, û
i
t) which can be used to construct conditional

expectations. Then using the decomposition trick employed in (5), one can write

V̂ i = [U(1)− U(Êci)] (Poverty)

+

[

U(Êci)− 1

T

T
∑

t=1

U(Ê(cit|xt))
]

(Aggregate risk)

+

[

1

T

T
∑

t=1

U(Ê(cit|xt))−
1

T

∑

U(Ê(cit|xt, xit))
]

(Idiosyncratic risk)

+

[

1

T

T
∑

t=1

U(Ê(cit|xt, xit))−
1

T

T
∑

t=1

U(cit)

]

. (Unexplained risk & measurement error)

Thus, the contribution of measurement error to the estimate of household i’s vulnerability is
confined chiefly to the final line of this expression. Unfortunately, the residual term uit will
typically depend not only on measurement error, but also on variables not observed by the
analyst which nonetheless influence consumption. Accordingly, the LB estimate (the sum of

4The prediction equation actually employed in Ligon and Schechter (2003) uses levels of expenditures as
the dependent variable. In principle this can cause problems, since with a linear prediction equation one
may sometimes predict negative levels of consumption. Here we address this possible problem by taking
logarithms.
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the first three lines of this decomposition) may be regarded as a lower bound on household
i’s vulnerability, while the quantity (5) may be regarded as an upper bound.

Chaudhuri (2001) also relies on an assumption of stationary time series to construct his
estimator, and assume further that shocks to consumption are independent normal in their
distribution. He makes a serious effort to accomodate heterogeneity, by permitting the
variance of consumption changes to depend on observable fixed characteristics of the sample
households, estimating ĉi and σ̂ε(x

i), which can then be employed to calculate household
level vulnerability

V̂ i =

∫

W (ĉieσ̂ε(x
i)ε)dΦ(ε),

where the function W is the welfare measure employed (e.g., W (c) = 1
1−γ [(c̄ − z)1−γ −

(c − z)1−γ ] for Ligon-Schechter, Pα for Pritchett or Chaudhuri). Thus, for each household
Chaudhuri (2001) needs to construct two estimates of parameters, ĉi and σ̂ε(x

i). For ĉi

he simply uses the time series geometric mean of cit. The variance parameter he needs
to compute is simply the time series variance of log cit; he constructs estimates of this by
regressing the square of changes in log cit on a vector of household characteristics xi, and
then dividing by two.5,6

3.2. Difference Stationary Time Series. Pritchett et al. (2000) also rely on panel data
and a stationarity assumption, but in their case the stationarity requirement is weaker—
they require that changes in consumption expenditures be stationary and mean zero over
time. This is consistent with a world in which consumption follows a random walk, as it
might be if households had access to credit markets, but cannot accomodate a world with
deterministic growth. As with Chaudhuri et al. (2001), Pritchett et al. (2000) rely heavily
on the assumption that changes in consumption are distributed normally. This approach has
two chief virtues. The first is that it’s quite simple; one way to implement it is to use ordinary
least squares to predict consumption expenditures in a first-stage regression, much as with
the Ligon-Schechter estimator (given the assumptions adopted by the authors, OLS is the
maximum likelihood estimator). The second is that this estimator is very efficient, permitting
one to construct relatively precise estimates from relatively short panels. The chief defects
of the method are related to these virtues—the distributional assumptions adopted are very
strong, and permit no unobserved heterogeneity either across households or periods. The
normality assumption adopted by these authors implies that consumption may sometimes
be negative. We deal with this problem in two different ways. First, by setting any negative
predicted consumption to zero (we call this the PSS0 estimator). Second, by assuming that
consumption is distributed log-normal (we call this the PSS1 estimator). Neither of these
estimators can be easily adapted to accomodate measurement error. As with Chaudhuri
et al. (2001), the PSS estimators can accomodate heteroskedasticity across households, by
permitting the variance of consumption changes to depend on observable fixed characteristics
of the sample households.7 To calculate household level vulnerability, one first constructs an

5For our experiments we take xi to include the level of first period income and its square and a constant.
6One problem with this estimator is that it may yield predictions of the standard deviation which are

imaginary. To prevent this, we convert all negative predicted variances to zero.
7This also requires some kind of stationarity of the conditional distribution of consumption changes across

households. Pritchett and coauthors address this by observing that if the analyst possessed a long enough
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estimate of the variance of consumption changes σ̂ε(xi); then one can calculate

V̂ i =

∫

W (cit + σ̂ε(x
i)ε)dΦ(ε),

Although the assumption of difference stationarity is weaker than the stationarity assumption
adopted by Chaudhuri et al. (2001), attempts to use the method with panel datasets having
more than two periods raises a difficult question—since consumption may now be distributed
differently in different periods, just which period should we use for calculating vulnerability?
If we have data on periods t = 1, . . . , T , should we be attempting to predict consumption
(and vulnerability) for period T , which would be consistent with what Pritchett et al. (2000)
do using a panel of two periods? What, then, should the household be assumed to know?
As t progresses from 1 to T , the household learns more about what the distribution of
consumption will be in T . If we compute vulnerability from the perspective of period 1, this
suggests using

V̂ i
1,T ≡

∫

W (ci,1 + T σ̂εε)dΦ(ε),

while if computed from the perspective of period T − 1, we ought instead to employ

V̂ i
T−1,T ≡

∫

W (ci,T−1 + σ̂εε)dΦ(ε),

Either of these choices are defensible, but obviously these will yield very different estimates
of vulnerability. Here we’ll (somewhat arbitrarily) adopt a third choice; namely, to estimate
vulnerability in period 2 from the perspective of period 1, yielding

V̂ i
1,2 ≡

∫

W (ci,1 + σ̂εε)dΦ(ε).

3.3. Stationary Cross-Section. In addition to presenting a vulnerability estimator to be
used with panel data, Chaudhuri (2001) suggests another option which can be used with a
cross-sectional data set. Both estimators calculate vulnerability as

V̂ i =

∫

W (ĉieσ̂ε(x
i)ε)dΦ(ε).

If one has panel data, Chaudhuri suggests using the time series geometric mean of cit to
estimate ĉi. If, on the other hand, one only has cross-sectional data, he proposes using
FGLS to estimate the equation log ci = βxi + εi and then using β̂xi as the estimate of ĉi.8

To estimate the variance of log ci Chaudhuri regresses the square of the error in the above
equation (ε2i ) on a vector of household characteristics. We’ll refer to this cross-sectional
estimator as the “XS” estimator.

panel then one could rely solely on time series variation to estimate idiosyncratic variability, but make no
effort to implement such an estimator.

8Note that as a consequence this estimator doesn’t directly use any information on the actual level of
consumption expenditures for household in estimating vulnerability; instead of using a household’s consump-
tion as the base level of consumption, the cross-sectional estimator uses only the part which is predicted
by observed characeteristics. For many data sets a large portion of consumption may not be predicted by
observed characteristics—in such cases we would expect this estimator to perform less well than simply using
observed household consumption, without making any effort to characterize the risk faced by the household.
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4. The Data Generating Processes

In this section we describe a variety of different data-generating processes (DGPs) which
we’ll use to conduct experiments later in this report.

4.1. Stationary Jalan-Ravallion. We have generated panel data on consumption, income,
and “wealth group” using a data generating process (DGP) suggested by Jalan and Ravallion
(1999). Using data from rural China, the authors posit that ability to smooth consumption
may vary by wealth quantile. Their estimating equation is such that changes in household
level consumption are affected by changes in household level income and changes in household
size. They divide the data into five wealth quantiles and allow the coefficients to differ across
groups.

Jalan and Ravallion (1999) estimate a regression of the form

(7) ∆ log cit = ∆ηwi
t + βwi ′xit + εit,

where i indexes the household, t the time period, and wi indicates the wealth quantile of
household i—thus, the parameters βwi are allowed to differ by wealth quantile. For the
idiosyncratic variables xit Jalan and Ravallion employ changes in log income and household
size; for our purposes we’ll drop the variation in household size.

For the stationary data generating process described here, we use Jalan and Ravallion’s
estimates, and generate data by first arbitrarily assigning each of N households to wealth
quintiles. We then generate data on actual income yit for household i at time t; income is
presumed to be the product of two factors, one observed by the analyst (θit), and the other
(ξit) not. Each of these two factors is drawn from a log-normal distribution, with means
and variances chosen to match quantile-specific moments reported by Jalan and Ravallion
(1999).9 In addition, we also allow for measurement error in income. Thus, actual income
will be made up of an observed portion θ and an unobserved portion ξ, so that

log yit = θit + ξit,

while the income observed by the analyst is denoted ỹit, which is equal to actual income times

a measurement error eν
i
t . As with the components of actual income, the mean and variance

of the normal distribution from which ν it is drawn is allowed to vary by wealth quantile.
Once we’ve generated data on income, we draw data on period 0 consumption ci0 for

each household i. As with the components of income, this quantity is drawn from a log-
normal distribution, with mean and variance set equal to wealth quantile-specific means of

9We first generate data on income in the initial period for households in the five wealth groups based
on data given in Jalan and Ravallion (1999). The highest wealth group has a mean income of 912 Yuan
with a standard deviation of 1136, and we have assumed the income of each wealth level to be lognormally
distributed. The second wealth group has mean income of 479 and standard deviation of 414. The third
wealth group has mean income of 380 and standard deviation of 323, the second to last wealth group has
a mean income of 306 and a standard deviation of 254, while the lowest wealth group has a mean income
of 227 and a standard deviation of 228. We generate income for the five wealth groups over five years, but
then randomly reorder the years of data our dgp will use.
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log consumption reported by Jalan and Ravallion (1999).10 We then compute consumption
using

(8) log cit = log ci0 + ηwi
t + βwi log yit + uit,

exploiting wealth-quantile specific values of βw estimated by Jalan and Ravallion (2000).11

Note that taking differences of (8) yields Jalan-Ravallion’s estimating equation (7)—
despite the fact that Jalan-Ravallion’s estimating equation is specified in differences, it’s
consistent with a stationary data-generating process (indeed, the null hypothesis of full in-
surance tested by Jalan-Ravallion implies that there exists a set of time efffects such that
log consumption minus these constants will be a stationary process).

4.2. Non-Stationary Jalan-Ravallion. Several of the estimators described above rely on
time-series stationarity, so it behooves us to generate some non-stationary data to see how
sensitive these estimators are to this sort of misspecification. The way in which we generate
income and initial levels of consumption is identical—the only difference is that for our
non-stationary Jalan-Ravallion data generating process we calculate consumption iteratively
via

(9) log cit = log cit−1 + ηwi
t + βwi log yit + uit.

This data-generating process is also consistent with the Jalan-Ravallion estimator, but of
course in this case the distribution of consumption at time t+ j depends on the sequence of
shocks realized in earlier periods, and hence is non-stationary.

4.3. Vietnamese Household Survey. The two artificial data-generating processes de-
scribed above are useful for conducting Monte Carlo experiments, but of course assume
away much of the complexity of real-world data. Accordingly, we also work with a two-
period panel dataset drawn from the 1993 and 1998 rounds of the Vietnamese Household
Survey, a household survey belonging to the LSMS family. We’re able to link 2191 households
across both periods.

4.4. Bulgarian Household Survey. Like many expenditure surveys, the Bulgarian House-
hold Budget Survey (described in documents available from the Bulgarian National Statisti-
cal Institute, www.nsi.bg) collects data on household expenditures at monthly frequencies.
We’ve used these monthly data over the course of 12 months for 2287 households in 1994-95.

5. Experiments

By conducting Monte Carlo experiments we can compare the bias and efficiency of different
of these estimators using datasets of various sizes. For example, the LB estimator of Ligon
and Schechter (2003) employs a relatively weak restriction on conditional moments, while
the PSS estimators use a much stronger parametric distributional assumption. We’ll use

10The highest wealth group has mean consumption expenditures of 606 Yuan in the baseline period, with
a standard deviation of 763. The second wealth group has mean consumption of 365 and standard deviation
of 260. The third wealth group has mean consumption of 322 and standard deviation of 224, the second to
last wealth group has a mean consumption of 264 and a standard deviation of 190, while the lowest wealth
group has a mean consumption of 209 and a standard deviation of 189.

11These are (0.12, 0.13, 0.18, 0.24, 0.41), where the first coefficient is that on the wealthiest group and the
last coefficient is that on the poorest group.
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the results of our Monte Carlo experiments to ascertain which of these esimators is more
precise, and to measure the bias of each estimator in small samples.

The experiments of Section 6 will focus on the effects of various kinds of mis-specification
on various of the estimators we consider, whether these have to do with improperly specified
distributions, failures of stationarity, etc. In contrast, the experiments of this section will
not focus on various possible mis-specifications, but rather on relative performance when the
data generating process is the stationary Jalan-Ravallion process of Section 4.1. Nonetheless,
it’s important to note that all of the estimators suffer from some degree of mis-specification
relative to this DGP; in particular, while the Jalan-Ravallion data generating process allows
different distributions of shocks for each of five wealth quintiles, none of the estimators we
use will make use of this heterogeneity, nor of data on wealth. We permit this sort of mis-
specification on the theory that when working with real world data we can never expect our
estimator to accomodate all the complexity of the real-world data-generating process, so that
in practice our efforts at estimation will always be mis-specified to some greater or lesser
degree. By erring in making our estimator too simple, we make an effort to have our baseline
experiments reflect to some degree the kinds of mis-specification which may be expected in
practice.
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Figure 1. Mean Squared Error in Estimating the Ligon-Schechter Measure
of Vulnerability as a Function of

√
N .

5.1. Accuracy of Vulnerability Estimates as a Function of N . Here we consider each
of several measures of vulnerability, and attempt to estimate household vulnerability using
each of the estimators described in Section 3, using samples of varying size. The focus of
our interest in this section will be on how the mean squared error (MSE) of our estimates
changes as the number of households in the sample increases, holding the length of the panel
fixed. We use this as the primary criterion for identifying a ‘preferred’ estimator for each of
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the various measures of vulnerability we’ll describe. Note that for this experiment we hold
the number of periods fixed, with T = 5.

We first turn our attention to Figure 1, which displays the logarithm of the MSE of each
of the estimators we’ve described as the number of households (N) in the sample increases.
Note that the MSE should not be expected to converge to zero as N increases; rather we
expect it to converge to some positive constant.

Each estimator is marked with different symbols. For each household the Ligon-Schechter
TS estimator is simply the time series average of a HARA utility function evaluated at
realized observed consumption over the five periods;12 the log of the MSE for this estimator
is marked with circles. From the figure, one can see that this estimator converges to a mean
square error of approximately 0.12 when N exceeds 2500, suggesting that the sample sizes
characteristic of a typical Living Standards Measurement Survey are probably adequate for
characterizing the vulnerability of the population as a whole.

The estimator of Chaudhuri (2001), marked with exes, performs just slightly better than
does the TS estimator when estimating the Ligon-Schechter vulnerability measure. It appears
to exhibit very similar behavior as the sample size increases. This may seem somewhat
surprising, given the apparently greater complexity of the estimator he describes. His efforts
to model heterogeneity in the variance of shocks pay off in this example, giving this estimator
the smallest mean square error at every sample size—since the distributional assumption
of log-normal shocks is satisified for this particular data generating process Chaudhuri’s
estimator is very nearly the maximum likelihood estimator—one could only do better by
observing the actual wealth quintiles which determine the distribution of income and the
variance of shocks, rather than simply income itself.

As mentioned above, we implement the Pritchett et al. (2000) estimator in two differ-
ent ways. The first (PSS0) involves working with levels of consumption, assuming with the
original authors that consumption expenditures are normally distributed, but setting any
negative predicted consumption to zero. The second way (PSS1) is to assume that con-
sumption is distributed log-normal. The estimator implemented in levels is indicated by a
line with asterisks; the estimator implemented in logs is indicated with plusses. Note that
each of these estimators performs abominably, with mean square errors orders of magnitude
larger than the Chaudhuri or TS estimators. The cross-sectional “XS” estimator (marked
with diamonds) is similarly poor.

Figure 2 is somewhat similar to Figure 1, but instead of using mean squared error as
a criterion, it shows the Spearman rank correlation coefficient for each of the estimators
with actual Ligon-Schechter vulnerability as a function of the square root of sample size;
accordingly, in this figure, higher values are better. The ordering of estimators is just as it
was using the MSE criterion, except that the performance of “XS” estimator is worse relative
to the PSS0 using this criterion. The best estimators (Chaudhuri and TS) have reassuringly
high rank correlation coefficients—if one were to use either of these, this suggests that at
least one would get the orderings of households’ vulnerabilities right in the overwhelming
majority of cases. The two nonstationary estimators have remarkably similar performance,
which is remarkably worse than the performance of the “TS” and Chaudhuri estimators. The
“XS” estimator does worse still; as we’ll see later, if one has access only to cross-sectional

12A note on parameters—we set z = −0.1, and γ = 2 for these experiments. Further recall that we’ve
chosen units so that the mean consumption of the average household is equal to one.
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data it would be much better to simply use data on observed consumption expenditures, i.e.,
to use W (cit) as an estimator for V i, and not to run any regressions at all.

The impression that the two Pritchett et al estimators perform poorly is confirmed by
an examination of Figure 3. Here the estimator using levels is labelled PSS0 in the lower
right panel. We have plotted estimated Ligon-Schechter vulnerability for each of 900 house-
holds drawn from the Jalan-Ravallion world versus the actual vulnerability of these house-
holds. The level estimator PSS0 is making an incorrect distributional assumption, and this
is reflected in this panel. The estimator has a severe upward bias for the most well-to-do
households, while it underestimates the vulnerability of those in the direst of straits.

The Pritchett et al estimator assuming a log-normal distribution (labelled PSS1) makes
the correct distributional assumption, and as a consequence there’s no appreciable bias for
this estimator (the dotted line in these figures is a 45 degree line, while the solid line is an
OLS fit; when these two lines coincide there is no bias). However, by adopting the relatively
weak hypothesis of difference stationarity the efficiency of this estimator is much lower than
that of the TS and Chaudhuri estimators which adopt a stronger stationarity assumption.
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Figure 4. Mean Squared Error in Estimating the EP0 Measure of Vulnera-
bility as a Function of

√
N .

We next turn our attention to the estimation of EP0. A glance at Figures 4 and 5 shows
that, save for the very smallest sample sizes, the ordering of estimators is as it was for
the estimation of the Ligon-Schechter measure. The Chaudhuri estimator performs better
at all sample sizes, while the two Pritchett et al estimators perform much more poorly.
However, relative to the earlier case the TS estimator (which simply averages outcomes for
each household) performs considerably worse than does the Chaudhuri estimator. The reason
for this relative drop in performance becomes clear in the top left panel of Figure 6. Since
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in this case the TS estimator is simply averaging five different binary variables (indicating
whether the household was above or below the poverty line), it’s throwing out a great deal
of information. Still, as one would expect the TS estimator is unbiased, just imprecise. In
this particular experiment the Chaudhuri estimator displays a small bias.

In contrast to the nearly unbiased TS and Chadhuri estimators, the two Pritchett et al
estimators both display a quite substantial bias, overestimating the vulnerability of well-to-
do households, and underestimating the vulnerability of the the most vulnerability. This
underestimation of the vulnerability of the most vulnerability is particularly egregious for
the estimator which assumes normally distributed consumption shocks, but both estimators
do quite poorly both in terms of bias and imprecision. This is perhaps more surprising than
elsewhere, since this is the measure the Pritchett et al estimator was designed to estimate.
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Figure 7. Mean Squared Error in Estimating the EP1 Measure of Vulnera-
bility as a Function of

√
N .

Examining the estimation of EP1, we see in Figures 7 and 8 that once again there’s a very
clear division between the outcomes for the two estimators which assume stationarity (TS
and Chaudhuri) and the two which do not (the two PSS estimators). Because the scale for
EP1 is the same as for EP0, it’s possible to compare across the two poverty measures. The
two PSS estimators do even worse in this setting than they did in estimating EP0. Once
again (Figure 9) the PSS0 estimator displays a very substantial bias, and makes light of the
plight of the most miserable. The PSS1 estimator’s bias is much smaller than earlier, but
is by far the least precise of the estimators, giving it an MSE in the same range as that of
PSS0. The TS and Chaudhuri estimators once again show a rather similar performance, but
once again the TS estimator is edged out by the Chaudhuri estimator, which has a slightly
smaller bias.
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Figure 8. Spearman Rank Correlation of Estimates of EP1 (with Actual) as

a Function of
√
N .
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Figure 9. Estimates of EP1 Vulnerability
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Figure 10. Mean Squared Error in Estimating the EP2 Measure of Vulnera-
bility as a Function of

√
N .
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Figure 12. Estimates of EP2 Vulnerability

Estimating the EP2 measure gives results that are qualitatively similar to the case of
estimating EP1. There are two chief differences. The first (Figures 10 and 11) is that the
Chaudhuri estimator now joins the TS estimator in displaying a substantial bias; as Figure
12 indicates, both of these measures tend to overestimate the vulnerability of the least well-
to-do, though both do a good job of estimating EP2 at the other end of the distribution.

Finally, we turn our attention to the estimation of the Calvo-Dercon measure of vulnera-
bility. We’ve already noted that the properties of this measure are very similar to that of the
Ligon-Schechter measure—the basic difference in this environment is that households which
might have had negative vulnerability using the Ligon-Schechter measure will now have their
vulnerability set to zero, truncating the distribution.13 A comparison of Figure 13 with Fig-
ure 1 and of Figure 14 with Figure 2 reveals that the response of mean square error and rank
correlations to changes in sample size is essentially identical to the case of the Ligon-Schecter
measure. The scatterplots (Figure 15) are also very similar, the chief difference being that
the distribution of vulnerability is truncated below at zero in the Calvo-Dercon case.

To summarize the results of this experiment:

(1) Contrary to what one might have supposed, the best estimator turns out not to
depend very much on what measure of vulnerability is chosen—for each of these
measures using the stationary Jalan-Ravallion DGP the Chaudhuri estimator has
the best performance (in terms of minimizing mean square error), and at all sample
sizes.

13Strictly speaking, this isn’t quite right; only in some states of the world will vulnerability be set to zero,
and so the average across observed states need not be zero; still this serves as a rough intuition for the result.
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Figure 13. Mean Squared Error in Estimating the Calvo-Dercon Measure of
Vulnerability as a Function of

√
N .
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Figure 14. Spearman Rank Correlation of Estimates of the Calvo-Dercon
Measure of Vulnerability with Actual Vulnerability as a Function of
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N .
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Figure 15. Estimates of Calvo-Dercon Vulnerability

(2) For all measures except EP0, Ligon-Schechter’s TS estimator performs almost as
well as the Chauduri. Because its implementation is much simpler, an analyst may
sometimes prefer it for this reason.

(3) Panel data is necessary for all of these estimators save for the “XS” estimator. How-
ever, the number of households represented need not be terribly large to get good
performance—for any of the estimators, a panel of a couple thousand households is
perfectly adequate.

(4) If one has only a cross-section, one should think hard before trying to estimate
vulnerability. Variation in consumption expenditures in the cross-section will depend
both on inequality as well as risk, and it’s likely to be very difficult to disentangle
these. In the experiments performed here, it would always be better just to use the
static measures W (c) rather than to use the “XS” estimator.

5.2. Accuracy of Vulnerability Estimates as a Function of T . In this subsection we’ll
conduct an experiment very similar to that described in Section 5.1, with the difference that
here we’re interested in the performance of the various estimators as the length of the panel
(T ) increases. Results on the mean squared error of the various estimators applied to the
various measures are displayed in Figures 16, 18, 20, 22, and 24. Similarly, results on the
Spearman rank correlation between estimators and actual vulnerability measures are shown
in Figures 17, 19, 21, 23, and 25.

Qualitatively, results across these tables are quite similar, so we discuss them together.
The most notable feature of these graphs has once again to do with the distinction between
the stationary and non-stationary estimators. In particular, as the length of the panel
increases, both the TS and Chaudhuri estimators do better, while the performance of the
two Pritchett et al estimators is invariant to the length of the panel. In every case but one
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Figure 16. Mean Squared Error in Estimating the Ligon-Schechter Measure
of Vulnerability as a Function of T .
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Figure 17. Spearman Rank Correlation of Estimates of the Ligon-Schechter
Measure of Vulnerability with Actual Vulnerability as a Function of T .
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Figure 18. Mean Squared Error in Estimating the EP0 Measure of Vulnera-
bility as a Function of T .
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Figure 19. Spearman Rank Correlation of Estimates of EP0 with Actual as
a Function of T .
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Figure 20. Mean Squared Error in Estimating the EP1 Measure of Vulnera-
bility as a Function of T .
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Figure 21. Spearman Rank Correlation of Estimates of EP1 with Actual as
a Function of T .
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Figure 22. Mean Squared Error in Estimating the EP2 Measure of Vulnera-
bility as a Function of T .
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Figure 23. Spearman Rank Correlation of Estimates of EP2 with Actual as
a Function of T .
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Figure 24. Mean Squared Error in Estimating the Calvo-Dercon Measure of
Vulnerability as a Function of T .
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Figure 25. Spearman Rank Correlation of Estimates of the Calvo-Dercon
Measure of Vulnerability with Actual as a Function of T .
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the ordering of the estimators in terms of their MSE is as in the previous experiment, with
the two stationary estimators dominating the non-stationary, and the Chaudhuri estimator
edging out the TS estimator.

Stationary DGP

Actual TS Chaud. XS PSS1 PSS0 W (c)

Actual 1.0000 0.9522 0.9534 0.2305 0.8160 0.7252 0.8128

TS 0.9498 1.0000 0.9986 0.2591 0.8566 0.7462 0.8546

Chaud. 0.9518 0.9977 1.0000 0.2606 0.8567 0.7515 0.8541

XS 0.2391 0.2624 0.2643 1.0000 0.3479 0.2080 0.3392

PSS1 0.8096 0.8509 0.8539 0.3388 1.0000 0.8573 0.9984

PSS0 0.8045 0.8440 0.8466 0.2126 0.9870 1.0000 0.8299

W (c) 0.8100 0.8512 0.8542 0.3324 1.0000 0.9881 1.0000

Non-stationary DGP

Actual 1.0000 0.8385 0.8456 0.3387 0.9995 0.8524 0.9985

TS 0.8318 1.0000 0.9988 0.2907 0.8366 0.7328 0.8345

Chaud. 0.8434 0.9985 1.0000 0.2929 0.8437 0.7377 0.8416

XS 0.3295 0.2787 0.2820 1.0000 0.3338 0.1784 0.3289
PSS1 0.9996 0.8309 0.8426 0.3269 1.0000 0.8451 0.9995
PSS0 0.9796 0.8150 0.8264 0.1843 0.9804 1.0000 0.8310

W (c) 0.9996 0.8309 0.8426 0.3229 1.0000 0.9813 1.0000

Table 2. Correlations Between Estimates of Ligon-Schechter Vulnerability.
Correlations reported above the diagonal are simple Pearson correlation coef-
ficients, while those below are Spearman rank correlation coefficients.

Stationary DGP

Actual TS Chaud. XS PSS1 PSS0 W (c)

Actual 1.0000 0.9064 0.9473 0.2296 0.7959 0.7883 0.6865
TS 0.8635 1.0000 0.9571 0.2353 0.8087 0.7980 0.7614

Chaud. 0.9512 0.9075 1.0000 0.2452 0.8390 0.8289 0.7291
XS 0.2201 0.2244 0.2452 1.0000 0.3116 0.3610 0.2511

PSS1 0.8101 0.7755 0.8518 0.3209 1.0000 0.9772 0.8741
PSS0 0.7766 0.7591 0.8202 0.4620 0.9691 1.0000 0.8531

W (c) 0.6470 0.7400 0.6810 0.2493 0.7981 0.7981 1.0000

Non-stationary DGP

Actual 1.0000 0.8153 0.7891 0.2986 0.9967 0.9645 0.9071
TS 0.7838 1.0000 0.9671 0.2391 0.8105 0.7874 0.7701
Chaud. 0.8384 0.8730 1.0000 0.2328 0.7827 0.7711 0.6981

XS 0.3154 0.2470 0.2624 1.0000 0.2990 0.3739 0.2504

PSS1 0.9991 0.7837 0.8400 0.3120 1.0000 0.9600 0.9037

PSS0 0.9536 0.7707 0.7987 0.4644 0.9523 1.0000 0.8425

W (c) 0.7966 0.7948 0.6654 0.2505 0.7966 0.7966 1.0000

Table 3. Correlations Among Estimators of EP0 Vulnerability. Correlations
reported above the diagonal are simple Pearson correlation coefficients, while
those below are Spearman rank correlation coefficients.

5.3. Correlations Between Estimated Vulnerabilities. In this experiment, we provide
some evidence bearing on the importance of one’s choice of an estimator. In particular,
we calculate the correlations between actual vulnerability and each of our five different
estimators for each of our five measures of vulnerability, and also a simple poverty measure
W (c) (which varies according to which measure we’re considering). Results for the stationary
Jalan-Ravallion data generating process are presented in the top panels of Tables 2, 2, 3,
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Stationary DGP

Actual TS Chaud. XS PSS1 PSS0 W (c)

Actual 1.0000 0.9451 0.9516 0.2341 0.8100 0.7772 0.7883

TS 0.9442 1.0000 0.9938 0.2564 0.8500 0.8089 0.8384

Chaud. 0.9519 0.9924 1.0000 0.2615 0.8527 0.8140 0.8331

XS 0.2352 0.2548 0.2613 1.0000 0.3389 0.2787 0.3222

PSS1 0.8100 0.8500 0.8535 0.3343 1.0000 0.9405 0.9832

PSS0 0.8041 0.8448 0.8475 0.3181 0.9931 1.0000 0.9129

W (c) 0.7916 0.8395 0.8360 0.3219 0.9856 0.9801 1.0000

Non-stationary DGP

Actual 1.0000 0.8478 0.8289 0.3294 0.9984 0.9455 0.9896

TS 0.8595 1.0000 0.9949 0.2788 0.8442 0.8139 0.8354

Chaud. 0.8429 0.9926 1.0000 0.2744 0.8241 0.8033 0.8118

XS 0.3272 0.2825 0.2809 1.0000 0.3259 0.2780 0.3153

PSS1 0.9998 0.8590 0.8425 0.3256 1.0000 0.9314 0.9912

PSS0 0.9893 0.8496 0.8328 0.3107 0.9891 1.0000 0.9107

W (c) 0.9857 0.8486 0.8242 0.3139 0.9859 0.9766 1.0000

Table 4. Correlations Among Estimators of EP1 Vulnerability. Correlations
reported above the diagonal are simple Pearson correlation coefficients, while
those below are Spearman rank correlation coefficients.

Stationary DGP

Actual TS Chaud. XS PSS1 PSS0 W (c)

Actual 1.0000 0.9453 0.9502 0.2274 0.8063 0.7397 0.7885
TS 0.9420 1.0000 0.9954 0.2542 0.8477 0.7635 0.8371
Chaud. 0.9517 0.9901 1.0000 0.2586 0.8492 0.7723 0.8335
XS 0.2394 0.2578 0.2661 1.0000 0.3433 0.2379 0.3272
PSS1 0.8096 0.8465 0.8540 0.3391 1.0000 0.8962 0.9891

PSS0 0.8053 0.8420 0.8483 0.2576 0.9911 1.0000 0.8485
W (c) 0.7915 0.8353 0.8366 0.3219 0.9855 0.9783 1.0000

Non-stationary DGP

Actual 1.0000 0.8420 0.8306 0.3315 0.9985 0.8965 0.9922
TS 0.8438 1.0000 0.9965 0.2823 0.8381 0.7766 0.8294
Chaud. 0.8434 0.9930 1.0000 0.2812 0.8256 0.7747 0.8150

XS 0.3297 0.2798 0.2832 1.0000 0.3269 0.2234 0.3158
PSS1 0.9995 0.8430 0.8427 0.3296 1.0000 0.8786 0.9953

PSS0 0.9867 0.8326 0.8317 0.2407 0.9868 1.0000 0.8484
W (c) 0.9855 0.8312 0.8244 0.3139 0.9858 0.9745 1.0000

Table 5. Correlations Among Estimators of EP2 Vulnerability Correlations
reported above the diagonal are simple Pearson correlation coefficients, while
those below are Spearman rank correlation coefficients.

4, 5, and 6 (results for the non-stationary DGP are found in the lower panel, but we’ll
defer discussion of this to Section 6.2). Above the diagonal one finds Pearson correlation
coefficients, while below the diagonal are Spearman rank correlation coefficients. These
latter may be of particular interest, since the provide some indication of whether or not
the various estimators deliver different rankings of household vulnerability. As one might
expect, for the stationary DGP the two stationary estimators both are very highly correlated,
both with each other and with actual vulnerability, while the non-stationary Pritchett et al
estimators, while highly correlated with each other, have relatively low correlations with
actual vulnerability.

There are two estimates in these tables which rely only on cross-sectional data: the XS
estimator, which we’ve already discussed, and a measure labelled W (c) in the tables. This
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Stationary DGP

Actual TS Chaud. XS PSS1 PSS0 W (c)

Actual 1.0000 0.9473 0.9498 0.2181 0.8057 0.6863 0.7986

TS 0.9425 1.0000 0.9972 0.2477 0.8479 0.7012 0.8437

Chaud. 0.9516 0.9904 1.0000 0.2505 0.8481 0.7100 0.8422

XS 0.2418 0.2606 0.2683 1.0000 0.3430 0.1880 0.3275

PSS1 0.8093 0.8447 0.8541 0.3429 1.0000 0.8165 0.9960

PSS0 0.8014 0.8348 0.8432 0.1876 0.9818 1.0000 0.7697

W (c) 0.7915 0.8335 0.8370 0.3219 0.9855 0.9694 1.0000

Non-stationary DGP

Actual 1.0000 0.8290 0.8369 0.3322 0.9991 0.8105 0.9966

TS 0.8266 1.0000 0.9982 0.2855 0.8256 0.7004 0.8210

Chaud. 0.8437 0.9935 1.0000 0.2882 0.8335 0.7073 0.8288

XS 0.3313 0.2773 0.2845 1.0000 0.3262 0.1515 0.3175

PSS1 0.9994 0.8255 0.8429 0.3312 1.0000 0.7950 0.9987

PSS0 0.9726 0.8041 0.8210 0.1563 0.9730 1.0000 0.7701

W (c) 0.9853 0.8127 0.8246 0.3139 0.9858 0.9606 1.0000

Table 6. Correlations Between Estimated Calvo-Dercon Vulnerability and
Expected Utility. Correlations reported above the diagonal are simple corre-
lation coefficients, while those below are Spearman rank correlation coeffi-
cients.

measure corresponds to the welfare function introduced in Section 3, and is related to the
vulnerability measure by

V i = EW (c).

Thus, while the specification of W (c) varies across the different vulnerability measures we
consider, in no case does it incorporate any information about risk—it is best regarded as
a sort of static poverty measure. Perhaps the most interesting feature of Tables 2–6 is how
well these simple poverty measures perform relative to some of the other estimators. In
particular, this simple measure always outperforms the XS estimator by a wide margin. In
non-stationary environments it outperforms the stationary estimators, and generally behaves
much as does PSS1 does in both stationary and non-stationary measures for all but the EP0

measure.

6. Experiments with misspecification

In this section we conduct a variety of Monte Carlo experiments designed to help us
understand the robustness of our various estimators to a selection of quite fundamental
specification errors.

6.1. Measurement Error in Consumption Expenditures. We begin by investigating
the effect of introducing a modest classical multiplicative measurement error into consump-
tion. In particular, let observed consumption c̃it = cite

−σ2
ε /2+ε

i
t , where σ2

ε is the variance of a
log normal error. The adjustment −σ2

ε/2 makes it so that the expected value of the multi-
plicative error is equal to one regardless of the value of σε. However, as the measurement
error is uncorrelated with actual realized consumption its effect is to increase the apparent
variation in observed consumption, leading to a bias in estimated vulnerability. This increase
in bias is apparent in Figure 26. The variance of e−σ

2
ε /2+ε

i
t is shown on the horizontal axis;

the log of the MSE of the various estimators is shown on the vertical.
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Figure 26. Mean Squared Error of Estimates of the Ligon-Schechter Measure
of Vulnerability as a Function of σε.
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Figure 27. Spearman Rank Correlation of Estimates of the Ligon-Schechter
Measure of Vulnerability with Actual as a Function of σε.
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Where in earlier experiments we’ve worked with five estimators, here we add a sixth—
the Ligon-Schechter LB estimator of explained vulnerability, which is designed precisely to
mitigate the problems associated with measurement error in consumption expenditures. This
method proves its worth here—for estimating Ligon-Schechter vulnerability the LB estimator
convincingly dominates all the other estimators except when the variance of the measurement
error is very small. Results from Figure 26 and Figure 34 (for the Calvo-Dercon measure)
are nearly identical, and this basic result is confirmed using evidence on the rank correlation
between estimators and actual vulnerability, shown in Figures 27 and 35.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−4

−3.5

−3

−2.5

TS
LB
Chaud.
PSS

1
PSS

0

PSfrag replacements

lo
g
(M
S
E
)

√
N

PSS0

PSS1

TS

Chaud.

Chaud:

LB

TS

PSS1

PSS0

PSS1

XS

√
foo

√
bar

Variance of Multiplicative Measurement Error

Figure 28. Mean Squared Error of Estimates of EP0 as a Function of σε.

As we saw earlier, the Ligon-Schechter TS estimator has problems with the EP0 measure of
vulnerability—too much information is thrown out by simply averaging poverty indicators.
These problems are shared by the LB estimator, and extend to the case of measurement
error—Figure 28 and Figure 29 indicate that the Chaudhuri estimator is the best estimator
even in the presence of measurement error for this particular measure.

Figures 30 and 31 suggest that when estimating EP1 any of the stationary estimators
will do, though if measurement error is quite large the LB estimator ought to be preferred.
Finally, evidence from Figures 32 and 33 indicate that the LB estimator really is to be
strongly preferred for estimating EP2 if there’s any measurement error at all.

6.2. Non-stationary Consumption Expenditures. The reader will recall that in nearly
all of our previous experiments the estimators described by Pritchett et al. (2000) perform
very poorly. However, previous experiments have all employed the stationary Jalan-Ravallion
DGP. The Ligon-Schechter and Chaudhuri estimators take advantage of this stationarity,
while the Pritchett et al estimators rely on a weaker requirement of difference stationarity.
Here we employ the non-stationary version of the Jalan-Ravallion DGP, and see how the
various estimators we’ve described perform.
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Figure 29. Spearman Rank Correlation of Estimates of EP0 with Actual as
a Function of σε.
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Figure 30. Mean Squared Error of Estimates of EP1 as a Function of σε.
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Figure 31. Spearman Rank Correlation of Estimates of EP1 with Actual as
a Function of σε.
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Figure 32. Mean Squared Error of Estimates of EP2 as a Function of σε.
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Figure 33. Spearman Rank Correlation of Estimates of EP2 with Actual as
a Function of σε.
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Figure 34. Mean Squared Error of Estimates of the Calvo-Dercon Measure
of Vulnerability as a Function of σε.
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Figure 35. Spearman Rank Correlation of Estimates of the Calvo-Dercon
Measure of Vulnerability with Actual as a Function of σε.
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Figure 36. Mean Squared Error in Estimating the Ligon-Schechter Measure
of Vulnerability as a Function of

√
N in a non-stationary environment.
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Figure 37. Spearman Rank Correlation of Estimates of the Ligon-Schechter
Measure of Vulnerability with Actual as a Function of

√
N in a non-stationary

environment.
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Figure 38. Mean Squared Error in Estimating EP0 as a Function of
√
N in

a non-stationary environment.
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Figure 39. Spearman Rank Correlation of Estimates of EP0 with Actual as
a Function of

√
N in a non-stationary environment.
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Figure 40. Mean Squared Error in Estimating EP1 as a Function of
√
N in

a non-stationary environment.
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Figure 41. Spearman Rank Correlation of Estimates of EP1 with Actual as
a Function of

√
N in a non-stationary environment.
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Figure 42. Mean Squared Error in Estimating EP2 as a Function of
√
N in

a non-stationary environment.
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Figure 43. Spearman Rank Correlation of Estimates of EP2 with Actual as
a Function of

√
N in a non-stationary environment.
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Figure 44. Mean Squared Error in Estimating the Calvo-Dercon Measure of
Vulnerability as a Function of

√
N in a non-stationary environment.
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Figure 45. Spearman Rank Correlation of Estimates of the Calvo-Dercon
Measure of Vulnerability with Actual as a Function of

√
N in a non-stationary

environment.

Figures 36, 38, 40, 42, and 44 mirror our earlier experiment to understand the effects
of sample size on the mean squared error of our estimators. The striking feature of all of
these graphs is the nearly complete reversal of our earlier ordering—in this non-stationary
environment the two stationary estimators do very poorly, while the PSS1 estimator does
rather well. However, unfortunately it’s not enough to use an estimator which relaxes the
assumption of stationarity—the PSS0 estimator also has lousy properties.

Figures 37, 39, 41, 43, and 45 mirror our earlier experiment to understand the effects of
sample size on the (Spearman rank) correlations between the various estimators and actual
vulnerability measure.

Matters only become worse when we turn our attention to the performance of these es-
timators as T increases. Figures 46, 48, 50, 52, and 54 report the logarithm of MSE for
each estimator and each measure, while Figures 47, 49, 51, 53, and 55 report the Spearman
rank correlation coefficient between estimates and the corresponding actual measure. As
before, only the PSS1 is reasonably well behaved—the MSE of the other estimators actually
increases as the panel grows in length!

The fact that the PSS1 estimator does well in this non-stationary environment while PSS0

does poorly leads one to suspect that distributional assumptions are important beyond the
issue of stationarity. Figures 56, 58, 60, 62, and 64 tend to confirm this suspicion. Here,
we add measurement error (as in Section 6.1) to nonstationary consumption. For very low
levels of measurement error the PSS1 estimator provides the best performance, but the
mean squared error of this estimator increases very rapidly for small values of σ2

ε . In our
earlier experiments one estimator tended to dominate, regardless of measure, but that’s
unfortunately not the case here. In three of five cases (the Ligon-Schechter measure, EP2,
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Figure 46. Mean Squared Error in Estimating the Ligon-Schechter Measure
of Vulnerability as a Function of T in a non-stationary environment.
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Figure 47. Spearman Rank Correlation of Estimates of the Ligon-Schechter
Measure of Vulnerability with Actual as a Function of T in a non-stationary
environment.
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Figure 48. Mean Squared Error in Estimating EP0 as a Function of T in a
non-stationary environment.
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Figure 49. Spearman Rank Correlation of Estimates of EP0 with Actual as
a Function of T in a non-stationary environment.
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Figure 50. Mean Squared Error in Estimating EP1 as a Function of T in a
non-stationary environment.
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Figure 51. Spearman Rank Correlation of Estimates of EP1 with Actual as
a Function of T in a non-stationary environment.
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Figure 52. Mean Squared Error in Estimating EP2 as a Function of T in a
non-stationary environment.
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Figure 53. Spearman Rank Correlation of Estimates of EP2 with Actual as
a Function of T in a non-stationary environment.
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and the Calvo-Dercon measure) the ability of the LB estimator to correct for measurement
error more than compensates for the failure of stationarity at moderate to large levels of σε—
it’s worth noting that these are the three cases in which increases in risk actually leads to
increases in vulnerability. In the remaining two cases, the Chaudhuri estimator provides the
best performance for the EP0 estimator at moderate levels of σε, while for EP1 the MSE of all
of the estimators actually seems to converge as measurement error grows large—presumably
this is due to the linearity of this measure over consumption expenditures under the poverty
line.
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Figure 54. Mean Squared Error in Estimating the Calvo-Dercon Measure of
Vulnerability as a Function of T in a non-stationary environment.

Figures 57, 59, 61, 63, and 65 show Spearman rank correlations between estimates and
actual vulnerability measures.

It’s clear from the results above that one’s choice of an estimator ought to depend on
several elements. First, the measure being estimated (EP0, EP1, or one of the risk-sensitive
measures); second, whether or not the environment is non-stationary; and third, whether or
not consumption expenditures are or are not measured with error. Table 7 provides a guide
to which estimator ought to be employed in each circumstance.

To summarize the results of the experiments of this section, and highlight important
elements of Table 7,

(1) For the risk-sensitive vulnerability measures14 measurement error in consumption will
lead to overestimates of vulnerability;

14That is, those measures which are strictly convex in consumption for poor households, so that those
poor households facing more risk are more vulnerable. The risk-sensitive measures we consider here are the
LS, CD, and EP2 measures.
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Figure 55. Spearman Rank Correlation of Estimates of the Calvo-Dercon
Measure of Vulnerability with Actual as a Function of T in a non-stationary
environment.
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Figure 56. Mean Squared Error of Estimates of the Ligon-Schechter Measure
of Vulnerability as a Function of σε in a non-stationary environment.
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Figure 57. Spearman Rank Correlation of Estimates of the Ligon-Schechter
Measure of Vulnerability with Actual as a Function of σε in a non-stationary
environment.
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Figure 58. Mean Squared Error of Estimates of EP0 as a Function of σε in
a non-stationary environment.
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Figure 59. Spearman Rank Correlation of Estimates of EP0 with Actual as
a Function of σε in a non-stationary environment.
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Figure 60. Mean Squared Error of Estimates of EP1 as a Function of σε in
a non-stationary environment.
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Figure 61. Spearman Rank Correlation of Estimates of EP1 with Actual as
a Function of σε in a non-stationary environment.
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Figure 62. Mean Squared Error of Estimates of EP2 as a Function of σε in
a non-stationary environment.
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Figure 63. Spearman Rank Correlation of Estimates of EP2 with Actual as
a Function of σε in a non-stationary environment.
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Figure 64. Mean Squared Error of Estimates of the Calvo-Dercon Measure
of Vulnerability as a Function of σε in a non-stationary environment.
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Figure 65. Spearman Rank Correlation of Estimates of the Calvo-Dercon
Measure of Vulnerability with Actual as a Function of σε in a non-stationary
environment.

Measure Stationary? Measurement Error? Best estimator
EP0 Yes No Chaud.
EP0 Yes Yes Chaud.
EP0 No No PSS1

EP0 No Yes Chaud.
EP1 Yes No Chaud.
EP1 Yes Yes LB
EP1 No No PSS1

EP1 No Yes PSS1

Risk-sensitive Yes No Chaud.
Risk-sensitive Yes Yes LB
Risk-sensitive No No PSS1

Risk-sensitive No Yes LB

Table 7. Which estimator? The first three columns of the table enumerate
different circumstances which effect rankings of estimators; the final column
indicates the best estimator to use in each circumstance.

(2) When the time-series distribution of consumption isn’t stationary, this has a bad
effect on the properties of the stationary estimators (TS, Chaudhuri, and LB) whether
there’s measurement error not; but



55

TS LB Chaud. PSS1 PSS0 W (c)
TS 1.0000 0.9834 0.9831 0.8531 0.7434 0.8559
LB 0.9854 1.0000 0.9985 0.7994 0.7069 0.7993

Chaud. 0.9843 0.9981 1.0000 0.7979 0.7092 0.7974
PSS1 0.8254 0.7836 0.7795 1.0000 0.9057 0.9981
PSS0 0.7339 0.6936 0.6951 0.9222 1.0000 0.8794
W (c) 0.8285 0.7871 0.7824 0.9983 0.8997 1.0000

Table 8. Correlation between different estimates of vulnerability in Viet
Nam. Spearman rank correlation coefficients are found in the lower left part
of the matrix, while Pearson’s coefficients are found in the upper right.

(3) For any of the risk-sensitive measures of vulnerability, there’s some level of mea-
surement error beyond which the LB estimator dominates all the others in terms of
minimizing mean squared error.

7. Estimating Vulnerability in Viet Nam and Bulgaria

We finally turn our attention to two real-world datasets, drawn from the Viet Nam House-
hold Survey, and briefly described in Section 4.3, and Bulgarian Household Survey described
at some length in Ligon and Schechter (2003).

Table 8 reports on the correlation between the various estimators of the Ligon-Schechter
measure of vulnerability using data from the VHS. As with the Monte Carlo experiments
conducted earlier in the paper, there’s a clear difference between the estimators which assume
stationarity and the two PSS estimators, with each of these two groups displaying high
within-group correlations, but much lower correlations across groups.

Table 9 has correlations between different vulnerability measures, each calculated with
their respective ‘best estimator’15 and between different actual (not expected) poverty mea-
sures calculated using consumption in the first period. As one might expect, the table
indicates that the various measures fall into two groups in such a way that within each
group correlations are very high. In particular, the risk-sensitive vulnerability measures all
give quite similar orderings, as do EP0 and EP1. Notably, EP2 is more highly correlated with
the other risk-sensitive measures than it is with either of the other two expected poverty
measures or with the poverty measure P2; more generally rankings given by all vulnerability
measures are much more similar to each other than they are to the rankings given by the
actual poverty measures. This strongly suggests that even with only two periods of data,
vulnerability measures already tell the researcher much more than simple poverty measures.

Table 10 reports average levels and decompositions of estimates of the Ligon-Schechter
measure of vulnerability in the VHS. The first column of this table reports estimates of total
vulnerability; subsequent columns use the techniques described in Section 2.4 to decompose
these estimates of total vulnerability into estimates of poverty and risk; the LB estimator can
be used to further decompose risk into several component parts. By summing the first row
across the columns marked “Pov” (poverty), “Agg Risk” (aggregate risk), “Inc Risk” (income

15Remember that when one assumes non-stationarity and measurement error then one should use Chaud-
huri’s estimator to calculate EP0, PSS1 to calculate EP1, and LB to calculate any of the risk sensitive
measures.
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Viet Nam
LS CD EP0 P0 EP1 P1 EP2 P2

LS 1.0000 0.9265 0.9457 0.5984 0.7924 0.7493 0.9175 0.7223
CD 0.9352 1.0000 0.8008 0.5379 0.8159 0.8251 0.9552 0.8552
EP0 0.9958 0.9286 1.0000 0.6591 0.7666 0.7070 0.7609 0.6126
P0 0.6565 0.7045 0.6522 1.0000 0.7662 0.7094 0.4503 0.5062

EP1 0.7843 0.8437 0.7764 0.8283 1.0000 0.9642 0.7148 0.9018
P1 0.7582 0.8493 0.7499 0.8506 0.9754 1.0000 0.7179 0.9373

EP2 0.9800 0.9316 0.9719 0.6589 0.7843 0.7683 1.0000 0.7575
P2 0.7582 0.8493 0.7499 0.8506 0.9754 1.0000 0.7683 1.0000

Bulgaria

LS CD EP0 P0 EP1 P1 EP2 P2

LS 1.0000 0.9659 0.8882 0.5307 0.7060 0.6825 0.9309 0.6652
CD 0.9825 1.0000 0.7717 0.4442 0.6851 0.6622 0.9840 0.6835
EP0 0.9995 0.9818 1.0000 0.5993 0.6196 0.6144 0.6847 0.5177
P0 0.5906 0.5613 0.5909 1.0000 0.7040 0.7259 0.4055 0.5172

EP1 0.6926 0.6680 0.6930 0.8483 1.0000 0.9821 0.6706 0.9610
P1 0.6704 0.6548 0.6710 0.8783 0.9662 1.0000 0.6473 0.9376

EP2 0.9900 0.9769 0.9891 0.5797 0.6800 0.6640 1.0000 0.6833
P2 0.6704 0.6548 0.6710 0.8783 0.9662 1.0000 0.6640 1.0000

Table 9. Correlation between different measures of vulnerability in Viet Nam
and Bulgaria, each measure estimated using its preferred estimator. Spearman
rank correlation coefficients are found below the diagonal, while Pearson cor-
relation coefficients lie above the diagonal.

Vuln = Pov + Agg Risk + Inc Risk + HHsze Risk + Unexp Risk
TS 0.1648 = 0.0803 + 0.0140 + 0.0004 + 0.0033 + 0.0667

Chaud. 0.2014 = 0.0361+ 0.1653
PSS1 0.4264 = 0.1420+ 0.2844
PSS0 1.5703 = 0.2000+ 1.3703

Table 10. Decomposition of Estimates of Vulnerability in Viet Nam. Note
that the LB estimate is simply the sum of the first four terms on the right-hand
side of the equality in the first row.

risk), and “HHSize risk” (risk associated with changes in household size), one can compute
the LB estimate of vulnerability, equal to 0.0980 in this case. With our assumption that γ =
2, this quantity can be interpreted as the percentage increase in consumption expenditures
necessary to compensate the average household for its loss in welfare due to poverty (8.03
per cent) and explained risk (1.77 per cent), relative to a utopia in which there was neither
inequality nor risk. By adding unexplained risk we obtain the TS estimate of Ligon-Schechter
vulnerability; this adds an additional 6.67 per cent to estimated vulnerability, but some or
all of this amount may in fact be due to measurement error in consumption.
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The remaining estimators don’t decompose as naturally as do the Ligon-Schechter esti-
mators, but since each estimator yields an estimate of expected consumption along with
its variance, it’s easy to use these estimates to construct separate measures of poverty and
risk. Chaudhuri’s estimator yields lower estimates of expected consumption than do the
Ligon-Schechter estimators—using his estimator it appears that the compensating variation
due to inequality in rural Viet Nam amounts to 3.61 per cent of average per household con-
sumption, while the compensating variation for risk from all sources is 16.53 per cent. The
remaining non-stationary estimators, not surprisingly, place an even greater emphasis on
the importance of risk in reducing welfare, with PSS1 yielding a compensating variation for
poverty and risk of 14.2 and 28.44 per cent, respectively. Finally, the PSS0 estimator yields
estimates of these compensating variations equal to 20 per cent for poverty, and 137.03 per
cent for risk (this last enormous figure because this estimator estimates a high probability
of zero consumption for many households).

Vuln = Pov + Agg Risk + Idio Risk + Unexp Risk

Vietnam
Quintile 1 0.5465 = 0.3942 + 0.0173 + 0.0059 + 0.1292
Quintile 2 0.2813 = 0.1958 + 0.0154 + 0.0048 + 0.0653
Quintile 3 0.1356 = 0.0702 + 0.0141 + 0.0036 + 0.0477
Quintile 4 0.0129 = -0.0425 + 0.0128 + 0.0027 + 0.0399
Quintile 5 -0.1518 = -0.2156 + 0.0106 + 0.0017 + 0.0515

Bulgaria
Quintile 1 0.5580 = 0.4536 + 0.0135 + 0.0018 + 0.0891
Quintile 2 0.2886 = 0.1998 + 0.0118 + 0.0016 + 0.0754
Quintile 3 0.1558 = 0.0729 + 0.0108 + 0.0016 + 0.0705
Quintile 4 0.0387 = -0.0400 + 0.0098 + 0.0018 + 0.0672
Quintile 5 -0.1178 = -0.1903 + 0.0083 + 0.0017 + 0.0625

Table 11. Ligon-Schechter Vulnerability by Consumption Quintiles.

So which of the various estimates of vulnerability presented in Table 10 should we use?
In a real-world application we seldom have the luxury of knowing in advance whether, e.g.,
consumption expenditures are stationary or whether measurement error is important. For-
tunately, the evidence presented in Section 6 also suggests ways in which the data itself can
tell us which estimator ought to be employed.

We first consider the issue of whether or not measurement error is an important issue.
The difference between the TS and LB estimators of vulnerability gives us an upper bound
on how much measurement error there may be. Consulting Table 10, we see that in Viet
Nam measurement error explains up to 40.5 per cent of total Ligon-Schechter vulnerability
(6.67/16.48); via a simple bootstrap test, we find that this is significant (the test has a p-
value indistinguishable from zero). Similarly, consulting Table 12 for Bulgaria, we see that
measurement error explains as much as 39.5 per cent of total Ligon-Schechter vulnerability,
and is similarly significant. Accordingly, we conclude either that the LB estimator ought
to be preferred for both estimators, or that both estimators ought to be employed, giving
upper and lower bounds on total vulnerability.
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Consulting Table 7, we next seek to determine whether or not the consumption process is
stationary or not. One crude but simple test of this is simply to add lagged log consumption
expenditures to the basic LB regression (6); if this lagged variable turns out to help to
explain variation in subsequent consumption, this is evidence against the null hypothesis of
stationarity. Unfortunately, this is of no help in the VHS, as one needs at least three rounds
of data to implement the test. However, in the Bulgarian data we have 12 rounds in total.
Estimating the proposed regression, we find a coefficient on lagged log consumption equal
to 0.20, with a standard error of 0.0063, and hence highly significant. As it happens, Table
7 still recommends the LB estimator in this instance.

Thus, Table 12 uses the LB estimator to estimate vulnerability for all the households in
both samples. We decompose total vulnerability into several components for each household,
as described in Section 3. It’s then of some interest to compare vulnerability, poverty, and
different sources of risk across quintiles (Table 11). The overall level of vulnerability in
both countries is quite similar, though vulnerability is slightly higher in Bulgaria than in
Vietnam.16 Interestingly, this greater vulnerability in the poorest quintile in Bulgaria seems
to arise mainly due to the higher poverty level in Bulgaria. The poorest quintile in Bulgaria
faces much less risk than the poorest quintile in Vietnam—accordingly, it’s the poorest group
across both samples that bears the greatest risk. However, all other quintiles face more risk
in Bulgaria than in Vietnam.

In aggregate the Bulgarian population faces less explained risk, both aggregate and id-
iosyncratic than do the Vietnamese.17 On the other hand, all the Bulgarians except those
in the poorest quintile experience more unexplained risk than do the Vietnamese. This ei-
ther means that Bulgarians truly experience more unexplained idiosyncratic risk than do the
Vietnamese, or that the Bulgarian data set has more measurement error.

In Table 12 we decompose vulnerability into poverty, aggregate risk, idiosyncratic risk, and
unexplained risk, as in Ligon and Schechter (2003).18 Poverty is the largest single component
of vulnerability. After that, unexplained risk is the second largest component, and aggregate
risk is the third largest component. Explained idiosyncratic risk is quite small, although
the considerably larger unexplained risk may be made up of much idiosyncratic risk due to
unobservable shocks.

We also look at the correlates of these elements of vulnerability. To do this we regress
each element of vulnerability on a set of fixed household characteristics. For household
characteristics which vary over the 12 month period, we use the value of that characteristic
in the first period as our right hand side variable. It is interesting to note that the correlates
of vulnerability are extremely similar to the correlates of poverty. In addition, it is to be
expected that the correlates of aggregate risk will be the same as the correlates of poverty.

16Because poverty is defined relative to per capita consumption in each country, this can’t be due to
differences in the average level of expected consumption; rather, it’s an indication that there’s more inequality
in Bulgaria.

17In the Viet Nam data we calculate idiosyncratic risk from changes in income and changes in household
size, while in Bulgaria we calculate idiosyncratic risk from changes in income, changes in the number of
workers in the household,and changes in the number of unemployed in the household. Even though idiosyn-
cratic risk is calculated using more variables in Bulgaria than in Vietnam, there is still more idiosyncratic
risk experienced in Viet Nam.

18The following analysis draws heavily from our earlier paper; however, estimates provided here differ
because the first stage regression (6) is specified in logs here, while it was specified in levels in our earlier
paper.
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Average Vuln Pov Agg Risk Idio Risk Unexp Risk
Value 0.1847∗∗∗= 0.0992∗∗∗+ 0.0108∗∗∗+ 0.0017∗∗∗+ 0.0729∗∗∗

(in utils) [0.1789, [0.0940, [0.0101, [0.0013, [0.0707,
0.1914] 0.1050] 0.0117] 0.0022] 0.0751]

Variable Coef Coef Coef Coef Coef
Primary Ed. −0.0575∗∗ −0.0551∗∗ −0.0004∗∗∗ −0.0001 −0.0018

(0.0241) (0.0226) (0.0002) (0.0001) (0.0024)
Secondary Ed. −0.1818∗∗∗ −0.1717∗∗∗ −0.0013∗∗∗ −0.0001 −0.0086∗∗∗

(0.0263) (0.0247) (0.0002) (0.0001) (0.0027)
Post-Sec. Ed. −0.2612∗∗∗ −0.2478∗∗∗ −0.0020∗∗∗ −0.0003∗ −0.0111∗∗∗

(0.0293) (0.0275) (0.0002) (0.0002) (0.0031)
Male −0.0210 −0.0164 −0.0001 0.0000 −0.0046∗∗

(0.0190) (0.0178) (0.0001) (0.0001) (0.0018)
Age 0.0039 0.0036 0.0000 0.0000 0.0002

(0.0034) (0.0032) (0.0000) (0.0000) (0.0003)
Age Squared −0.0000 −0.0000 −0.0000 −0.0000 −0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Own Animal −0.0783∗∗∗ −0.0734∗∗∗ −0.0006∗∗∗ −0.0000 −0.0042∗∗∗

(0.0189) (0.0178) (0.0001) (0.0001) (0.0016)
Land Cultivated −0.0014 −0.0012 −0.0000 0.0000 −0.0002

(0.0022) (0.0021) (0.0000) (0.0000) (0.0002)
Urban 0.0544∗∗∗ 0.0529∗∗∗ 0.0004∗∗∗ −0.0001 0.0011

(0.0182) (0.0171) (0.0001) (0.0001) (0.0016)
# of Pens. −0.0504∗∗∗ −0.0467∗∗∗ −0.0002∗∗ −0.0000 −0.0034∗∗

(0.0144) (0.0136) (0.0001) (0.0001) (0.0014)
# of Emp. −0.1735∗∗∗ −0.1654∗∗∗ −0.0012∗∗∗ 0.0003∗∗∗ −0.0072∗∗∗

(0.0142) (0.0134) (0.0001) (0.0001) (0.0012)
Fam. Size 0.1488∗∗∗ 0.1406∗∗∗ 0.0011∗∗∗ −0.0001∗ 0.0072∗∗∗

(0.0084) (0.0080) (0.0001) (0.0001) (0.0007)
R2 0.2673 0.2712 0.2662 0.0247 0.0806

Table 12. Ligon-Schechter Vulnerability by Household Characteristics.

Aggregate shocks are, by definition, the same for all households, and so the poor households
will experience greater impact on their utility from this component of risk.

We find that households with more educated heads are less vulnerable, with college edu-
cated head being on average 26% less vulnerable than households with uneducated heads.
Most of this reduction is due to educated households having higher expected consumption
expenditures, but these highly educated households also face significantly less aggregate and
unexplained risk. Households which own animals or live in villages (as opposed to cities)
are also less vulnerable, mostly because of their higher consumption. Given that one usually
considers agriculture to be a more risky source of livelihood, it is interesting that these house-
holds experience no higher risk than other households. (On the other hand, decares of land
cultivated has no significant effect on vulnerability.) Perhaps this is because of unobserved
mutual insurance mechanisms which are at work.
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Households which have many pensioners or workers but smaller family size are less vul-
nerable. This means that having a family which includes more income earning members
(pensioners and workers) decreases vulnerability. Families with more unemployed and chil-
dren, on the other hand, are more vulnerable. Perhaps this is because of the greater number
of non-income generating members in these households. Female headed households are no
more vulnerable overall than male headed households. Female headed households do expe-
rience lower unexplained risk than do male households. Households with older household
heads are no more or less vulnerable than households with younger household heads.

8. Conclusion

In summarizing the results of our experiments it seems useful to draw three different
sorts of distinctions. The first distinction is one between vulnerability measures. Consider
any increase in the risk (in the sense of Rothschild and Stiglitz (1970)) borne by poor
households. If a vulnerability measure increases when risk increases, then we call it “risk-
sensitive” (the risk sensitive measures we consider are the Ligon-Schechter measure, the
Calvo-Dercon measure, and EP2).

The second and third distinctions have to do with the data-generating process. In particu-
lar, whether or not the DGP is stationary or not is important, and whether or not consump-
tion expenditures are measured with error is important. With these distinctions drawn, we
are ready to draw our main conclusion: In an environment with high levels of measurement
error, the LB estimator should be used to estimate any risk-sensitive vulnerability measure.

Other conclusions may also be drawn from these experiments. If the distribution of
consumption is stationary and measurement error is not an issue, then the estimator of
Chaudhuri (2001) ought to be employed. Similarly, if the distribution of consumption is
non-stationary, this distribution is known, and measurement error is unimportant, then the
maximum-likelihood estimators described by Pritchett et al. (2000) will tend to perform
best.

We conducted experiments using one estimator that uses only cross-sectional data. One
suspects that it ought to be very difficult to draw reliable inferences about risk from cross-
sectional data, since the variation in consumption across households will be due at least in
part to inequality. Our experiments with the XS estimator strongly reinforce these suspicions;
attempting to estimate risk from cross-sectional data led to estimates of vulnerability which
were much inferior to simply looking at poverty measures. It’s hard to avoid the conclusion
that if all one has is cross-sectional data, one shouldn’t bother even trying to estimate
vulnerability, but rather stick with poverty measures instead.

Because all the remaining estimators considered here require panel data, it’s worth con-
sidering how the size of the dataset effects these estimators. One piece of good news is that
with a number of households equal to a few thousand (roughly the size of a typical LSMS)
estimates of vulnerability tend to be close to their limiting values. Another piece of good
news is that it’s possible to get reasonable estimates of vulnerability even when the longitu-
dinal dimension of the panel is as short as two years. However, the value of extending the
length of the panel is very large, so long as the estimator is appropriately chosen, and this
is likely to be even more true for yet-to-be-designed estimators which relax the assumption
of stationarity while continuing to deal with measurement error.

Since poverty measures are the best measure of vulnerability when one has only cross-
sectional data, is it worthwhile to estimate vulnerability at all? In general the answer to
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this question will depend on the environment and dataset. However, we note that in our
experiments vulnerability estimates gave much better measures of household welfare than
did poverty measures. Furthermore, the information provided by vulnerability measures is
potentially much richer—because one can decompose vulnerability into distinct measures of
poverty and risk from various sources, one ought to be able to construct much better informed
policy. It also seems likely that some sources of risk can be more easily and inexpensively
addressed than poverty.

8.1. Directions for future research. We’ve shown that in some environments simple es-
timators can be used with panel datasets to yield reliable estimates of vulnerability, and
that these measures of vulnerability yield much more information regarding household wel-
fare than do poverty measures. We’ve also provided an illustration of how one might go
about selecting the best estimator for a particular dataset; this suffices to make estimating
vulnerability in a given panel dataset simple and practical.

However, there remain some clear directions for future research. We close by enumerating
some of these, in no particular order.

Better Estimators: Of the estimators we’ve considered, three stand out: Chaudhuri’s
panel estimator, Ligon and Schechter’s LB estimator, and the (modified) PSS1 es-
timator of Pritchett et al. (2000). Each of these is designed to deal with different
problems. Chaudhuri’s estimator takes advantage of information on the variance of
residuals to improve efficiency, much as generalized least squares improves on OLS.
PSS1 is robust to nonstationarity in consumption. The LB estimator uses a method
analogous to 2SLS to make it robust to measurement error in consumption.

Despite their various strengths, none of these three estimators deals with more
than one problem at a time. Fortunately, this seems as though it may be fairly easy
to change. It’s quite possible, for example, that estimating the first-stage of the LB
estimator in differences (à la PSS1) to deal with nonstationarity and then estimating
the variance structure of the residuals (á la Chaudhuri) would give us the best of
all three worlds—an efficient estimator robust to non-stationarity and measurement
error.

Estimating Preferences: One claim advanced for (at least utility-based) vulnerabil-
ity measures is that they avoid the paternalism inherent in poverty measures by
reflecting the preferences of the households themselves. However, while there’s work-
ing consensus in the empirical literature on what functions usefully reflect household
risk preferences (the HARA class), this still leaves at least one free parameter. Here
we’ve chosen to simply fix this parameter at a value within a consensus range, but it
would be better to be able to estimate it, and also to allow for various forms of het-
erogeneity in household preferences. Estimating preference parameters will require
the analyst to observe the outcomes of household decisions (e.g., savings decisions,
labor supply, etc.) which depend in part on risk attitudes.

Dynamics: Our experiments have revealed the possible importance of nonstationarity
in consumption expenditures for estimation, and economic theory strongly suggests
that consumption expenditures ought to be expected to be non-stationary whenever
household bear idiosyncratic risk. But this means that vulnerability will change from
period to period.
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Elbers and Gunning (2003) take a sensible step forward by describing a utility-
based measure of vulnerability which is naturally dynamic. This offers an elegant
solution to the possible problem of nonstationarity, and incorporates into vulnera-
bility measures not only information about the risks households face, but also about
predictable variation in their consumption over time. Ligon (2003) offers a simple
way to estimate vulnerability in a dynamic setting.

Making vulnerability measures fully dynamic sounds like a substantial complica-
tion, but actually resolves some of the most difficult conceptual and statistical issues
which faced us in estimating the static measures of vulnerability in this paper. Fur-
ther, much work currently undertaken by researchers interested in dynamic consumer
behavior (e.g., Meghir and Pistaferri, 2004) could be exploited to estimate dynamic
vulnerability without great difficulty.

Applications: Practitioners have not yet settled on one measure or estimator for es-
timating vulnerabiity in practice, something we hope this paper will help to change.
We need to see the methods described here applied to different datasets in differ-
ent settings, so as to get results which can be sensibly compared across populations.
We’ve authored code for both Stata and Matlab,19 and look forward to helping others
to use it.
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