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Abstract

We study the impacts of risk and ambiguity aversion on the adoption of new technologies,
specifically genetically modified (GM) corn and soy seeds. We conduct experiments mea-
suring risk and ambiguity aversion with Midwestern grain farmers. Risk aversion has only
a small impact on the timing of adoption of GM soy, while ambiguity-aversion has a large
impact speeding up farmer adoption of GM corn. We hypothesize that this unusual finding
is due to the fact that GM corn often contains an insect-resistance trait which reduces the
ambiguity of pest damages for adopters. GM soy never contains this insect-resistance trait.
This highlights the importance of distinguishing between risk and ambiguity when studying
the effects of aversion to uncertainty on adoption of new technologies.

1. Introduction

Empirical evidence that most individuals are risk averse (e.g., Binswanger, 1980; Gollier,
2001; Lin et al., 1974) has stimulated much research on the effects of risk and risk-aversion
on technology adoption (Feder, 1980; Foster and Rosenzweig, 2010; Knight et al., 2003; Liu,
2011; Sunding and Zilberman, 2001). More recently, researchers have begun to distinguish
the impact of risk from that of ambiguity (Bryan, 2010; Engle-Warnick et al., 2011; Rigotti
et al., 2008; Ross et al., 2010). Consistent with that literature and the recent call to action
by Herberich et al. (2009), this article combines experimental data on risk and ambiguity
aversion with survey data on adoption decisions to identify the extent to which risk and
ambiguity aversion impact adoption decisions. We look at Minnesota and Wisconsin farm-
ers’ adoption of genetically modified (GM) corn and soybean seeds and provide new and
surprising insights on the respective roles of risk and ambiguity.

We define uncertainty to be made up of two components, risk and ambiguity. We dis-
tinguish between risk and ambiguity aversion as proposed in Klibanoff et al. (2005). Risk
aversion is the aversion to a set of outcomes with a known probability distribution. Ambigu-
ity aversion is the additional aversion to being unsure about the probabilities of outcomes. In
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addition to risk aversion (Pratt, 1964), ambiguity aversion (Halevy, 2007) also appears to be
a common characteristic of economic behavior. For example, Chen and Epstein (2002) show
that the addition of an ambiguity premium to the more commonly explored risk premium
can explain the equity premium puzzle of the higher return of stocks compared to bonds.

Under the expected utility model commonly used in technology adoption studies, farmers
choose the technology that provides the highest expected utility conditional on their aversion
to risk (Feder et al., 1985; Foster and Rosenzweig, 2010; Isik and Khanna, 2003; Marra et al.,
2003; Sunding and Zilberman, 2001). But, new technologies often involve ambiguity such
that the probabilities of different outcomes are not known. Thus, there is room for ambiguity
aversion to play an important role in adoption decisions as well (Bryan, 2010).

Most analyses assume that new farming technologies involve more uncertainty (including
both risk and ambiguity) than do traditional technologies (Engle-Warnick et al., 2011; Feder
et al., 1985; Liu, 2011; Lybbert and Bell, 2010). This assumption is commonly made in
the literature on technology adoption (see Rigotti et al. (2008)). Under this framing of the
adoption choice, risk-averse and ambiguity-averse farmers would be less likely to adopt new
technologies. But, whether this framing applies to all technologies is an empirical question.
For example, Bryan (2010) studies the adoption of a new insurance product which may
decrease risk while increasing ambiguity.

Our analysis focuses on farmers’ adoption of GM corn and soybean seeds in Wisconsin
and Minnesota. Over the last two decades, the adoption of GM corn and soy in the US has
been rapid (Board on Agriculture and Natural Resources (BANR), 2010; Fernandez-Cornejo,
2010). GM seeds with two main traits have become available: herbicide-tolerance (HT) traits
which facilitate weed control, and insect-resistance (IR) traits which reduce damages from
pests.

While the spread of weeds is relatively easy to predict, pest dynamics appear to be harder
to predict (Rebaudo and Dangles, 2011). An important contrast between corn and soybeans
is that corn has benefited from both HT and IR traits(with some corn including only the HT
trait, some including only the IR trait, and some including both), while soy has been limited
to the HT technology. We discuss the two technologies more in the Section 3. Because
HT traits may not have a strong impact on ambiguity, while IR traits reduce ambiguity, we
hypothesize that ambiguity aversion will play a larger role in the adoption of GM corn than
it does in GM soy.

A contribution of our research is that we find a new result regarding technology adop-
tion. Unlike most of the recent papers distinguishing between risk and ambiguity which find
that ambiguity aversion deters technology adoption (Bryan, 2010; Rigotti et al., 2008; Ross
et al., 2010), we document a case in which ambiguity aversion actually increases the pace
of adoption. We find a significant difference between the determinants of farmers’ adoption
of GM corn and GM soy, with ambiguity aversion significantly speeding up the adoption of
GM corn, but not soybeans. This suggests that the IR technology reduces the ambiguity
related to pest damages and that ambiguity-averse farmers value this trait. Risk aversion,
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on the other hand, has little power in explaining the adoption of GM corn.2

One reason our results differ from those in the previous literature may be because of the
setting. Most empirical papers which find that ambiguity aversion deters adoption of new
technologies do so in a developing country context. We conduct our research with US farmers
who are significantly more educated and have greater access to information regarding new
technologies from extension agents, field trials, and seed dealers. In such a setting, there
may be relatively little ambiguity regarding the performance of the new technology, so that
the role of ambiguity aversion will be primarily vis-à-vis the new technology’s direct impact
on the uncertainty of outcomes. In a developing country context, ambiguity regarding the
new technology’s performance may have a stronger impact in deterring adoption.

The paper is organized as follows. Section 2 lays out a model of adoption under uncer-
tainty and shows that the effects of risk and ambiguity on adoption can be either positive or
negative. Section 3 provides information regarding the two GM technologies under consider-
ation. Section 4 describes the data collection and Section 5 provides the summary statistics.
Section 6 presents the econometric specification and results. Finally, Section 7 concludes.

2. The Roles of Risk and Ambiguity Aversion in Technology Adoption

In this section, we present a model which divides uncertainty into two pieces: risk and
ambiguity. As discussed in the introduction, we use the term uncertainty to include both
risk and ambiguity: risk occurs when the probability distribution of the random payoff is
known; and ambiguity arises in situations where the probability distribution is not known
with certainty by the decision maker. The model gives useful insights on how risk and
ambiguity can affect technology adoption. Consider an agent making a decision x ∈ X
under uncertainty. Uncertainty is represented by a random vector e. The distribution of e
may be ambiguous and depend on some parameter v that is not known.

First, consider the case where ambiguity is absent. In this case, the true probability
distribution of payoffs provides all relevant information for risk assessment. For a known v,
denote the distribution of e by F (e|v). Under the expected utility model, the decision maker
would choose x so as to maximize

{
Ee|vU(π(x, e)) : x ∈ X

}
, where Ee|v is the expectation

operator based on the distribution function F (e|v), π(x, e) is the payoff obtained under
decision x and state e, and U(π) is a von-Neumann Morgenstern utility function representing
the risk preferences of the decision maker. We assume that U(π) is a strictly increasing
function. Then, following Pratt (1964), risk neutrality corresponds to U(π) being linear,
while risk aversion is obtained when U(π) is concave.

Second, consider the case where ambiguity is present, i.e. where the true probability
distribution of payoffs, v, is not known with certainty. From the Ellsberg paradox (Ellsberg,
1961), we know that ambiguity about v can affect preferences and decisions. Assuming that
the true probability distribution of payoffs depends on uncertain parameters, Klibanoff et al.
(2005) propose a model that separates risk aversion from ambiguity aversion. Consider that

2Ross et al. (2010) run an experiment similar to ours in Laos and find that ambiguity aversion is related
to technology adoption among farmers while risk aversion is not.
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the decision maker associates the v’s with a distribution function G(v). Following Klibanoff
et al. (2005), assume that the choice of x is made to maximize

W (x) ≡
{
Evh[Ee|vU(π(x, e))] : x ∈ X

}
, (1)

where h[·] is a strictly increasing function. As shown by Klibanoff et al. (2005) and Neilson
(2010), the function h[·] in (1) reflects ambiguity preferences; the decision maker is neutral
toward ambiguity when h is linear, but he is ambiguity averse (in the sense of being made
worse off in the presence of ambiguity) when h is concave. As proved by Klibanoff et al.
(2005), model (1) reduces to Gilboa and Schmeidler’s (1989) maxmin expected utility model
when h is very concave.

We can measure an uncertainty premium which measures the combined level of risk and
ambiguity involved with each choice of x. For a given x ∈ X, let M(x) ≡ EvEe|v(π(x, e)) be
the ex-ante mean payoff. For each x, define the uncertainty premium as the sure amount of
money R(x) satisfying

W (x) ≡ h[U(M(x)−R(x))]. (2)

Equation (2) shows that, for a given x, R(x) is the agent’s willingness-to-pay to eliminate
all uncertainty and replace it by the ex-ante mean payoff M(x). As such, R(x) measures the
implicit cost of uncertainty. Importantly, R(x) is a measure of the overall cost of uncertainty,
including both risk (captured by e) and ambiguity (captured by v).

To identify the part of R(x) due to ambiguity we use the notation Ev = Ev(v), and define
the sure amount Ra(x) that satisfies, for each x,

W (x) ≡ h[Ee|EvU(π(x, e)−Ra(x))]. (3)

Equation (3) shows that Ra(x) is the willingness-to-pay to eliminate ambiguity by replacing
v with its mean Ev. As such, Ra(x) measures the implicit cost of ambiguity (as captured
by v). Since R(x) in (2) is a measure of the overall cost of uncertainty, we can define
Rr(x) ≡ R(x) − Ra(x) as the cost of risk aversion (i.e., the cost of risk associated with
the random variables e). Indeed, in the absence of ambiguity (where v is known for sure),
Ra(x) = 0 in (3) and R(x) = Rr(x) reduces to the standard Arrow-Pratt risk premium
measuring the cost of risk associated with the random variables e.

Comparing (1) and (2), it is clear that the optimal choice of x is the one that maximizes
the certainty equivalent [M(x) − R(x)]. Given R(x) = Rr(x) + Ra(x), it follows that the
optimal choice of x is obtained by maximizing [M(x) − Rr(x) − Ra(x)]. This shows that
three terms are relevant in choosing x: expected payoff M(x), minus the cost of risk aversion
Rr(x), minus the cost of ambiguity aversion Ra(x). The cost of risk aversion Rr(x) depends
on both risk exposure (given by the distribution function F (e|v)) and risk aversion (given
by the curvature of U(π)). And the cost of ambiguity aversion Ra(x) depends on both
ambiguity exposure (given by the distribution function G(v)) and ambiguity aversion (given
by the curvature of h[·]).

This treatment of uncertainty shows how both risk aversion and ambiguity aversion can
affect economic decisions. Which one is more important is an empirical matter and there is
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no general answer. We explore this issue in the context of technology adoption. Consider
the case where the decision x is a discrete choice: choose between old technology x = 0 or
adopt a new technology x = 1. As just discussed, the optimal choice is the one maximizing
the certainty equivalent [M(x)−Rr(x)−Ra(x)]. This generates the following decision rule:

choose x∗ =

{
0
1

}
when M(1)−Rr(1)−Ra(1)

{
<
≥

}
M(0)−Rr(0)−Ra(0). (4)

This shows that the new technology x = 1 tends to be preferred when its expected payoff
M(1) is higher, when its cost of risk aversion Rr(1) is lower, and when its cost of ambiguity
aversion Ra(1) is lower. This is consistent with previous literature that has stressed that
higher profitability contributes to adoption incentives, while the novelty of new technology
may increase risk and lower adoption rates (Feder et al., 1985; Foster and Rosenzweig, 2010).
Equation (4) extends this argument to ambiguity; if there is imprecise knowledge of the new
technology, then ambiguity can also affect adoption decisions.

Applying these arguments to agriculture is of special interest. Indeed, production un-
certainty is pervasive in agriculture due to unpredictable weather shocks and unanticipated
damages from pests, diseases, and weed infestation. While previous research has usually
treated agricultural production uncertainty as risk, part of this uncertainty could actually
be ambiguity. Current and new technologies likely expose farmers to differing levels of both
risk and ambiguity. In this context, equation (4) provides useful insights. It shows that risk
decreases adoption incentives whenever Rr(1) > Rr(0). Thus, highly risk-averse individuals
may become early adopters if the new technology reduces their exposure to production risk.
A similar argument applies to ambiguity. Equation (4) indicates that ambiguity decreases
adoption incentives whenever Ra(1) > Ra(0). Alternatively, it shows that ambiguity-averse
individuals may possibly become early adopters if the new technology reduces their exposure
to ambiguous aspects of the production process. In agriculture we anticipate finding risk
when probability assessments are relatively easy, and finding ambiguity when probability
assessments prove more difficult.

Thus, uncertainty (whether in the form of risk or ambiguity) is a fundamental charac-
teristic of agricultural production. In situations where the new technology exhibits larger
exposure to risk and/or ambiguity, uncertainty aversion would provide a disincentive to
adopt the new technology. But, the new technology may contribute to a reduction in expo-
sure to risk and/or ambiguity, for example if the new technology helps reduce pest damages.
By reducing pest damages, the new technology would reduce risk (opposite to the conven-
tional wisdom that risk aversion has adverse effects on adoption rates). If pest damages
are difficult to predict, the new technology could reduce ambiguity exposure by making the
outcomes more predictable. In this case, ambiguity aversion would contribute to hastening
the adoption of a new technology. This stresses the importance of distinguishing between
risk aversion and ambiguity aversion and the need for empirical analyses of the roles of risk
and ambiguity aversion in technology adoption.
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3. Herbicide Tolerant (HT) and Insect Resistant (IR) Seeds

Genetically modified seeds introduce transgenes into standard seeds to give them new
characteristics such as resistance to herbicide or resistance to pests. These new seeds impact
the moments of yields such as their average and their variance. Although GM seeds cost
more than conventional seeds, there is evidence that GM seeds exhibit “yield lag” and “yield
drag” Board on Agriculture and Natural Resources (BANR) (2010); Shi et al. (2013). Yield
lag means that when new GM seeds are first introduced, their yields may be lower than
those of conventional seeds. There is also evidence that GM seeds exhibit “yield drag”
whereby yields decrease due to the insertion of the new genes. Yield lag and yield drag have
negative effects on yield, although these effects can decrease and even disappear over time
with improved genetic selection. Given that GM seeds cost more than conventional seeds,
early adopters must find some characteristic of the new cultivar to be beneficial.

HT technology involves the introduction of a transgene into standard seeds that makes
the plant resistant to a broad spectrum herbicide. This resistance in turn allows the farmer
to spray herbicide to kill all weeds without killing the crop. Thus, HT technology simplifies
weed management, reducing the need for cultivation and usually eliminating the need for
more selective herbicides (Shaner, 2000). For the most part, weed infestation is a reasonably
predictable component of crop cultivation (Alexander et al., 2002; Cousens and Mortimer,
1995). Observing weed infestation in a field is relatively easy for farm managers, as is observ-
ing the effectiveness of any weed control method. This indicates that the HT technology may
not have a large impact on ambiguity, both because of the predictability of weed infestation
and its treatment.

IR traits, on the other hand, involve the insertion of transgenes using genetic material
from a bacterium (Bacillus thuringiensis, or Bt) that can limit the impacts of two major
pest insects: the European corn borer and root worms. The plant produces a toxin that
eventually kills the targeted pest. Identifying insect infestation in the field is typically not
easy; it requires special scouting efforts by the farm manager. And the complex dynamics
of insect populations mean that predicting infestations over time and space can be difficult
(Dent, 2000; Pilcher and Rice, 2001; Showers, 1993). Although many farmers have been
planting corn for decades, pest dynamics vary significantly over time and so implementing
pest control strategies may be subject to both risk and ambiguity.

Shi et al. (2013) find that the IR traits in GM corn lead to a decrease in the variance of
corn yields as well as increasing skewness (decreasing downside risk) and decreasing kurtosis
(thinner tails). These effects are much smaller or non-existent for the HT trait when it is
not paired with IR traits. Although we know that GM corn decreases the variance of yields,
it is not clear how much of this variance is risk and how much is ambiguity. The key to the
distinction is whether or not farmers can assess these probabilities. Unfortunately, current
data and previous research do not help with this. We do have some a priori information
about how difficult it is to assess the uncertainty of pest versus weed infestations. Weeds are
easy to observe, while pests such as the European corn borer (ECB) and rootworm (RW)
are less easy to observe.

Thus IR technologies, which substitute for traditional pesticide application and associated
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scouting efforts, provide farmers with an opportunity to not only save time and use less
pesticide, but also to reduce the ambiguity associated with pest damages on their farms.
This ambiguity-reduction aspect of the IR technology raises an interesting possibility. In
previous literature, the novelty of a new technology is often interpreted to mean that it
increases the decision maker’s exposure to uncertainty (both risk and ambiguity), which in
turn slows adoption. But, it seems possible that adoption of a new IR technology can help
reduce exposure to the ambiguity associated with pest damages, potentially reversing the
standard prediction that risk and ambiguity-averse farmers will be later adopters.3

While this reasoning suggests HT would have no impact on ambiguity, while IR would
decrease ambiguity, the new technologies’ impacts on risk remain unclear. If the old technol-
ogy is riskless and the new technology is risky, then higher risk aversion will necessarily slow
down adoption rates. (This is the point commonly made in previous literature.) However, if
the old technology is also risky, then the effect of risk aversion is ambiguous. The reason is
that the adoption decision becomes a choice between two risky options, i.e. it is a portfolio
selection problem. It is well known from the portfolio selection literature that, depending on
the correlation coefficient between the risky outcomes, risk aversion can provide an incen-
tive to diversify. This may induce risk-averse farmers to speed up the adoption of the new
technology.

Other authors have also noted the distinction between HT and IR in terms of ambiguity
reduction. On page 138, Alexander et al. (2002) discuss results from focus groups with farm-
ers: “overall, farmers are better able to cope with weed pressure than European Corn Borer
(ECB) pressure. Farmers know which fields will have severe weed pressure but they cannot
predict ECB pressure . . . In addition, farmers said that alternative herbicides were effective
at controlling weed pressure but it is difficult to effectively control ECB with pesticides.”
The farmers also report that they do not know in which years ECB will be a large problem.
“They believe it [IR seed] is good insurance against the possibility of high ECB pressure. ‘Of
course, the Bt takes care of the corn borers and there haven’t been any for 2 years. However,
one of these days . . . ’” [page 138].

Marra et al. (2003) sum up the distinction between HT and IR technologies as follows:
“For transgenic crops with herbicide tolerance, . . . there seemed to be initial uncertainties
about relative profitability compared to conventional weed control systems . . . For insect
resistant varieties, the uncertainty comes primarily from variable pest infestations.”

4. Data Source and Experimental Procedures

Experimental and survey data were collected from corn and soybean farmers in Minnesota
and Wisconsin in two rounds. The first round of 75 observations was collected between Jan-

3We often think of options as either being ambiguous or non-ambiguous. Our model in Section 2 shows
how to conceptualize what it means for a technology to be more or less ambiguous. The more certain a
farmer is of the “true” probability distribution of a given technology, the less ambiguous that technology
is. An ambiguity averse farmer is more averse to the subjective uncertainty about priors related to the
technology than he is to the known risks involved in the technology.
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uary and March of 2010, while the second round of 116 observations was collected in July and
August of 2010. Farmers were recruited through the mail and phone calls. In both instances,
researchers explained the opportunities for farmers to keep their winnings from the exper-
imental games, to receive reimbursement for travel, and to hear an extension presentation
on the economics of corn seeds over a meal following the session. The experimental sessions
occurred at county extension offices, local colleges, and other meeting sites throughout the
region.

The sample of farmers was selected in three main ways. For the winter round of surveys,
456 grain farmers were invited to participate in experiments at six different sites across the
region. These farmers had responded in 2006 to a survey on GM seed use sent to a random
sample of farmers across the state. Recruitment involved the classic Dillman methods of an
invitation letter and two repeat letters with follow-up phone calls.4 For the summer sessions,
we used a 2010 list of 1254 farmers who had completed the ‘Pesticide Application Training’
(PAT) certification that is required if a farmer wishes to apply restricted-use pesticides
commonly used on corn-soy operations. This certification must be renewed every five years.5

We also contacted 1400 farmers from the Wisconsin Agricultural Statistics Service (WASS)
lists who lived in counties near the six experimental sites. Finally, we recruited a handful of
farmers at a corn conference and through extension agents.

Overall, approximately 15% of contacted farmers chose to participate in the winter ses-
sions and 5% chose to participate in the summer sessions. Overall, 37% of our sample comes
from the PAT lists, 30% were recruited from the sample of previous GM survey respondents,
20% were from the WASS list, 6% were recruited at a corn conference, and 6% were recruited
directly by extension agents. It proved difficult to recruit a random sample of farmers to
participate in live experimental sessions.6 We compare the characteristics of farmers in our
sample with those of the average Wisconsin farmer in Section 5.

Each session consisted of two parts. First was the experiment itself, which focused on
a series of games that was used to gather information on risk aversion, ambiguity aversion,
and learning. The second part had two components: a survey on demographic and farm
characteristics and a history of technology choices with respect to GM seed use; and a set
of tests to measure cognitive ability. The whole session was conducted on computers, and
the games and tests were programmed with the software z-Tree (Fischbacher, 2007). On

4For those farmers we invited who did not attend, the reasons for not attending (from an open-ended
question) were: cannot attend/too busy/full-time job (39%), not interested (22%), no longer farming (24%),
too old/health issues/deceased (9%), and live too far away (6%).

5While IR crops are resistant to some pests (European corn borer or rootworm or both) they are not
resistant to all pests. As such, IR corn adopters will still have reason to use pesticides on corn and other
crops as well. That said, we also re-run all our regressions excluding the farmers who were recruited through
the PAT lists and our results do not differ qualitatively.

6There is evidence from adult populations (Anderson et al., 2010) and student populations (Falk et al.,
2010) that the social preferences of participants and non-participants do not differ. Harrison et al. (2009)
show that the size of fixed participation fees and ranges of potential winnings affect the risk aversion of the
sample which self-selects into participating, but this sample selection does not impact inferences regarding
the correlation between risk aversion and other demographics.
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average, the experimental session generally took less than two hours to complete, and was
followed by a meal and extension presentation that lasted another hour.

4.1. Experimental Design

Upon arrival to the experiment site, the 19% of farmers who were not familiar with com-
puters or wanted a refresher received a brief computer training which consisted of instruction
regarding how to point and click and how to type in responses to questions. During the ses-
sions, instructions were read aloud and also appeared on the farmers’ computer screens.
Participants also had at their disposal a written copy of the instructions that they could
refer to during the games; however, they were instructed not to read ahead.

The session leader explained at the outset that payoffs for the experiments were part of a
research grant, and that the individuals running the experiment received no personal gains
from the experiments or the payoffs made to participants. The explanation was meant to
minimize the extent to which participants might assume that the experimenters would benefit
if the subjects earned less money. The average payoff for the games was $73 plus another
$30 for travel. One day’s wages in this sample is approximately $135. Our experiments were
scheduled after typical morning farm chores and before afternoon chores.

The experimental session consisted of two uncertainty games (where probabilities were
not known) and two risk games (one 50/50 and one rare event), as well as two learning
games. Payoffs were determined after the completion of all of the games and the survey, and
farmers were paid for all six games. For the purposes of this paper, we focus on the 50/50
uncertainty and risk games. The design of these games is a multiple price list (MPL). In the
original MPL (Holt and Laury, 2002), participants were offered a series of choices between
a safe bet and a risky bet. We slightly alter this design, as did Moore and Eckel (2006) and
Ross et al. (2010), and offered the farmers a series of choices between a certain payout and
a bet.

The experiment began with a practice game which did not count for payoffs, the purpose
of which was to help subjects understand the basic logic of the games. It was similar to
the rest of the games in several ways. First, farmers made a series of 11 decisions, which
were presented en suite rather than sequentially. Each decision was a choice between a sure
payoff and an uncertain payoff that, in this practice game, depended on the weather two
weeks later. If it rained or snowed two weeks from the session date, the hypothetical payoff
was higher than if it did not snow or rain. After all subjects made the 11 decisions, they
received an explanation about the payoffs that they would have received if the game had
counted for payoffs.

Likewise, in the uncertainty and risk games, every farmer had to make 11 decisions
between a sure payoff and an uncertain payoff. These decisions were again made all at once
rather than sequentially. The sure thing involved a certain payoff of $10 while the payoff
for the risky option depended on the color of the chip drawn out of a bag. The payoffs for
each decision were the same for both the risk and uncertainty games and are shown in Table
1. Even though all subjects made 11 decisions in each game, only one decision per game
affected their earnings. That decision was determined at the end of the experimental session
by the roll of a die for each of the games.
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Table 1: Uncertainty and Risk Experiments

Decision Sure Thing Gamble CRRA
Red Black

1 $10.00 $20.00 $10.00 ∞
2 $10.00 $20.00 $8.00 3.76
3 $10.00 $20.00 $6.50 1.86
4 $10.00 $20.00 $5.00 1.00
5 $10.00 $20.00 $4.00 0.65
6 $10.00 $20.00 $3.50 0.52
7 $10.00 $20.00 $3.00 0.40
8 $10.00 $20.00 $2.50 0.31
9 $10.00 $20.00 $2.00 0.22
10 $10.00 $20.00 $1.00 0.09
11 $10.00 $20.00 $0.00 0.00

Each game had its own bag containing 100 chips, some of which were black and some
of which were red. In the uncertainty game, farmers had to make their decisions without
any prior information about the number of red and black chips in the bag. In the 50-50
risk game, farmers were told that there were 50 red and 50 black chips in the bag. The
uncertainty games were played prior to the risk games to avoid providing focal points for
farmers in the uncertainty games.

4.2. Survey and Cognitive Ability Data

After the experiment all farmers completed a survey which, in addition to asking about
demographic and farm characteristics, included retrospective questions about the farmers’
use of GM seed in corn and soy production. In particular, farmers were asked in what year
they first adopted GM corn and in what year they first adopted GM soy. The first year these
technologies were available for purchase was 1996.

Participants also performed a digit span exercise testing short-term memory. In this
exercise, they saw a number for the same number of seconds as the quantity of digits of that
number. Then, they were asked to re-enter the number they had just seen. This exercise
started with three-digit numbers and continued up to a maximum of 11 digits. If a farmer
made a mistake at a certain level, he was given a second chance with a different number.
After the second mistake at the same level, the exercise ended.

Digit span is a measure of short-term or working memory. It is a sign of sequential
processing ability that measures how able a person is to take in and process information in
an orderly fashion (Dempster, 1981). Economists have found that entrepreneurs in Russia
have higher digit-span scores than non-entrepreneurs (Djankov et al., 2005), and that Sri
Lankan entrepreneurs with higher digit-span scores earn higher profits (de Mel et al., 2008).

One criticism with some of the previous work measuring the impacts of uncertainty aver-
sion on technology adoption is the fact that most authors do not have measures of cognitive
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ability. If cognitive ability is correlated with both uncertainty aversion and technology adop-
tion, then results excluding those variables may be biased. Cognitive ability is found to be
negatively correlated with risk aversion (Benjamin et al., 2012; Dohmen et al., 2010; Fred-
erick, 2005). Although we do not know of any empirical evidence regarding the correlation
between cognitive ability and ambiguity aversion, Sherman (1974) predicts that this rela-
tionship would also be negative.7 Foster and Rosenzweig (2010) suggest that the positive
relationship often found between education and technology adoption is due to the fact that
more educated people are better able to learn.

5. Summary Statistics

We first discuss the uncertainty, risk, and ambiguity aversion variables created from the
experimental data. Then we consider the survey data, including the adoption variables.

5.1. Uncertainty, Risk, and Ambiguity Aversion Measures

We use the results from the game in which farmers are not told the share of red and
black chips to measure aversion to uncertainty, and we use the results from the 50/50 game
to measure risk aversion. Uncertainty includes both risk and ambiguity. By subtracting our
measure of risk aversion from our measure of uncertainty aversion, we construct a measure
of ambiguity aversion.

Our experiments are similar to Cohen et al.’s (1985), with one choice between a sure
thing and a risky lottery, and a second choice between a sure thing and an uncertain lottery.
We subtract risk aversion from uncertainty aversion to measure ambiguity aversion. This is
similar to the two-color Ellsberg problem with one choice between a sure thing and a risky
lottery, and a second choice between a risky lottery and an uncertain lottery (Ross et al.,
2010).

Using the row in the risk game at which the farmer chose the ‘sure’ option for the first
time, we assign him a coefficient of relative risk aversion. Specifically, under risk, we assume
preferences exhibiting constant relative risk aversion (CRRA), with a utility function over
payoff π > 0 given by U(π) = 1

(1−γ)
π1−γ , where γ is the CRRA coefficient (Pratt, 1964). We

assign the coefficients presented in Table 1 which measure the farmer’s minimum coefficient
given that he accepted that gamble and turned down the subsequent one. For example,
farmers who chose the gamble three times and then chose the sure thing in the fourth
decision row were assigned a coefficient of relative risk aversion equal to one.

We prefer to use coefficients of relative risk aversion, rather than the row at which the
farmer switched from the gamble to the sure thing. This is because the CRRA coefficient is
a cardinal number with meaningful orders of magnitude. The value of the CRRA depends
on the dollar amounts in the actual decision the farmer is making. On the other hand, the

7In our case, cognitive ability is negatively but insignificantly correlated with both ambiguity aversion
and risk aversion.
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row at which he switches is a purely ordinal variable which depends on the design of the
experiment, but not on the actual dollar amounts under consideration.8

In the uncertainty game, under an uninformative prior, we assume a subjective expecta-
tion of a 50/50 distribution of red and black chips. In this context, we calculate a coefficient
similar to the CRRA coefficient with values given in Table 1. By analogy to the case of risk
aversion, this provides a measure of uncertainty aversion.

Note that if the decision maker were ambiguity neutral, she would make the same choice
in the risk game and the uncertainty game. In that case the uncertainty aversion measure
would equal our CRRA coefficient. Alternatively, if a person is ambiguity averse, then the
difference between the measure of uncertainty aversion and the CRRA coefficient would be
positive and reflect the strength of her ambiguity aversion (as noted in Section 2. Thus
any difference between the uncertainty aversion measure and the CRRA coefficient can be
attributed to ambiguity aversion. We discuss the theoretical reasoning behind our ambiguity
aversion measure in In Appendix Appendix B.

Two people may play differently in the uncertainty game because they have different levels
of uncertainty aversion, or because they have different subjective probabilities regarding how
many black and red chips were in the bag. A person who trusts more in general or who is
more trusting of us and extension agents in specific, may think we stacked the bag with red
chips and such a person will appear less ambiguity averse. We discuss this possibility in
more detail with the econometric results.

While there is no definitive way to estimate the minimum coefficient of relative risk aver-
sion for those who always chose the gamble (since the minimum could be negative infinity),
this behavior remains rational. It simply implies risk neutrality or risk lovingness. Thus, we
assign these farmers a CRRA of -0.09.910

Under expected utility, farmers should switch at most once from the risky choice to the
sure thing. They should also always choose the risky gamble in the first row since in that
row the sure thing is strictly dominated by the gamble. However, of the 191 observations,
only 131 and 151 observations in the uncertainty and risk games, respectively, behave in such
a way, leaving us 123 observations for ambiguity aversion. This implies a rate of multiple
switching behavior of 19-27% in our sample of U.S. farmers. Holt and Laury (2002) report
a rate of 13% among U.S. university students and faculty while Jacobson and Petrie (2009)
report rates of 55% among Rwandan adults and 44-52% among Peruvian adults.

Here we exclude those farmers who were multiple switchers. The excluded farmers tend

8If we instead use the row at which the farmer switched in our analysis, the ambiguity coefficient keeps
the same sign but sometimes loses significance.

9We applied this scheme to the uncertainty game as well. The value -0.09 is in line with the other values
in Table 1. That said, our results are robust to assigning other reasonable values such as 0 or -1, as well as
to dropping those observations.

10Rather than using the minimum CRRA, we could choose the midpoint of the range. To do so, we would
have to choose an adhoc maximum CRRA for those who rejected all ten non-dominated gambles and we
prefer not to do so. But, when we rerun the analysis setting the midpoint for those individuals to be 6.5, a
number in line with the other values, we find very similar results.
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to be less educated and more likely to have needed the computer refresher course. This
suggests these farmers may have been uncomfortable with the computer and may not have
made the effort to fix mistaken clicks of the mouse.11 We have also constructed a second set of
uncertainty measures which include those farmers whose decisions, with minor modifications,
can be made to appear consistent. Results (not shown here) do not differ much with different
ways of reclassifying the multiple switchers.

Table 2 presents the summary statistics for our measures of uncertainty, risk, and am-
biguity aversion. The average coefficient of relative risk aversion in our sample is 0.8. This
indicates that risk aversion is prevalent in our sample, and the magnitude is in line with the
results from many other experiments (see the survey in Cardenas and Carpenter (2008)). We
also find that ambiguity aversion is positive on average, as the average uncertainty aversion
measure is higher than the average coefficient of relative risk aversion. But, this difference
is not significant (p = 0.23).12

In our sample, 34% of people are ambiguity averse, 38% ambiguity neutral, and 28%
ambiguity loving. Camerer and Weber (1992) reviewed the literature 20 years ago, and
presented evidence that many papers find 50% of the population to be ambiguity averse.
Akay et al. (2012) review five more recent studies in which the share of ambiguity averse
individuals varies between 42 and 61%. These numbers are slightly higher than the numbers
we find.

Part of the reason for our finding of a lower population tendency towards ambiguity
aversion may be due to the experimental design. Fox and Tversky (1995) propose the
comparative ignorance hypothesis. They find some evidence of ambiguity aversion using a
within subjects design, but not when the individual evaluates one prospect in isolation using
a between subjects design. Fox and Weber (2002) take this one step further and look at order
effects. They hypothesize that if a participant makes two decisions, the first decision will
be analyzed non-comparatively whereas the second will be analyzed comparatively. They
present evidence showing that measures of ambiguity aversion are lower in experiments (such
as ours) in which the ambiguous bet comes before the risky bet. This suggests that we may
underestimate ambiguity aversion. As long as these order effects do not vary with timing of
GM adoption, this should not affect our results.

5.2. Survey Variables

The other key variables in our analysis are the numbers of years since the farmer first
planted GM corn or soy.13 These variables exclude those farmers who have never planted
corn or soy at all, but they do include farmers who have only planted conventional corn or
soy. (For these farmers, the number of years planting GM varieties is 0.)

11Many farmers were not very experienced or comfortable with using a mouse.
12The correlation between uncertainty aversion and risk aversion is 0.65 and is significantly different from

0 at the 1% significance level.
13In the winter sessions we ask the farmers their planting plans for 2010. In the summer sessions we ask

them their actual planting decisions for 2010.
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Table 2: Summary Statistics

Variables Obs Mean Std Dev Min Max
Uncertainty, Risk, and Ambiguity Aversion
Uncertainty aversion 131 0.79 0.75 -0.09 3.76
Risk aversion 151 0.77 0.64 -0.09 3.76
Ambiguity aversion = uncertainty minus risk 123 0.06 0.56 -1.34 3.11
Individual Characteristics
Age 191 53.2 12.6 20 80
Female 191 6.3%
Education
High school or less 191 31.9%
No degree or 2-year college degree 191 35.6%
4-year college degree 191 20.4%
Some graduate school 191 12.0%

Family size 191 2.7 1.3 1 7
Household Income before taxes 2009 (Thousands)
Under $20 191 9.9%
$20 - $59 191 33.5%
$60 - $99 191 27.7%
$100 or more 191 28.8%

Farming Characteristics
Farming is not the principal occupation 191 16.2%
Acres of cropland operated in 2009 191 600.2 958.6 10 8000
Years farmer has made decisions on farm 191 28.3 13.7 2 72
Corn
Never planted corn 191 2.1%
Planted conventional but not GM corn 191 10.5%
Planted GM corn 191 87.4%
Years since first planting GM corn1 187 7.1 4.3 0 15

Soy
Never planted soybeans 191 18.8%
Planted conventional but not GM soy 191 6.3%
Planted GM soybeans 191 74.9%
Years since first planting GM soybeans2 155 8.4 4.5 0 15

Digit-span: digit memory 189 7.3 1.5 3 11
Received computer refresher 191 18.8%
1 Excludes farmers who have never planted corn. Equals zero for farmers who have only
ever planted conventional corn.

2 Excludes farmers who have never planted soy. Equals zero for farmers who have only
ever planted conventional soy.
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Table 2 shows that approximately 89% of the farmers who have ever planted corn have
planted GM corn, and, on average, they have been planting GM corn for eight years. Simi-
larly, 92% of the farmers who have ever planted soybeans have planted GM soybeans, and,
on average, they have been planting GM soy for nine years. The farmers who plant GM crops
dedicate almost all of their acreage to GM.14 These adoption rates (at the farmer level) are
comparable to state averages (at the acreage level), which in 2010 were 80% for corn and
88% for soy (Fernandez-Cornejo, 2010).

Once farmers try GM seed, they tend to continue planting it thereafter. We asked the
farmers in what years they first adopted GM corn and GM soy, and then we asked them
what they planted in 2009 and 2010. Of the 157 farmers who adopted GM corn in 2008 or
earlier, 99% of them planted some corn in 2009 and/or 2010. Of those previous GM corn
adopters who planted corn in 2009 and/or 2010, 97% of them planted at least some GM
corn. Of the 129 farmers who adopted GM soy in 2008 or earlier, 91% of them planted some
soy in 2009 and/or 2010. Of those, 99% planted at least some GM soy. Thus, we see that
disadoption is quite rare and so we ignore it in the rest of our analysis.

A shortcoming of our data is that when we asked farmers in which year they first planted
GM corn, we did not ask farmers to distinguish between the use of IR and HT corn seeds.
The share of GM corn planted in Wisconsin including the IR trait has remained relatively
constant over time, at 78% in 2000 and 64% in 2010 (Fernandez-Cornejo, 2010). This is
contrasted to GM soy for which there is no IR trait, so that 100% is HT. Since the IR trait
is commonly present in GM corn hybrids but is never present in GM soy, finding significant
differences in the impact of ambiguity aversion on the timing of adoption of GM corn versus
GM soy may potentially be attributed to the differences between what the IR and HT traits
offer. Moreover, it also suggests that our measure of the impact of ambiguity aversion on
corn seed choice is conservative, since some farmers reporting GM corn adoption have been
using corn with only the HT trait (Fernandez-Cornejo, 2010).

Table 2 also shows that the farmers are of diverse ages, education levels, and wealth
levels. The majority of participants were male, and almost half of the sample (44%) had
obtained at least a 2-year college degree. Around 16% of the respondents do not consider
farming to be their principal occupation. Farmers in the sample are relatively experienced
in farming: on average, they have been making decisions on a farm for 28 years.15

In Appendix Appendix A, we compare the average characteristics of our sample with
those of the average Wisconsin farmer from the most recent agricultural census. Our sam-
ple consists of significantly more full-time farmers, farmers who manage significantly larger
farms, and more male farmers than in the census. This is probably due to the fact that
our experimental sessions were held during week-days when part-time farmers might be at
their other job. Although our sample is not representative of Wisconsin farmers, the fact
that our sample consists of more larger farmers means that results from our sample may be

14This is one of the reasons why we do not conduct a tobit analysis of acreage in the new technology as
do Ross et al. (2010).

15Note that some farmers began making decisions on a farm at a very young age.
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more representative of behavior on the average acre. This is evidenced by the fact that if we
compare our numbers to those in the Wisconsin Agricultural Survey, the ratio of GM corn
to total corn and the ratio of GM soy to total soy in our sample appears similar to that in
Wisconsin more generally.16

Finally, Table 2 also presents the results of the digit span test described above and shows
that the farmers’ average digit span is seven. This result is on-par with Miller’s (1956)
findings that an average adult has a digit-span of seven (plus or minus two).

6. Econometric Specification and Results

This section deploys a survival model to estimate the effects of risk and ambiguity aversion
on the likelihood of adopting GM corn and GM soybeans. We are particularly interested
to see whether the ambiguity associated with pest damages, which IR technologies help to
reduce, will lead to a larger role for ambiguity aversion in the adoption of GM corn.

An early article reviewing survival and duration models by Kiefer (1988) notes that
economics most commonly uses duration models to analyze spells of unemployment. He lists
other potential areas of application, one of which is technology adoption. Since then, many
papers have used survival models to analyze the diffusion of new technologies; see Fuglie and
Kascak (2001) for one example. Kiefer (1988) suggests that survival models are useful for
“economic data that can be modeled as generated by series of sequential decisions.” This is
the case for farmer technology adoption, as farmers make a decision in each year regarding
whether they should try a new technology for the first time conditional on their previous
decisions not to adopt.

Let S(z, t) denote the probability that a farmer exhibiting attributes z would not adopt a
new technology before time t. In a standard survival model, the associated hazard function
is λ(z, t) = −d lnS(z,t)

dt
, which measures the adoption rate at time t conditional on not having

adopted before time t. Let λ(z, t) = g(exp(−zβ)) where β is a vector of parameters capturing
the effects of z on λ(·). Different specifications of the hazard rate have been proposed in the
literature. We use the Weibull distribution with λ(z, t) = e−zβk[e−zβt]k−1 because this allows
the probability of adopting to increase or decrease over time. It includes the exponential
distribution as a special case when k = 1, which restricts the probability of adopting to
be constant over time. Our data faces right censoring since some of our farmers have not
adopted by 2010, and we do not know what they go on to do after that. Thus, the likelihood
function we maximize looks as follows:

lnL =
∑

uncensored observations

λ(z, t|θ) +
∑

all observations

lnS(z, t|θ).

In our analysis, t does not represent calendar years, but years in which a farmer could
have adopted GM technologies. In our sample, the first farmers to use GM technologies

16Unfortunately we cannot test if they are the significantly different because we could not get access to
the data on the number of observations and the standard deviation of the Agricultural Survey data.
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adopted in 1996. And yet, there are quite a few farmers in our sample who were not yet
farming in 1996. We consider that, for those farmers who were already farming by 1996,
the earliest possible year of GM adoption was 1996. For those farmers who began farming
after 1996, their first year making decisions on a farm was treated as the earliest possible
adoption year.1718

Because the adoption of GM technologies started slowly in the first few years and then
increased rapidly in later years, we also include dummies for each calendar year in which a
farmer could adopt. Including year fixed effects means we are estimating whether, within
a given year, a more ambiguity-averse farmer is more or less likely to adopt than a less
ambiguity-averse farmer. To account for the fact that GM technologies may be more ben-
eficial in certain areas, we control for Crop Reporting District (CRD) fixed effects. CRDs
are defined by the US Department of Agriculture to reflect local-agro-climatic conditions.
Minnesota and Wisconsin consist of 18 CRDs, from which we have observations in 15 CRDs.
In a survival model, when we look at the impact of ambiguity aversion while controlling
for such fixed effects we are asking whether, in any given year and any given CRD, a more
ambiguity averse person is more or less likely to adopt than a less ambiguity averse person.19

In our application of the survival model, the dependent variable is years since first adop-
tion of GM corn or soy, with a higher value reflecting earlier adoption. The regression results
reported in Table 3 compare the results for corn and soy across our measures of risk and
ambiguity aversion. Remember that our sample contains 187 farmers who have ever planted
corn and 155 who have ever planted soy. The sample sizes are lower in this table since it
excludes those farmers whose behavior in the experiments was inconsistent.20

It is possible that our results pick up reverse causation since the experiments occurred
after the adoption decision had been made. We think it is unlikely that the experience of
planting GM crops would significantly impact risk or ambiguity aversion. Harrison et al.
(2005) present evidence that risk preferences among students are stable over a six month
period while Love and Robison (1984) present similar evidence for Midwestern farmers over
a 2 year period.

For any given regressor, a hazard ratio greater than one hastens adoption, while a hazard
ratio of less than one is associated with slower adoption. For the regression as a whole, an

17In our regressions, we include the seven farmers who claim that GM was planted on their farm before
they started making decisions. Our findings are robust to excluding these observations.

18We have also tried including an indicator variable for those farmers who began farming after 1996 and
its interaction with our experimental measures of risk and ambiguity aversion. This would capture the fact
that farmers who enter farming later may enter the farming business with less uncertainty about the GM
technology since it would have been available longer by then. This interaction is not significant and the
experimental results do not change qualitatively.

19In results not shown here we conduct the same analysis without year fixed effects and the results are
quite similar. The main difference is that the Weibull distribution parameter becomes larger and more
significant. This may be because, without the year fixed effects, the Weibull parameter is the only way to
take account of the fact that adoption rates differ across years.

20When we try different methods of reclassifying the behavior of farmers who behave inconsistently, our
results (not shown here) are qualitatively similar.
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estimate of k greater than 1 implies that the probability of adopting increases over time.
The first column for each crop provides the results associated with risk aversion while the
second column provides the results for the ambiguity aversion measure. Finally, the third
column includes both risk aversion and ambiguity aversion (the sum of which would equal
our measure of uncertainty aversion). We present results in Panel A which only control for
the experimental measures of risk and ambiguity aversion as well as the CRD and year fixed
effects, and results in Panel B which additionally control for other explanatory variables.
Our preferred specification is that in Panel B since it is less likely to suffer from omitted
variable bias, but the results in Panel A are included as a robustness check since one might
argue that Panel B includes some endogenous explanatory variables.

For the corn regression, the hazard ratio of ambiguity aversion (columns 2 and 3) is
significantly greater than one while the hazard ratio of risk aversion (columns 1 and 3) is
not significantly different from one. Higher levels of ambiguity aversion are associated with
early adoption of GM corn.21 We can use the coefficient from the regression in Panel B to
interpret the magnitude of the impact in column 2. Imagine two farmers who have not yet
adopted GM corn. If one’s ambiguity aversion is one standard deviation higher than that of
the other, he will be 50% more likely to adopt in that period.

Comparing the results for corn with those for soy, we find that the hazard ratio of
ambiguity aversion is usually not statistically different from one in the HT soy regressions
(it is only significant one out of four times in columns 5 and 6 of Panel B). The magnitude
is also smaller, such that in column 5 of Panel B a farmer who has not yet adopted GM
soy with an ambiguity aversion measure one standard deviation higher than another farmer
is only 13% more likely to adopt at any point in time. In the final row of the table we
report the results from a χ2 test of whether the coefficients on the experimental measures
of risk and ambiguity aversion differ across the soy and corn regressions. We find that the
coefficients are significantly or close to significantly different across the two regressions.

This difference between the significant role of ambiguity aversion in shaping the early
adoption of GM corn but not GM soy is consistent with the hypothesis that there are
basic differences in the ambiguity surrounding the two technologies of insect resistance (IR)
and weed resistance (HT). While IR corn has the potential to reduce ambiguity over pest
damages, HT soy helps with the management of weeds, which are less subject to ambiguity
than pests.

The results in Table 3 show that risk aversion is uncorrelated with the adoption of GM
corn. In column 1 of Panel B a farmer who has not yet adopted GM corn with a risk aversion
measure one standard deviation higher than another farmer is 8% less likely to adopt at any
point in time. There is weak evidence that more risk-averse individuals are more likely to
adopt GM soy, but this result is only significant when risk aversion and ambiguity aversion

21Another interpretation for the correlation between ambiguity aversion and GM corn adoption is that
ambiguity-averse people are more likely to search out information (in order to reduce the ambiguity they
face) and so they adopt earlier because they have more information and figure out more quickly that the new
technology is an improvement. The fact that ambiguity aversion is not correlated with GM soy adoption
suggests that this is not the case.
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Table 3: Hazard Ratios from Survival Model for Adoption of GM Corn and Soy

Corn Soybeans
(1) (2) (3) (4) (5) (6)

Panel A
Risk Aversion 0.889 0.945 1.248 1.486

[0.104] [0.135] [0.237] [0.252]∗∗

Ambiguity Aversion 1.791 1.759 1.252 1.366
[0.297] ∗∗∗ [0.303]∗∗∗ [0.202] [0.211]∗∗

k 1.23 1.27 1.27 1.05 1.14 1.17
[0.154] [0.171]∗ [0.171]∗ [0.117] [0.140] [0.145]

Corn RA = Soy RA (p-value ) 0.08 0.04
Corn AA = Soy AA (p-value) 0.03 0.16

Panel B
Risk Aversion 0.887 1.002 1.213 1.367

[0.135] [0.152] [0.263] [0.223]∗

Ambiguity Aversion 2.049 2.050 1.250 1.339
[0.436]∗∗∗ [0.433]∗∗∗ [0.267] [0.280]

Age 0.972 0.987 0.987 0.985 0.996 0.998
[0.016]∗ [0.019] [0.020] [0.019] [0.021] [0.021]

Female 0.691 0.815 0.815 1.458 1.128 1.095
[0.236] [0.302] [0.302] [0.952] [0.719] [0.696]

No or 2-year degree 1.161 1.204 1.204 0.753 1.004 1.016
[0.303] [0.340] [0.349] [0.251] [0.373] [0.381]

4-year degree 1.694 1.346 1.347 0.833 0.851 0.957
[0.418]∗∗ [0.341] [0.352] [0.311] [0.323] [0.363]

Some grad school 1.491 1.165 1.167 1.278 2.004 1.812
[0.455] [0.431] [0.441] [0.478] [0.879] [0.855]

Acres operated (1000s) 1.249 1.365 1.365 1.275 1.343 1.391
[0.133]∗∗ [0.157]∗∗∗ [0.157]∗∗∗ [0.268] [0.220]∗ [0.229]∗∗

Farming not principal occup 0.566 0.437 0.437 1.115 0.685 0.737
[0.139]∗∗ [0.141]∗∗∗ [0.141]∗∗∗ [0.297] [0.223] [0.250]

Years made farming decisions 1.010 1.002 1.002 0.972 0.966 0.966
[0.018] [0.020] [0.021] [0.016]∗ [0.018]∗ [0.018]∗

Digit-span 1.172 1.214 1.215 0.963 0.938 0.932
[0.093]∗∗ [0.093]∗∗ [0.097]∗∗ [0.094] [0.115] [0.115]

Received computer refresher 0.903 0.894 0.894 0.788 1.063 0.979
[0.238] [0.246] [0.244] [0.314] [0.466] [0.443]

k 1.53 1.63 1.63 1.45 1.56 1.58
[0.215]∗∗∗ [0.263]∗∗∗ [0.263]∗∗∗ [0.186]∗∗∗ [0.223]∗∗∗ [0.228]∗∗∗

Corn RA = Soy RA (p-value) 0.13 0.16
Corn AA = Soy AA (p-value) 0.07 0.13
No. of Subjects 148 121 121 122 101 101

All regressions assume a Weibull survival distribution and include year and CRD dummies
as controls. Excluded education level is high school or less. Robust standard errors in
brackets. Significantly different from 1 at * - 10%, ** - 5%, and *** - 1% levels. We
show the p-value from a χ2 test that the risk and ambiguity aversion coefficients are equal
across the soy and corn regressions.
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are controlled for simultaneously. In column 4 of Panel B a farmer who has not yet adopted
GM soy with a risk aversion measure one standard deviation higher than another farmer is
13% more likely to adopt at any point in time.22 This is in line with results from Ross et al.
(2010) who find that risk aversion does not impact Lao farmers’ adoption of non-glutinous
rice while ambiguity aversion does. This implies that our measure of risk aversion is not a
strong predictor of the timing of adoption of GM corn. That it does have some explanatory
power in the adoption of GM soy again confirms our hypothesis that GM soy impacts risk
(since it decreases negative impacts due to exposure to weeds - a known risk) while GM corn
is more likely to decrease ambiguity (since that GM corn which has the IR trait decreases
negative impacts due to exposure to pests - an unknown ambiguity).

The rest of the coefficient estimates in Table 3 are consistent with the results of GM
adoption models estimated elsewhere (Aldana et al., 2011; Alexander, 2006; Alexander and
Mellor, 2005; Fernandez-Cornejo, 2010; Useche et al., 2009). In all regressions with controls,
k is significantly greater than 1, implying that the probability of adoption does increase
over time. As others have found, farm size, education level, and full-time farming are all
positively associated with early adoption. The most significant coefficient estimates are those
for farmers operating more acreage; they are more likely to be early adopters of GM.

One other striking result in Table 3 is that the farmers with higher digit-span recall
were more likely to be early adopters of GM corn. This result suggests the potential role
of cognitive ability in helping to speed the adoption of new technologies. Comparing the
results in Panels A and B, we find that controlling for education and digit span recall (in
addition to the other controls) seems to slightly increase the impact of ambiguity aversion
on adoption of GM corn and slightly decrease the impact of risk aversion on adoption of GM
soy, but these differences are not significant.

We can also consider whether there are heterogeneous impacts of ambiguity aversion on
corn adoption. Our sample size is rather small, so we do not have a lot of power. But we
find some interesting suggestive evidence. Ex ante we do not have any specific hypotheses
about which populations should be impacted most. We have rerun the regression in column
2 Panel B, additionally including, one at a time, the interaction between the ambiguity
aversion measure and each explanatory control variable included in the regression. We find
significant positive interactions with “female” and “received computer refresher” meaning
that the impact of ambiguity on encouraging adoption is stronger for females and those
who are unfamiliar with computers. We find significant negative interactions with “acres
operated” and “digit-span” meaning that the impact of ambiguity aversion is smaller for
those with fewer acres or with higher cognitive skills. This seems to be a promising avenue
for future investigation with a larger data set.

Although we do control for many farm and farmer characteristics, there is still a potential
for omitted variables. We might think that people who are more trusting in general or who

22Looking at these magnitudes as well as the magnitudes for ambiguity aversion suggest that the effect
of ambiguity aversion on the adoption of GM corn is by far the largest in terms of both magnitude and
significance.
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trust us and extension agents more will appear less ambiguity averse since they may believe
we stacked the bag with more (good) red chips. We might also expect that these would be
the farmers who adopt the new technology more quickly. We do not have measures of either
generalized trust or trust in extension agents in specific. But, this omitted variable bias
would lead to less ambiguity averse individuals adopting more quickly, which is the opposite
of what we find. And, this omitted variable should impact the timing of the adoption of GM
corn and GM soy in a similar manner, so it cannot explain the difference in the impact of
ambiguity adoption on adoption across crops. In addition, our results are robust to including
whether a farmer relies on extension agents or publications for advice (a potential measure
of their trust in us) as a covariate.

We also don’t have data on social networks. We might think that people who are more
well-connected in social networks may tend to be early adopters and they may also tend to
be less ambiguity averse. Both missing data on social networks and missing data on trust
would bias our results toward finding a negative correlation between adoption and ambiguity
aversion. Thus, we think our results may actually be conservative.

7. Conclusion

Using data from experimental games, this article examines how risk and ambiguity aver-
sion shape the adoption of GM crops with distinctive traits, namely insect resistance and
herbicide tolerance, among grain farmers in Minnesota and Wisconsin. The analysis sug-
gests that, in general, the roles of risk and ambiguity can vary with the nature of the new
technology under consideration.

GM corn seeds offer farmers improved insect and weed control, while GM soy seeds offer
only improved weed control. Because of the higher potential degree of ambiguity associated
with pest infestation and management, we hypothesized that ambiguity aversion might play
a larger role in hastening the adoption of GM corn relative to GM soy. We tested this
hypothesis using a survival model including experimental measures of risk and ambiguity
aversion.

We find that ambiguity aversion does play an important role, but only for GM corn.
In contrast with previous empirical tests of the roles of risk and ambiguity, we find that
ambiguity aversion hastens rather than delays the adoption of GM corn. This difference
may be due to the fact that most of the experimental literature thus far has been conducted
in developing countries. In such a setting, new technologies may be more ambiguous for less-
educated farmers with less access to extension materials. In contrast, farmers in the United
States have access to reasonably good information regarding new seeds from seed dealers
and extension agents, and they have the requisite level of education to properly understand
the information they are presented. In this setting, the impact of ambiguity aversion may
have more to do with the underlying characteristics of the new technology, rather than the
fact that it is a new and relatively unknown technology.

Although ambiguity aversion hastens the adoption of GM corn, it has no impact on the
adoption of GM soy. The key difference between GM corn and GM soy is that only the former
may contain an insect-resistant trait. Our results are consistent with the fact that GM corn
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reduces the ambiguity associated with pest damages. In Wisconsin only approximately 70%
of GM corn has the IR trait (while the other 30% has only the HT trait), but in our data we
only asked the first year of adoption of GM corn seed, not which specific traits the farmer
adopted. We think that this should make our results conservative. But, our results suggest
that a fruitful area of future research would be to explore the adoption of IR versus HT
versus stacked GM varieties to explore which traits appeal to which farmers in more depth.

This article has several implications for the understanding and continuing study of tech-
nology adoption. First is the need to distinguish between risk and ambiguity in the analysis
of technology adoption. Second, the roles of risk and ambiguity can vary with the character-
istics of the technology. This implication underscores the need to continue to explore ways to
distinguish between them in theoretical and empirical analysis. Third, our analysis indicates
that new technologies can sometimes help reduce farmers’ exposure to uncertainty. If most
farmers are indeed both risk averse and ambiguity averse, this indicates that technological
progress in agriculture can also contribute to reducing the costs of risk and ambiguity.

Our research also has implications for the collection of data related to the study of
technology adoption. Our results suggest that there are payoffs from combining experimen-
tal methods to measure variables that are otherwise difficult to identify (such as risk and
ambiguity aversion) with survey methods. Given the degree to which farmers and other
entrepreneurs inherently face basic challenges of managing uncertainty in an increasingly
volatile global economy, the imperative to deepen our understanding in this area seems high.
In addition, the empirical result that cognitive ability hastens adoption suggests the poten-
tial value of further study of the ways in which learning shapes individuals’ capacities to
manage uncertainty related to the adoption of new technologies.

Akay, A., Martinsson, P., Medhin, H., Trautmann, S.T., 2012. Attitudes toward uncertainty
among the poor: An experiment in rural Ethiopia. Theory and Decision 73, 453–464.

Aldana, U., Foltz, J.D., Barham, B.L., Useche, P., 2011. Sequential adoption of package
technologies: The dynamics of stacked corn adoption. American Journal of Agricultural
Economics 93, 130–143.

Alexander, C., 2006. Farmer decisions to adopt genetically modified crops. CAB Reviews:
Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1, 1–9.

Alexander, C., Fernandez-Cornejo, J., Goodhue, R.E., 2002. Determinants of GMO use: A
survey of Iowa maize-soybean farmers’ acreage allocation, in: Santaniello, V., Evenson,
R.E., Zilberman, D. (Eds.), Market Development for Genetically Modified Foods. New
York, NY: CABI Publishing. chapter 11, pp. 122–139.

Alexander, C., Mellor, T.V., 2005. Determinants of corn rootworm resistant corn adoption
in Indiana. AgBioForum 8, 197–204.

Anderson, J.C., Burks, S.V., Carpenter, J.P., Goette, L., Maurer, K., Nosenzo, D., Potter,
R., Rustichini, A., 2010. Self-selection does not increase other-regarding preferences among

22



adult laboratory subjects, but student subjects may be more self-regarding than adults.
Unpublished Manuscript.

Benjamin, D.J., Brown, S.A., Shapiro, J.M., 2012. Who is ‘behavioral’? Cognitive ability
and anomalous preferences. Journal of the European Economics Association Forthcoming.

Binswanger, H.P., 1980. Attitudes toward risk: Experimental measurement in rural India.
American Journal of Agricultural Economics 62, 395–407.

Board on Agriculture and Natural Resources (BANR), 2010. The Impact of Genetically
Engineered Crops on Farm Sustainability in the United States. Washington DC: The
National Academies Press.

Bryan, G., 2010. Ambiguity and insurance. Unpublished Manuscript.

Camerer, C., Weber, M., 1992. Recent developments in modeling preferences: Uncertainty
and ambiguity. Journal of Risk and Uncertainty 5, 325–370.

Cardenas, J.C., Carpenter, J., 2008. Behavioural development economics: Lessons from field
labs in the developing world. Journal of Development Studies 44, 311–338.

Chen, Z., Epstein, L., 2002. Ambiguity, risk, and asset returns in continuous time. Econo-
metrica 70, 1403–1443.

Cohen, M., Jaffray, J.Y., Said, T., 1985. Individual behavior under risk and under uncer-
tainty: An experimental study. Theory and Decision 18, 203–228.

Cousens, R., Mortimer, M., 1995. Dynamics of Weed Populations. Cambridge: Cambridge
University Press.

de Mel, S., McKenzie, D., Woodruff, C., 2008. Returns to capital in microenterprises:
Evidence from a field experiment. Quarterly Journal of Economics 123, 1329–1372.

Dempster, F.N., 1981. Memory span: Sources of individual and developmental differences.
Psychological Bulletin 89, 63–100.

Dent, D., 2000. Insect Pest Management. Cambridge: CABI Publishing.

Djankov, S., Miguel, E., Qian, Y., Roland, G., Zhuravskaya, E., 2005. Who are Russia’s
entrepreneurs? Journal of the European Economic Association 3, 587–597.

Dohmen, T., Falk, A., Huffman, D., Sunde, U., 2010. Are risk aversion and impatience
related to cognitive ability. American Economic Review 100, 1238–1260.

Ellsberg, D., 1961. Risk, ambiguity and the Savage axioms. Quarterly Journal of Economics
75, 643–669.

23



Engle-Warnick, J., Escobal, J., Laszlo, S.C., 2011. Ambiguity aversion and portfolio choice
in small-scale Peruvian farming. B.E. Journal of Economic Analysis and Policy 11.

Falk, A., Meier, S., Zehnder, C., 2010. Did we overestimate the role of social preferences?
The case of self-selected student samples. Unpublished Manuscript.

Feder, G., 1980. Farm size, risk aversion and the adoption of new technology under uncer-
tainty. Oxford Economic Papers 32, 263–283.

Feder, G., Just, R.E., Zilberman, D., 1985. Adoption of agricultural innovations in developing
countries: A survey. Economic Development and Cultural Change 33, 255–98.

Fernandez-Cornejo, J., 2010. Adoption of genetically engineered crops in the U.S., ERS,
USDA, http://www.ers.usda.gov/Data/BiotechCrops/.

Fischbacher, U., 2007. Z-tree: Zurich toolbox for ready-made economic experiments. Exper-
imental Economics 10, 171–178.

Foster, A.D., Rosenzweig, M.R., 2010. Microeconomics of technology adoption. Annual
Review of Economics 2, 395–424.

Fox, C.R., Tversky, A., 1995. Ambiguity aversion and comparative ignorance. Quarterly
Journal of Economics 110, 585–603.

Fox, C.R., Weber, M., 2002. Ambiguity aversion, comparative ignorance, and decision con-
text. Organizational Behavior and Human Decision Processes 88, 476–498.

Frederick, S., 2005. Cognitive reflection and decision making. Journal of Economic Perspec-
tives 19, 25–42.

Fuglie, K.O., Kascak, C.A., 2001. Adoption and diffusion of natural-resource-conserving
agricultural technology. Review of Agricultural Economics 23, 386–403.

Gilboa, L., Schmeidler, D., 1989. Maxmin expected utility with a non-unique prior. Journal
of Mathematical Economics 18, 141–153.

Gollier, C., 2001. The Economics of Risk and Time. Cambridge: MIT Press.

Halevy, Y., 2007. Ellsberg revisited: An experimental study. Econometrica 75, 503–536.

Harrison, G.W., Johnson, E., McInnes, M.M., Rutström, E.E., 2005. Temporal stability of
estimates of risk aversion. Applied Financial Economics Letters 1, 31–35.

Harrison, G.W., Lau, M.I., Rutström, E.E., 2009. Risk attitudes, randomization to treat-
ment, and self-selection into experiments. Journal of Economic Behavior and Organization
70, 498–507.

24



Herberich, D.H., Levitt, S.D., List, J., 2009. Can field experiments return agricultural
economics to the glory days. American Journal of Agricultural Economics 5, 1259–1265.

Holt, C.A., Laury, S.K., 2002. Risk aversion and incentive effects. American Economic
Review 92, 1644–1655.

Isik, M., Khanna, M., 2003. Stochastic technology, risk preferences, and adoption of site-
specific technologies. American Journal of Agricultural Economics 85, 305–317.

Jacobson, S., Petrie, R., 2009. Learning from mistakes: What do inconsistent choices over
risk tell us? Journal of Risk and Uncertainty 38, 143–158.

Kiefer, N.M., 1988. Economic duration data and hazard functions. Journal of Economic
Literature 26, 646–679.

Klibanoff, P., Marinacci, M., Mukerji, S., 2005. A smooth model of decision making under
ambiguity. Econometrica 73, 1849–1892.

Knight, J., Weir, S., Woldehanna, T., 2003. The role of education in facilitating risk-taking
and innovation in agriculture. Journal of Development Studies 39, 1–22.

Lin, W., Dean, G.W., Moore, C.V., 1974. An empirical test of utility vs. profit maximization
in agricultural production. American Journal of Agricultural Economics 56, 497–508.

Liu, E., 2011. Time to change what to sow: Risk preferences and technology adoption
decisions of cotton farmers in China. Unpublished Manuscript.

Love, R.O., Robison, L.J., 1984. An empirical analysis of the intertemporal stability of risk
preference. Southern Journal of Agricultural Economics 16, 159–165.

Lybbert, T.J., Bell, A., 2010. Stochastic benefit streams, learning and technology diffusion:
Why drought tolerance is not the new Bt. AgBioForum 13, 13–24.

Marra, M., Pannell, D.J., Ghadim, A.A., 2003. The economics of risk, uncertainty and
learning in the adoption of new agricultural technologies: Where are we on the learning
curve? Agricultural Systems 75, 215–234.

Miller, G.A., 1956. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review 63, 81–97.

Moore, E., Eckel, C., 2006. Measuring ambiguity aversion. Unpublished Manuscript.

Neilson, W.S., 2010. A simplified axiomatic approach to ambiguity aversion. Journal of Risk
and Uncertainty 41, 113–124.

Pilcher, C.D., Rice, M.E., 2001. Effect of planting dates and Bacillus thuringiensis corn on
the population dynamics of European corn borer. Journal of Economic Entomology 94,
730–742.

25



Pratt, J.W., 1964. Risk aversion in the small and in the large. Econometrica 32, 122–136.

Rebaudo, F., Dangles, O., 2011. Coupled information diffusion - Pest dynamics models
predict delayed benefits of farmer cooperation in pest management programs. PLOS
Computational Biology 7.

Rigotti, L., Ryan, M., Vaithianathan, R., 2008. Tolerance of ambiguity and entrepreneurial
innovation. Unpublished Manuscript.

Ross, N., Santos, P., Capon, T., 2010. Risk, ambiguity and the adoption of new technologies:
Experimental evidence from a developing economy. Unpublished Manuscript.

Shaner, D.L., 2000. The impact of glyphosate tolerant crops on the use of other herbicides
and on resistance management. Pest Management Science 56, 320–326.

Sherman, R., 1974. The psychological difference between ambiguity and risk. Quarterly
Journal of Economics 88, 166–169.

Shi, G., Chavas, J.P., Lauer, J., 2013. Commericalized transgenic traits, maize productivity
and yield risk. Nature Biotechnology 31, 111–114.

Showers, W.B., 1993. Diversity and variation of European corn borer populations, in: Kim,
K.C., McPheron, B.A. (Eds.), Evolution of Insect Pests. New York, NY: John Wiley and
Sons. chapter 14, pp. 287–309.

Sunding, D., Zilberman, D., 2001. The agricultural innovation process: Research and tech-
nology adoption in a changing agricultural sector, in: Evenson, R., Pingali, P. (Eds.),
Handbook of Agricultural Economics. volume 1. chapter 4, pp. 207–261.

Useche, P., Barham, B.L., Foltz, J.D., 2009. Integrating technology traits and producer het-
erogeneity: A mixed-multinomial model of genetically modified corn adoption. American
Journal of Agricultural Economics 91, 444–461.

26



Appendix A. Comparison between the Experimental Sample and Wisconsin

Table A-1: Experimental Sample vs Wisconsin data

Experimental Sample Wisconsin Census
WI MN Total

Average age 52.7? 168 57.0 23 53.2? 191 52.9 120,934
Female (% of all farmers) 7.1%∗∗∗ 168 0.0% 23 6.3%∗∗∗ 191 30.8% 120,934
Female (% of non-principal operators) 17.7%∗∗∗ 62 0.0% 4 16.7%∗∗∗ 66 66.1% 42,471
Farming is not principal occupation 16.7%∗∗∗ 168 13.0% 23 16.2%∗∗∗ 191 55.0% 120,934
Principal operator in the farm 63.1% 168 82.6% 23 65.5% 191 64.9% 120,934
Harvested cropland in acres2

Less than 50 6.6%∗∗∗ 168 0.0% 23 5.8%∗∗∗ 191 23.0% 54,105
50 to 99 8.3%∗∗∗ 168 8.7% 23 8.4%∗∗∗ 191 17.5% 54,105
100 to 179 22.0% 168 26.1% 23 22.5% 191 19.3% 54,105
180 to 259 7.1%∗∗ 168 0.0% 23 6.3%∗∗∗ 191 12.8% 54,105
260 to 499 19.1% 168 30.4% 23 20.4% 191 16.4% 54,105
500 to 999 20.2%∗∗∗ 168 21.7% 23 20.4%∗∗∗ 191 7.4% 54,105
1000 to 1999 10.1%∗∗∗ 168 8.7% 23 10.0%∗∗∗ 191 2.5% 54,105
2000 and above 6.6%∗∗∗ 168 4.4% 23 6.3%∗∗∗ 191 1.0% 54,105

Average soy acreage per farm1 210.0? 110 240.6 18 214.3? 128 93.9 14,513
Average corn acreage per farm13 274.2? 153 494.3 22 301.9? 175 93.0 42,843
GM soy as % of all soy acres2 79.6%? 168 98.0% 23 82.5%? 191 85.0%
GM corn as % of all corn acres2 82.4%? 168 98.1% 23 85.7%? 191 77.0%

Sources: Census of Agriculture 2007 and Agriculture Survey 2009 (USDA-NASS, Web).
Significantly different from Wisconsin Census data at * - 10%, ** - 5%, and *** - 1% levels. We do not
know standard errors for the census data so this test is only conducted on the binary data. We do not
test the Minnesota data. (? - denotes unsure.)

1 This data only includes farms with non-zero cropland harvested for that crop.
2 2009 Agriculture Survey data excludes farms with no harvested cropland.
3 This assumes that only corn for grain or corn for silage was harvested, not both.
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Appendix B. Theoretical Discussion of Ambiguity Aversion Measure

The measurement of risk aversion is well developed in the literature. In the context of the
utility function U(π) in (1), Pratt (1964) showed that risk aversion can be measured by one
of two measures: the absolute risk aversion coefficient α(π) = −U ′′/U ′, or the relative risk
aversion coefficient γ(π) = −πU ′′/U ′. For a given risk, Pratt also showed that an increase
in risk aversion (as measured by a rise in either α(π) or γ(π) for all π) is equivalent to an
increase in the risk premium Rr (Pratt, 1964, p. 128 and 135). This makes it clear that
risk aversion (Rr > 0) corresponds to a concave utility function (U ′′ < 0). With a constant
relative risk aversion (CRRA) utility function, γ is a sufficient statistic for the degree of risk
aversion.

Klibanoff et al. (2005) and Neilson (2010) established similar results linking ambiguity
aversion to the concavity of the function h[·] in (1). For example, Klibanoff et al. (2005, p.
1865) showed that β(u) = −h′′/h′ is a measure of ambiguity aversion, with a rise in β(u)
for all u being associated with an increase in ambiguity aversion and a rise in the ambiguity
premium Ra.

Note that equation (2) can be alternatively written as

h−1[W (x)] = U(M(x)−Ra(x)−Rr(x)) (B.1)

where Ra(x) is defined in (3) and [Ra(x) + Rr(x)] is defined in (2). Equation (B.1) shows
that an increase in ambiguity aversion (as measured by a rise in Ra(x)) is equivalent to a
rise in Rr(x). And as established by Pratt (1964, p. 128 and 135), a rise in Rr(x) has the
same additive effect as a rise in either α(π) or γ(π) for all π. Under CRRA and in situations
of ambiguity, it follows from (B.1) that an ambiguity-averse individual would behave as if
he/she faced only risk but with a higher level of risk aversion γ. In other words, with a
CRRA utility function, finding that an individual appears to have a larger value for γ under
uncertainty than under pure risk can be used as evidence of ambiguity aversion. We make use
of this convenient property when calculating ambiguity aversion as the difference between
the two coefficients of relative risk aversion.
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