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Consider a heterogeneous agent matching model in which the payoff
of each matched individual is a fixed function of both partners’ types.
In a 1973 article, Becker showed that assortative matching arises in a
frictionless setting simply if everyone prefers higher partners. This
paper shows that if finding partners requires time-consuming search
and individuals are impatient, then productive interaction matters.
Matching is positively assortative—higher types match with higher sets
of types—when the proportionate gains from having better partners
rise in one’s type. With multiplicatively separable payoffs, these pro-
portionate gains are constant in one’s type, and “block segregation”
arises, a common finding of the literature.

I. Introduction

Our understanding of the economics of social mating or other part-
nerships owes to Becker (1973): Assume that production arises from
pairwise interaction and depends solely on underlying types, with com-
petitive wages allocating output. If individual types are strategic com-
plements—also known as supermodularity, namely, that higher types enjoy
higher match payoff gains as their match partner rises—then the re-
sulting matching is positively assortative. Shimer and Smith (2000) revis-
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ited Becker’s model with matching instead preceded by a time-consum-
ing random search process. Assuming the Nash bargaining solution—
where everyone earns his or her outside options plus an equal share of
the joint match surplus over these outside options—they find that
matching is assortative only when production obeys stronger comple-
mentarity conditions.

In this paper I focus on matching markets with exogenously specified
match payoffs. Becker (1973) briefly considers this paradigm for social
matches, such as marriage proper. Here, wages are not available to
equilibrate matches, and payoffs are neither transferable nor quasi-
linear in a transferable resource. Stealing a term from cooperative game
theory, Smith (1992) called this nontransferable utility (NTU), in contrast
to the transferable utility (TU) world of Shimer and Smith (2000). The
NTU setting is obviously a polar case and ignores intramatch transfers
such as doing the dishes or deciding where to live. But in defense of
the NTU model, disagreements about matching in social settings are
not uncommon. And whenever we observe a potential match or split
desired by one party but not the other, utility is obviously not fully
transferable. For the total match surplus either is positive or is not, and
there can be no disagreement.

Assortative matching arises in this matching world whenever everyone
prefers higher partners. For without prices, the currency of the social
matching market is quite indivisible—oneself; the more prized mates
with more to “spend” will then “buy” each other. Perfectly assortative
matching follows as the market clears top to bottom.

This paper studies NTU matching in which everyone faces a time-
consuming and random search for partners, just as in Shimer and
Smith’s article. For if such frictions matter anywhere, they do so on the
social matching scene.' I find that Becker’s simple proviso that everyone
prefer higher partners no longer delivers assortative matching. After
accounting for the value of time spent searching, I show that a stronger
condition than even complementary production is needed for assorting:
complementarity of log payoffs. I then show that in the knife-edge tran-
sitional case with multiplicatively separable production, an interval of
“highest” individuals match only with each other, the next highest match
only with each other, and so on; there is no intermingling. This yields
a new development of this well-known block segregation result,” where it
is now seen as a special case of a coherent bigger matching picture.

Let me summarize the framework. First, individuals are heteroge-
neous, having one-dimensional scalar types. Second, the payoff that

' Bergstrom and Bagnoli (1993) study marriage from a search perspective.
1t has been found by McNamara and Collins (1990), Smith (1992), Bloch and Ryder
(1994), Eeckhout (1996), Burdett and Coles (1997), and Chade (2001).
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anyone earns increases in the type of his partner. Thus everyone has
identical ordinal preferences over partners; namely, higher is better.
While this is a pure quality world with agreement on relative beauty,
individuals might well disagree on absolutes, since their payoffs also
depend on their own types. Third, the only cost of search is time, and
the only decision margin is with whom to match. Of course, both parties
must first approve a potential match.

Search frictions not only are a somewhat realistic assumption of the
“real-world” marriage market but also negate one unrealistic aspect of
the Walrasian context. For intuitively, individuals must accept a range
of possible matches, some more preferred than others; they need not
match with their ideal partner. Since higher partners are preferred in
an NTU search setting, anyone will agree to matches with all types above
some marginal partner. This corresponds to the reservation wage in the
theory of wage search. Since matching sets are no longer singletons,
assortative matching must be reformulated. As in Shimer and Smith
(2000), I call matching (strictly) assortative when the marginal partner
is (strictly) increasing in one’s type. This says that higher types are
choosier.

I seek a theorem that depends only on productive interaction. Namely,
the threshold partner is monotonic in one’s type for any (atomless) type
distribution and any level of search frictions. Morgan (1995) establishes
that with a constant search cost, if higher types derive a higher marginal
gain from “matching up,” then they entertain higher standards for their
match partners. This leads once more to Becker’s TU condition that
types be productively complementary, which gives higher individuals a
greater benefit from holding out for better partners. But higher types
have higher expected continuation payoffs and must be compensated
for a greater value of time.

One’s threshold partner depends on the search cost. With endoge-
nous opportunity time costs, higher types are choosier only if they enjoy
more lucrative rewards from holding out than even supermodularity
provides: My main finding here is that strictly assortative matching ob-
tains when the production function f(x, y) is strictly log supermodular: The
simplest statement of this is the inequality f(xs, y,)f(x,, y,) > f(x,
y)f(x,, y,) for any types x, > x, and y, > y,. I show how this ensures that
the opportunity costs of using any matching set rise proportionately
faster in one’s own type than the benefits, thereby elevating their thresh-
old partners.

Decision making in a search model always entails comparing a certain
prize with an uncertain one (the outside option, which is an expecta-
tion). I have assumed that everyone has increasing preferences across
partners. But in a world of uncertainty, such as search, this does not
mean that everyone behaves alike, even given identical opportunity sets.
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Individuals with the same opportunity sets have identical preferences
across gambles and thus make identical choices, if and only if they
entertain identical cardinal preferences. So motivated, imagine the
match payoffs f(x, y) as the cardinal utility function over partners y of
an individual of type x. Using the classic (1944) result of von Neumann
and Morgenstern, I prove that cardinal preferences coincide exactly
when f(x,, y,)f(x,, ;) = f(xq, y,)f(x,, y5). This is the knife-edge case of
log supermodularity. Typical payoft functions in the literature such as
J(x, y) = xyor f(x,y) = yhave exploited this property. This forces block
segregation, for types in each interval have the same opportunity set
(those willing to match with them) and thus make the same matching
decisions given the same cardinal preferences.

In the search literature, this segregation result was discovered re-
peatedly in the 1990s, and its history is recounted in Section VB. In this
paper, it serves as a springboard to motivate my log supermodularity
condition for strict assorting.

As in Shimer and Smith’s article, I prove existence of a search equi-
librium in value function space. But the proof style must radically differ
in this NTU context since value functions need no longer be continuous;
this owes to the unexploited matching rents. In fact, since I allow that
output might fall in one’s own type for a fixed partner, values need not
even be weakly increasing. The existence proof instead exploits the fact
that the best-reply dynamics produce value functions of bounded vari-
ation. That value functions may be discontinuous is my key point of
departure from Shimer and Smith, and this is a critical distinction be-
tween the existence proof methodology of TU and NTU search models.

After the model, I present the transition from block segregation to
monotonic matching sets and the linked passage from identical von
Neumann-Morgenstern preferences to log supermodularity. Simulated
economies depict this result. I conclude with a big-picture overview of
the assortative matching literature and a novel existence proof.

II. The Frictionless Matching Model

There is an atomless unit mass of agents who are indexed by their
exogenous and publicly observable productivity type x € [0, 1]. The
fraction of agents with type at most yis denoted L(y). I assume through-
out that L is differentiable, with Borel measurable type density /. For
technical reasons later on, I also require that /be positive and boundedly
finite: 0 < I< I(x) <I< % for all x.

Consider the following coordination game played by these individuals.
Everyone chooses another type to match with, and a match is formed
if both parties choose each other. Each type x earns payoff f(x, y) >0
in a match with type y, and zero if unmatched. Output need not be
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symmetric in a match; in fact, asymmetry plays a key role in the analysis.
For instance, f(x, y) = y means that everyone cares only about her part-
ner’s type. For technical reasons, I assume that production fis contin-
uous and continuously differentiable, and so bounded above by f<
on [0, 1]%

AssuMPTION 1 (Monotonicity). Preferences over partners are in-
creasing; that is, f(x, y) rises in y.

Given assumption 1, there is a unique Nash equilibrium in which
everyone matches, and in it, every type x matches with the same type
x. I do not prove this since it intuitively extrapolates on the finite agent
result mentioned in Becker (1973). But it does speak to the extremely
weak and natural condition for matching to be assortative: namely, that
higher is better. I next add search frictions and find a less obvious
condition.

III. Matching with Search Frictions

I now develop a continuous-time, infinite-horizon matching model in
which meeting other agents is time-consuming and haphazard because
of search frictions.

At any instant in continuous time, an agent is either matched or un-
matched. Only the unmatched engage in (costless) search for a new
partner. When two unmatched agents meet, either may veto the pro-
posed match; it is consummated if both accept. Type x earns a flow
payoff f(x, y) when matched with y. Each agent maximizes her expected
present value of payoffs, discounted at the interest rate r> 0. Since a
match that is profitable to accept is profitable to sustain in a steady-
state environment, I simplify the notation by ignoring the possibility of
quits.

To fix a steady-state population of unmatched agents, assume exog-
enous match dissolutions. Nature randomly destroys any match with a
constant flow probability (Poisson rate) 6 > 0; that is, it lasts an elapse
time of ¢ or more with chance ¢ . At the moment the match is destroyed,
both agents reenter the search pool.

Unmatched individuals periodically meet others drawn at random
from the unmatched pool. One meets any y € ¥ € [0, 1] at an expo-
nential rate proportional to the mass of those unmatched in Y:
pJru(y)dy. Here, uw < lis the unmatched density function; that is, [yu(x)dx
is the mass of unmatched agents with types x € Y & [0, 1]. As in Shimer
and Smith (2000), the descriptive theory extends to any anonymous
search technology, but this quadratic search technology’ is needed in
the existence proof.

* Namely, the chance that one meets anyone in the search pool is independent of the
number of other potential partners. Diamond and Maskin (1979) introduced this term.
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A steady-state (pure) strategy for a type x agent is a time-invariant set’
A(x) of agents with whom x is willing to match. The opportunity set
Q(x) = {y|]x € A(y)} is an inverse set consisting of agents willing to match
with x. Type x’s matching set is M(x) = A(x) n Q(x), where (x, y) is
mutually agreeable iff y € Af(x). Let M : [0, 1] 3 [0, 1] be the match
correspondence and o« the match indicator function: This means that
a(x, y) = 1if y e M(x) and zero otherwise.

In a steady state, the flow creation and flow destruction of matches
for every type of agent must exactly balance. The density of matched
agents x € [0, 1] is the difference /(x) — u(x); these agents’ matches
exogenously dissolve with flow probability 6. The flow of matches created
by unmatched type x agents is pu(x) [ u(y)dy. Putting this together, in
a steady state for all types x € [0, 1], we have

1

u(y)dy = pu(x)f a(x, Yulydy. (1)

0

6[l(x) — u(x)] = pu(x) j

M (x)

IV.  Values and Search Equilibrium

Individuals must trade off the immediate rewards of agreeing to match
against the option value of remaining unmatched. To this end, let
V(x) denote the average present value to type x of the unmatched status,
presuming an optimal steady-state strategy, and V(x|y) her average pres-
ent value’ when matched to type y. While unmatched, type x earns
nothing; but at flow rate p [ u(y)dy, she meets and matches with some
y € M(x), enjoying a capital gain [V(x|y) — Ux)]/r. Consequently, we
have

P
,

V(x) = f [Mxly) — V)] uly)dy
M (x)

= Erf max (Ux[y) — Mx), 0)u(y)dy. (2)
Q)

Also, x enjoys a flow payoff f(x, y) when matched with y. Her match is
destroyed with flow chance 6, and she suffers a capital loss [V(x|y) —
W(x)]/r. Hence,

* Sets are Borel measurable. Stationary acceptance sets in a stationary world are assumed
without loss of generality: As no one affects the future of the economy, any acceptance
set optimal at time s remains so at time ¢> s. That agents of the same type use the same
strategy is also not a restriction.

® The average present value is the product of the present value and the interest rate.
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O Mxly) — V)] 1f(x, y) + M)
r - r+ 06 ’

Vixly) = flx, y) — (3)

Altogether, when (2) and (3) are combined, her unmatched value is

o [reo f(x, y)u(y)dy Jreo flx, y)uly)dy
V(x) == = s
(r+06) + pfuw uNdy ¥+ fuw u(y)dy

where Y = (r+ 6)/p is a simple measure of search frictions. This is less
than the expected output of a match because the match does not start
immediately.

In equilibrium, everyone maximizes her present discounted payoffs,
taking all other opportunity sets as given. For simplicity, a match is
consummated iff both parties find it weakly agreeable. Finally, I ask that
all dynamics be in a steady state.

A search equilibrium is a triple (V, M, u) characterized by three
properties:

(4)

* Opportunities via values: Given the matching sets and unmatched
rates, the average present unmatched values V(x) are properly cal-
ibrated, that is, satisfy (4).

* Optimal matching: Matching sets M (x) are optimally chosen;
namely, y € M(x) if and only if f(x, y) > Ux) and f(y, x) = WNy).

* Pointwise steady state: Given (1), the unmatched density u(x) obeys
the balanced flow equation

_ 6l(x)
6+ pfmw u(y)dy'

Simply, the flow into the unmatched pool balances the flow out
at every type.

To avoid getting sidetracked here, the next key result is proved in the
Appendix.

ProrosiTion 1 (Existence). Given assumption 1, a search equilib-
rium exists, and the average present value function V is almost every-
where differentiable.

The proof must produce a triple (o, «, V) of match indicator functions
o, unmatched densities «, and value functions V. The proof first requires
that the map V = a = u be continuous. In contrast to the TU model
of Shimer and Smith (2000), value functions need not be continuous.
In a scenario that may emerge, imagine that a mass of the best types
matches with every y > % When their acceptance rule is shifted to y>
% — ¢, the value function dramatically jumps in (% — € %). Because of
this continuity failure in the sup norm, existence has been stymied. For
this reason, existence proofs in this literature are all constructive. The

u(x) (5)
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general existence argument here uses the weak-* topology for value
functions—the standard topology for probability distributions. Namely,
V, tends to Vif the 0-1 indicator functions [, ., , converge pointwise
to ;. >y for any y. This topology is not defined by any metric. Loosely, it
treats value functions as if they were cumulative distribution functions
for a probability measure.

Why are values only almost everywhere differentiable? The value func-
tion slope jumps precisely where the matching set jumps, since (4)
otherwise yields a formula for V' upon differentiation. Such jumps are
not impossible and occur in Section VB, for instance.

I first focus on a given individual and consider how she compares
potential matches. Since type x matches with any type y providing output
f(x, y) = Ux), preferences over match partners are monotone.

LEMMA 1 (Monotonic preferences).  Given assumption 1, in a search
equilibrium, if type x accepts y, then she is strictly willing to accept any
Z> .

That preferences are monotonic already buys us one useful conclu-
sion. Since anyone willing to match with x is willing to match with y>
x, it follows that opportunity sets are monotone.

LEMMA 2 (Increasing opportunities).  Given assumption 1, in a
search equilibrium, higher types have weakly larger opportunity sets:
Qx) < Qy) for y> «.

This monotonicity result is a key property. In particular, everyone
matches.

LemMma 3 (Everyone matches).  Given assumption 1, for all types
x>0, the matching set M (x) has positive measure in any search equi-
librium, and M (0) is nonempty.

Proof. If M(x) has zero measure, then V(x) = 0 by (4). Then
Q(x) has zero measure by (2) and (3). From lemma 2, Q(y) € Q(x) has
zero measure for y<x. So V(y) = 0 and A(y) = [0, 1] for all y<x,
contrary to Q(x) zero measure. Finally, M (0) = (J implies V(0) = 0,
and 0 € A(x), a contradiction. QED

All individuals have reservation partners for matching, and the re-
sulting matching set consists of those types for whom there is a double
coincidence of wants.

LEmMMA 4 (Marginal partners). In a search equilibrium, we have
Ax) = [a(x), 1] and Q(x) = {y:y> a(x)}, and therefore M(x) =
{y:y2 a(x), x> a(y)}. Also, the marginally acceptable type a(x) for type
x obeys f(x, a(x)) = Ux).

Proof.  First, f(x, 1) 2 V(x). Since f(x, y) is continuous in y, if ever
Jf(x, ) < V(x), then x matches with types above an indifference partner
a(x) >y. QED

LemMMA 5 (The threshold partner). Assume assumption 1. In a
search equilibrium, the threshold partner a() and value function V()
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are each continuous exactly where they are differentiable. Further, any
jump points of these two functions coincide.

Proof.  Because f(x, a(x)) = V(x) by lemma 4 and the partials f; and
J exist, whereas V' exists almost everywhere by propositon 1, we have
filx, a(x)) + fo(x, a(x))a'(x) = V'(x). So a() must be differentiable when-
ever V() is. By the fundamental theorem of calculus applied to (4) and
from the simple structure of M (x) deduced in lemma 4, V() is differ-
entiable whenever a(-) is continuous—and so certainly when it is dif-
ferentiable. Thus points of continuity and differentiability of these func-
tions precisely match. QED

V. Assortative Matching
A.  What Is Assortative Matching?

Shimer and Smith (2000) developed a simple set-valued generalization
of assortative matching. Matching is positively assortative if, when any
two agreeable matches are severed, both the greater two and lesser two
types can be agreeably rematched. This definition has many nice prop-
erties and reduces to the frictionless notion for single-valued matches:
Everyone is willing to match with her own type. For if x will not match
with her own type, then no higher types will either. But then Q(x) n
A(x) = g, which would contradict lemma 3.

Since matching sets for any type x > 0 have positive measure, if match-
ing is positively assortative, then there exists a weakly monotonic in-
creasing marginal partner a(-) for A, whereas the inverse opportunity
set assumes the form Q(x) = [0, b(x)) for an increasing (and possibly
set-valued) upper bound 5().° So M(x) = [a(x), b(x)).

Shimer and Smith also explore negatively assortative matching, with
the analogous definition: If x, < x, and y, <y,, then y, € M(x,) and
v, € M(x,) imply y, € M(x,) and y, € M(x,). Shimer and Smith show
how this reduces to M (x) = [a(x), b(x)), where a() and b() are decreas-
ing. This produces a decreasing opportunity set, contrary to lemma 2.
So we have the following lemma.

LeMMA 6 (Not negatively assortative matching). For no productive
interaction obeying assumption 1 does negatively assortative matching
arise in a search equilibrium of this NTU model.

¢ Shimer and Smith prove this in two steps. First, if matching sets are nonempty, then
they must be convex. For if not, then some x matches with both y and y; where y, <y,
but not the middling y,. If y, matches with x’ < x, then (x, ,) and (x, y,) match, and thus
so does (%, ). The case x'> x is similar. But convex matching sets have lower and upper
bounds, a(x) and b6(x). If a(x) or b(x) is not monotonic, then some y has a nonconvex
matching set. Finally, if a(x) is decreasing, then so is b(x), and the claim becomes trivial.
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B.  Block Segregation

Toward understanding who matches with whom, let us assume first that
no one’s type affects her preferences over gambles across prospective
partners and being unmatched. To wit, all types enjoy identical von
Neumann-Morgenstern (cardinal) preferences over each other and the
unmatched state. For instance, f(x, y) = y or f(x, y) = xy* enjoy this
property, whereas f(x, y) = x + ydoes not. Any type x> 0 with the latter
payoff function is discontinuously hurt by the unmatched status, since
even a match with y = 0 pays him x > 0. That multiplicative separability
is common to the first two examples and not present in the third is no
accident, as the Appendix proves.’

LemMma 7 (Identical cardinal preferences). Individuals have the
same cardinal (von Neumann—-Morgenstern) preferences over matches
iff f(x, y) = v,(x)7y,(y), for functions v, and vy, with y, > 0.

Itis a truism from consumer theory that any individuals with the same
preferences and identical opportunities will make the same choices. I
can now exploit this fact alone to deduce a crucial phenomenon about
the cross-sectional matching.

ProprosITION 2 (The folk NTU matching result).  Assume that ev-
eryone has the same von Neumann-Morgenstern preferences over
matches. Then the type space [0, 1] partitions into disjoint classes
[0,,11016,, 6,10, with1>6,>6,> -, such that y e M(x) iff xand
y are in the same class. There are infinitely many classes iff v,(0) = 0.

Proof.  In light of (4), given search frictions and impatient individ-
uals, large enough types x will be accepted by one and all. So there is
a universally “prized set” x # ¢ of high enough types x e [0, 1] for
whom Q(x) = [0, 1]. By lemma 7, A(x) = .4(y) for any two types «x,
y € x, and in fact A(x) = A(y) = x. Bylemma 1, x = [0,, 1].

Next, (x) € [0, §,) forall x € [0, 6,), and so we may repeat the above
argument on this restricted domain. Finally, when v,(0) = 0, it is never
optimal to set 6, = 0, by lemma 4. In this case, there are infinitely many
classes. QED

This block segregation phenomenon has proved a popular result. In
a distinctly applied math paper, McNamara and Collins (1990) happen
on a version of it for the specific case of employer-employee job search.®

7 Smith (1992) pointed this out and also noted that if there are type-dependent explicit
search costs ¢(x), identical von Neumann—Morgenstern preferences will obtain also if costs
are proportional to ¢(x) = ¢v,(x). The Appendix actually establishes this more general
result.

® Careful inspection reveals that their model is nonstationary, since they do not replenish
their supply of unmatched agents. But the result cannot possibly hold out of the steady
state, as seen in Smith (1992).
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I then rediscovered it (with optional search costs) in Smith (1992).° It
was subsequently found yet again in Bloch and Ryder (1994), then the
working paper prequel to Burdett and Coles (1997)," and then a pre-
quel to Chade (2001)" and Eeckhout (1996). With the exception of
Smith (1992), these papers do not comment on the identical von
Neumann-Morgenstern preference interpretation, but just study ana-
lytically convenient functions such as f(x, y) = y or f(x, y) = xy. They
did not allow one’s own type to influence output, from which this paper
derives its richness.

Block segregation is a distinctly NTU phenomenon. In the transfer-
able utility world of Shimer and Smith in which all positive surplus
matches are consummated, any such matching set discontinuity is in-
consistent with a continuous payoff function. But in an NTU context,
there is no bargaining, and some matching rents are left unexploited.
Block segregation highlights the dramatic fashion in which this “inef-
ficiency” plays out.

C.  Strictly Assortative Matching

Block segregation is pathological in two senses. First, discontinuities in
a continuous model usually command skepticism. Second, the result
just does not ring true of the “real world.” To my knowledge, there are
no documented cases of block segregation.

Here block segretation suggests how productive interaction might
lead to strictly assortative matching. For we can escape block segregation
insofar as von Neumann-Morgenstern preferences diverge. Since the
implied marginal partner is weakly monotonic increasing, block seg-
regation is a nonstrict assortative matching. Namely, call matching
strictly positively assortative if y, € M(x,) and y, € M(x,) imply y, €
intM(x,) andy, € intM(x,) for x, < x, and y, < y,. The upper and lower
bounds of the matching graph then strictly rise except at zero or one,
as in figure 1.

As it turns out, identical von Neumann-Morgenstern preferences are
more precisely the condition for constant acceptance sets and yield only
block segregation as a consequence. It is in fact the knife-edge case of
an increasing marginal partner. To firm up this intuition, observe how
the function f(x, y) = v,(x)v,(y) in lemma 7 holds iff f(x,, y.)/f(x,,
Y1) = f(xy, y9)/f(xy, y,) for all x, > x,, y, > y,. This is my key observation,

? That paper studied a nonstationary version of the class of models identified as having
identical von Neumann—Morgenstern preferences and specialized some of the analysis to
the steady state.

' They also added a very nice uniqueness theorem for atomless-type distributions.

' Chade showed that it also arises with fixed search costs and additive payoffs obeying

S = 0.
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F16. 1.—Example of supermodular matching. This figure depicts the graph of the match-
ing for the log supermodular payoff function f{x, y) = ¢®. Assume a uniform type distri-
bution on [0, 1] and parameters r = 0.3, 6 = .1, and p = 30. The dashed line and solid
lines are the lower threshold a(-) and its reflection in the diagonal, respectively; in the
first case, this reduces to b(-). Observe that matching is positively assortative since higher
types are choosier. The sets x, and x, from the proof of proposition 3 are also depicted.

since it suggests looking at log supermodular functions with a strict
inequality.'

AssuMmPTION 2 (Log supermodularity).  Productive interaction is
strictly log supermodular: match output f obeys fi(x, y,)/f(x, y5) > fi(x,
y,)/f(x, y,) for all xand y,>y,."

The flip side to this scenario is captured by strict log submodularity,
with the less than inequality. Thus identical von Neumann—Morgenstern
preferences emerge as the knife-edge as one passes from log supermodular to log
submodular payoff functions!

It is easy to see how under the monotonicity assumption 1, log su-
permodularity is stronger than the more typically used supermodularity
assumption that the marginal product f(x, y) rises in y. With the pro-

'* For probability density functions, this is also known as the monotone likelihood ratio
property.

" This implies the discrete version f{x,, y,)/f(%, W) > flx;, y)/f(x;, %) for x> x and
Yo > Y



1 136 JOURNAL OF POLITICAL ECONOMY

F16. 2.—Example of submodular matching. This figure depicts the graph of the match-
ing for the payoff function f(x, y) = xy+ x + y, i.e., supermodular and yet log submodular.
The parameters in fig. 1 are assumed, except p = 3. The matching fails to be positively
assortative since most types have a falling lower threshold partner. This shows how the
premise assumption 2 of proposition 3 is needed.

duction function f(x, y) increasing in y, we see that the marginal product
fi(x, y) must rise as a proportion of f(x, y).

The next main result asserts that our assumptions guarantee that
higher types are choosier since their marginal partner is increasing. The
gain from imposing higher matching standards rises faster in one’s type
than the opportunity time cost of delayed matching. Figures 1 and 2
illustrate the necessity of log supermodularity for this result.

PrOPOSITION 3 (Assortative matching).  If output f(x, y) is strictly
increasing in y and log supermodular (i.e., assumptions 1 and 2), then
matching is strictly positively assortative.

Proof.  As in the proof of proposition 2, since search is costly, all
high enough types x, € [0, 1] are accepted by everyone; namely,
Q(x) = [0, 1] accepts x,."* I focus on these types x, who choose their
matching set, that is, M(x) = A(x) = [a(x), 1). I show that log super-

" For no one x can do better than if she is certain to meet the maximal type 1. So if
a(x,) = 1 for some (without loss of generality, convergent) sequence of types x, = x in [0,
1], then x, close to x have values close to zero by (4), but a boundedly positive marginal
partner, a contradiction.
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modularity forces average match payoffs to rise proportionately faster
than the lowest match payoff. To maintain optimality, higher types must
have greater reservation partners. This effect is then reinforced for lower
individuals below x,, for their matching set grows upward, as more
individuals accept them.

Step 1: The changing value of time. By proposition 1, we may almost
everywhere differentiate the value function V(x) in (4). In fact, by an
envelope theorem, V is everywhere differentiable on x, since Q(x) =
[0, 1] is constant there. This yields a formula for the marginal change
in the value of time as one’s type rises:

v+ J’im u(y)dy

for x € x,. Observe that a second term owing to the effect of changing
x on a(x) vanishes by the envelope theorem since the threshold a*(x)
maximizes (4).

Step 2: The log supermodular inequality. With the quotient of (6)
and (4), the proportionate change of the value function obeys

Vix) = (6)

1

V@ _ Jaeo fi (%, y)u(y)dy> Six, a(x))
VX fuw [l Yu@)dy ~ flx, ax)

Intuitively, for any positive density u, the left-hand fraction will exceed
the right-hand one as long as f;/f is increasing in y; that is, fis log
supermodular.”

Step 3: A rising lower threshold for x,. Turning from opportunity
costs of time to optimality considerations, we now differentiate the
optimality equation V(x) = f(x, a(x)) to get V'(x) = fi(x, a(x)) + fo(x,
a(x))a'(x). Hence

S at) + [0 a@a®)  filx, al)
S, a(x) J(x, a(x))

by inequality (7). Because f, >0, we must have a'(x) > 0.

Step 4: A recursive argument. For all types x € x,, I have shown
a'(x) >0, whereas b(x) = 1. Now consider the “next tier down” x,,
namely, those types x for whom Q(x) n x; # J."° Since A and Q are
inverses, we have b'(x) >0 for x € x,. Types in x, have an additional

(7

'* This distribution-free inequality is a special case of a continuous variable generalization
f;)f inequality 3.3.15 in Mitrinovi¢ (1970). In a discrete world, %> % = 4+3)/(5+t4)>
MG The set x, of globally acceptable types is indicated on the right and top of the box
in fig. 1. The set x, is the image of x, in the lower threshold, and in this case, we happen
to have x, O x, = [0, 1]. With less search frictions, the matching set would shrink, and
more iteration steps would be needed.
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incentive to raise their marginal partner, since their growing opportunity
set further raises the option value of their time in the unmatched pool
and makes them even choosier. To see this formally, see that an extra
term appears on the right side of (6) whenever it is differentiable:

2 [i5 flx, puy)dy
() Y+ [ u@)dy

Now, b'(x) > 0 for x € x,, and the other factor equals

fis, ub) B Lf )y _ u®)fn b  fix au®)
VAiudy W fou)dy? Y+ fu)dy o+ [ u(y)dy

using the optimality relation and f(x, b) > f(x, ). This extra term inflates
the left side of (7) and reinforces the logic of step 3. Proceed recursively
for xs, X4 ..., deducing that a(’) and hence 4() are monotonic increasing

until a(*) hits zero. QED

VI. Assortative Matching Overview

How search frictions are modeled is critical. Morgan (1995) explored
a discrete time model of market segmentation with an explicit search
cost ¢> 0. This makes more sense when search obtains swiftly, hours or
days as opposed to months, so that the appropriate measure of search
costs is money rather than time. Opportunity time costs of search are
endogenous to the equilibrium and matter when search is time-
consuming. They capture marriage or long-term partner search.

Assume a reservation partner rule a(x) and an upper threshold one
for simplicity. With explicit search costs, the value solves [u [ f(x, ) —
Vix)]u(y)dy = ¢ rather than _[{},(X) [flx, y) — Vx)]u(y)dy = ¢y Nx) for op-
portunity time costs, as found in (4). Since the same optimality equation
V(x) = f(x, a(x)) applies in both cases, we have

explicit search costs: ¢

f [fCx, y) — flx, a(x)]u(y)dy,

(x)

FLC) N
Jx, alx)

In the first case, supermodularity assumption 1 asserts that the bracketed
difference rises in x for fixed a(x) <y. If f, >0, a rising threshold a(x)
is needed to maintain equality. The same finding obtains in the second
case given log supermodularity assumption 2 and f;, > 0. See table 1 for
the summary big picture of the literature.

u(y)dy.

1
opportunity time costs: = f
a(x)
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TABLE 1
SUMMARY OF THE ASSORTATIVE MATCHING LITERATURE
Fixed Cost Opportunity Time
No Search Search Cost Search
NTU £>0 £>0, f,>0 £>0, (logf).>0
TU Si2>0 Si2>0 Si2>0, (logfi),, >0,

(log fi) 12> 0

NoTE.—As in Becker (1973), TU means that wages are competitively set. The top middle entry is found in
Morgan (1995) and the middle bottom entry in Atakan (2006). The right bottom entry is in Shimer and Smith
(2000). This paper derives the top right entry.

VII. Concluding Remarks

I have analyzed matching with search frictions in which match payoffs
are exogenously specified (NTU). I have characterized a simple new
log supermodularity condition for assortative matching and provided a
novel and nontrivial existence theorem. This NTU world aptly captures
social relationships more than productive ones and, more generally, any
contexts in which we observe disagreements on the mutual desirability
of matches (see Mortensen 1988).

The theory extends with no significant new insights (but additional
complexity) to a world with distinguished sides. For instance, let xindex
men and y women, and let payoffs f(x, y) and g(y, x) accrue to x and y,
respectively. With preferences monotonic increasing over matches
(f>0 and g,>0), woman x matches with any man y2> a(x), whereas
man x matches with any woman y 2> b(x). In this case, provided that f
and g each satisfy assumption 2, then matching is strictly assortative."”

I have focused on the “pure quality” matching paradigm in which
everyone enjoys identical ordinal preferences over partners. Introducing
“match chemistry” effects is the natural next step and intuitively pro-
duces assortative matching with a probabilistic flavor if preferences re-
tain a common quality component.

Appendix
Omiitted Proofs
A.  Identical Cardinal Preferences: Proof of Lemma 7
Define the utility set of type x as
U, ={{flx, 2, 022L1), flx, &) = —cx)).

By the von Neumann—Morgenstern expected utility theorem, types x and y have
identical von Neumann—-Morgenstern preferences exactly when their respective
utility sets U, and U, are positive affine transformations of one another. So the

'”But unlike the analysis so far, the lowest types on one of the distinguished sides to
the market might be shunned in all matches.
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linear map of utilities obeys u, = a(x, y)u, + B(x, y) for all u, € ¢/, and u, € ¥,
Considering the respective matches with z, we have f(x, z) = a(x, y)f(y, 2) +
B(x, y) for all z For this to be an identity in z, necessarily f(x, 2)/f(y, z) = a(x,
y) and B(x, y) = 0. So f(x, 2)/f(y, z) = a(x, y) is independent of z, which implies
S(x, y) = 7,(x)v5(y), as required. Substituting the unmatched values yields B(x,
y) = a(x, y)c(y) — c(x) = 0 for all x and y. QED

B.  Existence Overview: Proof of Proposition 1

Let a and u have £' norms ||af|s = i [o [ee(x, y)|dxdy and |||, = fo |u(x)|dx.

Step 1: The family F: I need a compact subset F of value function space for
which a closed and continuous bestresponse map 7 exists. Let 7 be the mea-
surable functions V on [0, 1] with 0 £V < /; also of uniformly bounded variation
< B for a B<®. As any V € F is integrable, F is weak-* compact by Alaoglu’s
theorem.

LemMA 8 (Continuity). (@) Posit assumption 1. Any Borel measurable map
V = ay, from value functions in F to match indicator functions is continuous.
(6) The map a = u, from match indicator functions to the steady-state un-
matched density solving (1) is both well defined and continuous.

The proof of part a is totally different from that in Shimer and Smith (2000)
and is given below. Shimer and Smith have proved part b of lemma 8, their
fundamental matching lemma.

Step 2: The bestresponse value: The value equations (2)—(3) imply

V) =y | max(0, f(x, y) = Yw)u,(y)dy, (AT)

Qy(x)

where the opportunity set Q,, satisfies Q,(x) = {y|f(, x) = Uy)}, and the un-
matched density w, corresponds to V, given by lemma 8. For a best-response
map T to be closed and continuous on F, I cannot simply let TW(x) equal the
right-hand side of (Al). Rather, adding the expectation of V to each side of
(A1) yields

Ty = Pomax{fes y, Ve 6)d
¥+ Jﬂvm w,(y)dy

and u,, solves (1) with the matching correspondence arising from the value V.
Then a fixed point of TV = Vis a value function for a search equilibrium V.

Then 0 < V< fimplies 0 < TV< f, whereas T clearly preserves measurability,
since A and hence its inverse Q are Borel measurable. Finally, to show that
T(F) < F, it suffices to prove that the total variation of any element of 7T(.%)
is also bounded above by B. Section D of this appendix proves this inclusion for
large B.

Step 3: Continuity of T: I need T to be a continuous operator on F in the
right topology; namely, for any subset X < [0, 1], for all >0, there exists e >
0 such that | [x[TV,(x) — TV,(x)ldx| <n if [x[V,(x) — V,(x)ldx<e. Given lemma
8, this follows in Section E by iterated application of the triangle inequality.

Schauder’s fixed-point theorem (see Istratescu 1981, theorem 5.1.3) now
yields a fixed point TV = Ve F QED

Since Vis of bounded variation by proposition 1, it is the difference of mono-
tonic functions and therefore is differentiable almost everywhere.
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C.  Continuity: Proof of Part a of Lemma 8

Let V,—V in the weak-* topology. As (V,) have uniformly bounded variation'®
by Helly’s theorem," there exists a pointwise convergent subsequence V, = V.

The Lebesgue measure of {(x, y) € SE [0, 11°|f(x, y) = W)} is pu(S) =
Jsl,5,dxdy, where the 0-1 indicator functions [, ., . converge pointwise to
Uz for any y with f(x, y) # Mx). But f(x, y) = M) occurs for at most one
y given f,>0, and so u, — p, pointwise converges almost everywhere. But
[l £1, and so by Lebesgue’s dominated convergence theorem, convergence is
in £'. So if « is the acceptance indicator (a(x, y) = 1 if y € A4(x)), then &vn
converges to &, in L.

Next, A and Q are “inverses,” that is, a(x, y) = a(x, y)&(y, x). Thus

|0‘v(x; y) — o, (x, y)| = |&V(x’ y)&v(ya x) — &vn(x» y)&v,,(ya x)|

S |&V('x> )’) - &V,l(x7 J’)| + |&V(y: x) - &Vn(y, X)|

since || <1. Hence, V ~ @ is continuous implies that V ~ « is continuous. QED

D.  Completion of Step 2 of the Proof of Proposition 1

For x,> x,, let us separate the difference of TV at those points into the portion
Q,(x;, x,) due to changes in fand V and the portion Q,(x,, x,) due to changes
in the opportunity set . Thus [TV](x,) — [TV](x,) equals
Iﬂv(xz> max <f(x2’ )’), V(xz»uv(y)d)’ _ _Iﬂ\)(xl) max <f(X1 > y), V(xl»uv(y)dy
‘p +Iﬂv(x2) U'V(y)dy ¢ +Iﬂv(Xl) u]/(y)dy

_ Iﬂv(xl) [max <f(x2’ y)) V(xz» — max <f(X1, y)’ V(’ﬁ»]%(y)dy
¥+ fouen w(y)dy

Jﬂv(xﬂ) max <f(x2’ )’), V(x‘z))uv(y)dy _Iﬁv(XI) max (f(x27 y): V(x2)>uv(y)dyl|
¥+ Joen 1, (9)dy ¥+ fouen o (y)dy )
= Q.(x, %) + Qulxy, x,).

Since Q,(x,) € Q,(x,) € [0, 1] for x,<x,, we may define A(x,, x,) =
Q,(x,) \Q,(x,). To shorten equations, let [ig(y) denote [o, ) g(»)u,(y)dy and
Jag(y) denote [sc e gt (3)dy. Now Qy(x,, x,) equals

Il max <f(x2’ y)’ V(XZ» +IAmaX <f(x2’ y)’ V(X2)> 7J'1 max (f(xza y)7 V(x2)> _

YA+hil+[sl v+l B
W+ 1) famax (f(xy, 9), V(x,)) — fimax(f(x,, y), V(x,)[a1
WHHT+LDE+LT)

after a cancellation. Since the sets Q,(x) are nested increasing if V € F, the
intervals A(x;, x,.,) are disjoint if (x;, x,,] are: For if x, <x,<x;<x, then

' Steve Schochet sketched the argument of paragraphs 1 and 2, as well as the argument
of Sec. D.
' This is a nonstandard version of this result: theorem 12.7 in Protter and Morrey

(1977).
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Axy, x5) S Q)(x,) whereas A(x;, x,) S Q,(x;) S Q,(x,), where S¢is the com-
plement of Sin [0, 1]. So consider a partition 0 = x,<x, <" <x, ,<x, = 1.
Since u is pointwise bounded by /, V< ffor all V € F. Also, there exists f, <
such that |f;(x, y)| < /; by the assumption of continuous differentiability. Finally,
|Qs (%, x5)] < KN(A(x,, %,)), where N is the Lebesgue measure, and K = ( +
2)If/y*. Since the sets A(x;, x;,,) C [0, 1] are disjoint,

210,01 %)l S K2 NAR ,, %) = K)\(U Alx, x,)) <K

We can bound Q,(x,, x,) using |max({(a,, b,) —max{a,, b,)| L |a,— a,| +
by = by:

Ji 1/, 3) — s, )| + | M) — W)

|Q1(x1, xz)| < l[/+111
Il =]+ M) — M)
- v+l

= fi|xs — x,| + 0] Vix,) — Vxy)|,
where

Jouw u@)dy [ lp)dy 1
sup < . = <1.
xe01]weFu ¥ +Iﬂy(x) u(y)dy ¥ +IO l(y)dy I+y

0 =

Let P be the space of partitions of [0, 1], namely all sets of subintervals
characterized by finite increasing sequences in [0, 1]. Let (¢) denote the total
variation of the function ¢. For any {x,} € 7,

E Q.G )| <20 LA %= x| + [ M) — Wx, )10 < 6, + 0( V).

Finally, (T'V) equals

n

sup X, Q4 (%, xp1) + Qulx;y x| Ssu;o; [Q.(x;, %, + [Qulx;, x,.)|l.

xeP j=1

The above estimates show that (7'V) < (K + 6f) + 6()V). Since <1, if () <B,
then (T'V) < B for any B> (K+ 6f,)/(1 — 0).

E.  Proof of Step 3 in Proposition 1

To prove continuity in the weak topology, we need | [;T(V,)(x) — T(V,)(x)dx|
small whenever | [;V,(x) — V,(x)dx| is small, for any I < [0, 1]. Toward applying
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the triangle inequality, write TV, (x) — TV,(x) as

Joro-2u max (f(x, ¥), V(%)) () N V(%) = Vo @)] fauiw w, (9)
Y+ foro 1, (9) Y+ foro , (9)

. Joow max (f(x, 5), Va))wy, (5) — 1, ()]
Y+ o 1), (9)

,[Qz(X> max (f(x’ 3’), Vz (x)>uvz (y)
+ - u,
Lgmn.m e 0 Jﬂlm w0) =, (y)] v+ Iﬂz(x) 7/4)2()’)

where [;; = [;— [} Since ¢ > 0, f (and thus V,) is bounded, and 0 < u < [, all factors
above are uniformly bounded in absolute value, say by C>0. When these are
replaced with C, the absolute value of the integrated first, second, and fourth
terms over [is small if V; and V, are weakly close, whereas the pointwise absolute

value of the third and fifth terms is small given o, and «,; so u, and u, are
L' close, by lemma 8. QED

+
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