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Abstract. Quite often, observed income and survival data are incomplete due to
left- or right- censoring or truncation. Measuring inequality, for instance by the
Gini index of concentration, from incomplete data like this will produce biased
results. We describe the Stata package GiniInc, which contains three indepen-
dent functions to estimate the Gini concentration index under different conditions.
First, survgini computes a test statistic for the comparison of two (survival) dis-
tributions based on the non-parametric estimation of the restricted Gini index for
right-censored data, using both asymptotic and permutation inference. Second,
survbound computes non-parametric bounds for the unrestricted Gini index from
censored data. Finally, survlsl implements maximum likelihood estimation for
three commonly used parametric models to estimate the unrestricted Gini Index,
both from censored and truncated data. We briefly discuss the methods, describe
the package, and illustrate its use through simulated data and examples from an
oncology and a historical income study.
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1 Introduction

The Gini Index

The Gini index is the most common statistical index used in the social sciences for
measuring inequality or concentration in the distribution of a positive random variable
such as income (Gini 1912, 1914). It is usually defined based on the Lorenz Curve
as shown in Figure 1, in which the y-axis represents the cumulative proportion of the
total income owned by the poorest percentage of the population (on the x-axis). The
45-degree line represents the case of no inequality because the total income is equally
distributed in the population, and the Lorenz Curve measures how different the income
distribution is from the equality distribution. Indeed, the Gini concentration index
is equal to twice the area between the 45-degree line and the Lorenz Curve. So it is
bounded between 0 and 1 - a Gini index of zero means no inequality, while a value of 1
represents maximal inequality.

Figure 1: Lorenz Curve

The Gini index can also be expressed in the following mathematical representations.
Consider a non-negative random variable X with cumulative distribution function F (x).
The Gini index is also written as:

G =

∫
R+

∫
R+ |x1 − x2|dF (x1)dF (x2)

2µ
,

where µ is the expected value of X (Gini 1912, 1914).

Although the Gini index is mainly used in economics as a measure of income or
wealth inequality, it has recently been used to quantify the inequality in mortality.
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Moreover, an important expression has also been developed that links the Gini index
to the survival analysis:

G = 1−
∫
R+ S

2(x)dx∫
R+ S(x)dx

, (1)

where S(x) = P (X ≥ x) (Michetti and Dall’Aglio 1957; Hanada 1983).

The literature has mostly focused on complete data, while less attention has been
paid to censored or truncated data. The Stata package GiniInc focuses on the estima-
tion of the Gini index from incomplete income or survival data.

This paper describes two specific situations. First, when the data are right cen-
sored, we briefly review existing methods to compare the distributions of two samples
based on their non-parametric restricted Gini index. Such methods are implemented in
the Stata function survgini (Section 2). Second, when the data are left censored or
truncated, we have obtained non-parametric bounds for the (unrestricted) Gini index
implemented in the Stata function survbound (Section 3). If one has an educated guess
on the parametric form of the distribution, we can estimate the unrestricted Gini and
its corresponding large-sample confidence interval from likelihood maximization. This
is implemented in the Stata function survlsl (Section 4).

Censoring vs. Truncation

This section provides a brief review of censoring and truncation. Consider a lifetime
(or income) random variable X ≥ 0, with distribution fθ(x). Also let C ≥ 0 be another
random variable, independent of X. Let us focus on censoring first.

Observation of X is left-censored if one observes the largest between X and C,
and knows which one it is. One example of such a setting is a study in which an
animal is followed over time to obtain the age (X) at which it learns to perform a
task. Left censoring occurs if the animal already knows how to perform the task
at age (C), when observation begins. The corresponding observed data are called
left-censored data.

The observation of X is right-censored if one observes the smallest between X and
C, and knows which one it is. This is a very common situation in survival studies,
when one observes the time (X) from entry into the study until some event (e.g.,
death) occurs, and when the observation of the event is only possible until the
end of the study (C time units from entry). Note that the maximum observation
time for each individual here depends on the time of entry, and as such it typically
differs across subjects.

Right (or left) censoring can also occur with a constant C, for example if one
considers the demand for tickets for a sporting event, which is to be held in a
stadium that has (obviously) finite capacity. The number of tickets sold can only
be as high as the stadium’s capacity, which therefore makes the observation of
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the demand for tickets right-censored by that fixed number (see example 19.4 in
Greene (2012)).

Now, let us consider truncation.

The variable X is left-truncated if one observes X only when X ≥ C, and it
is right-truncated if one observes X only when X ≤ C. Truncation will often
occur with respect to a constant variable C = k. This occurs, for example, when
there exists a lower (or upper) detection threshold for an instrument, so that
measurements below (or above) the threshold do not occur.

Summarizing, with censoring one does observe the individual, but the value that is
collected might not correspond to the true underlying value that one is interested in
(e.g. in Greene’s example, the fact that all tickets were sold does not mean that the
demand for tickets was exactly equal to capacity). In contrast, for truncated variables
one does not even observe the individual/observation with values of the variable that
are outside some range.

Let us analyze the difference between (left) censoring and truncation in a bit more
detail. We focus on the case of constant C, which will be relevant in what follows.
Consider a city that has an income tax system that requires its citizens to pay tax only
if their incomes are above a certain fixed threshold, and suppose for simplicity that one
only cares about that single variable - income. One can easily recover the income data
from the taxes that have been paid, but the income data will not be available for any
of those who do not pay taxes. If we do not know how many citizens are below the
threshold, then the observed data in the tax records are left-truncated, since exempt
individuals are simply not in the dataset. If, on the other hand, one also knows the
total number of citizens in the town (including the number of tax-exempt citizens), then
the income data can be augmented by adding these individuals, who are known to have
an income below the threshold. The resulting more-informative dataset would now be
larger and made of left-censored data.

We can describe the difference between the two cases in terms of the likelihood con-
structed from the two observed data distributions, when a parametric model describes
the population.

Observed left-censored data can be written as the pairs (y1, δ1), ..., (yn, δn), where δi
is the event indicator, which is equal to 0 if the income is left-censored by the fixed and
known value k, and 1 otherwise. Denote xi as the true underlying income of individual
i, and

yi = max(xi, k)

δi = I(k ≤ xi).

Assume that the true incomes x1, ...xn are an iid sample from the model density fθ(x).
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Then the likelihood function for the observed data is

L(θ) ∝
n∏
i=1

{fθ(yi)}δi{Fθ(Xi ≤ k)}1−δi

(note that yi = k whenever δi = 0). By using maximum likelihood estimation in Stata,

both the estimate θ̂ and its standard error se(θ̂) can be easily obtained.

In the case of left truncation, we observe only the cases such that xj ≥ k, but we do
not know how many of the observations are missing, i.e. the cases with xj < k. Denote
by m the number of available observations yj = xj , j = 1, ...,m. The left-truncated
income are therefore an iid sample from fθ(x|X ≥ k), and the observed data likelihood
is

L(θ) ∝
m∏
j=1

fθ(yj)

Fθ(X ≥ k)
.

Again, using maximum likelihood estimation in Stata, both the estimate θ̃ of θ and its
standard error se(θ̃) can be obtained.

To illustrate the implications of the two sampling models empirically, we have gen-
erated some data from a log-normal distribution with parameters µ = 3 and σ = 2. We
simulated with different combinations of the number of observations n. The threshold
k was set to 10, so that roughly 30% of the original simulated observations were below
k and not observed. We repeated the simulation 1,000 times and report the results
in Table 1, which shows that when both n and m are large, µ̂ (and σ̂) and θ̃ (and σ̃)
naturally converge to the true µ (and σ). Note that the estimation under left truncation

is less precise, i.e. se(θ̂) < se(θ̃), which is somewhat expected. A thorough study of
estimation under the two sampling schemes is beyond the scope of this paper.

Table 1: Empirical estimation with left censoring (µ̂, σ̂) vs. left truncation (µ̃, σ̃)

n µ̂ σ̂ µ̃ σ̃
50 2.97 (.318) 1.98 (.284) 2.71 (1.63) 1.99 (.615)
100 2.99 (.217) 1.98 (.191) 2.83 (1.17) 2.00 (.472)
300 3.00 (.124) 1.99 (.112) 2.96 (.509) 1.99 (.247)
500 3.00 (.099) 2.00 (.086) 2.97 (.391) 2.00 (.190)
1000 3.00 (.068) 2.00 (.061) 2.98 (.283) 2.00 (.138)

Standard errors in parentheses

Recall the tax example we mentioned earlier. Suppose the mayor knows that the
income data of the city actually follow a log-normal distribution. The analysis above
implies that he can always use the maximum likelihood estimation to recover the true
parameters of the log-normal distribution when the income data are either left-censored
or left-truncated.



6 GiniInc

Section 2 below discusses right-censored data with general censoring variable C.
Sections 3 and 4 will focus on censored and truncated data when the variable C is con-
stant. Specifically, Section 3 will discuss non-parametric bounds for the Gini index when
the observed data are left-censored, while Section 4 will discuss the general parametric
estimation of the Gini index.

2 Non-parametric restricted Gini for right-censored sur-
vival data

In Bonetti et al. (2009) a nonparametric test has been proposed based on the Gini index
for testing the equality of two survival distributions from the point of view of concen-
tration based on two independent right-censored samples from the two populations.

Let X1, . . . , Xn be an i.i.d. sample from X observed only partially, in particular
after random right censoring (independent of X). The Gini index can be modified for
application to lifetime data, in which individuals have finite follow-up time for survival
by defining the restricted Gini index

Gt = 1−
∫ t
0
S2(u)du∫ t

0
S(u)du

, (2)

rather than the traditional unrestricted Gini index G (whose integrals in (2) would run
from zero to infinity, see (1)). The time t indicates the longest follow-up time in the
data. The estimator proposed for the restricted Gini index for right censored data is

Ĝt = 1−
∫ t
0
Ŝ2(u)du∫ t

0
Ŝ(u)du

,

where Ŝ(u) is the Kaplan-Meier estimator of S(u); see Kaplan and Meier (1958).

The authors have shown that, under some regularity conditions, the scaled estimator
Ĝt follows an asymptotically normal distribution, with an explicit expression for the
asymptotic variance. A test has been proposed for comparing two survival functions
estimated from the independent samples of sizes n1 and n2. The Gini test statistic is

Tt :=

(
Ĝ1,t − Ĝ2,t

)2
V̂ ar(Ĝ1,t) + V̂ ar(Ĝ2,t)

, (3)

where Ĝj,t is the estimator of the restricted Gini index for censored data for group j

and V̂ ar(Ĝj,t) is the estimator of the sampling variance of Ĝj,t for group j, j = 1, 2.
In Bonetti et al. (2009) a simulation analysis is described, in which the Gini test is
compared to other tests for the difference between two survival distributions, such as
the log-rank, Wilcoxon, and Gray-Tsiatis tests.

Further, Gigliarano and Bonetti (2013) compared the asymptotic inference with a
permutation approach, suggesting that the permutation test should be preferred to
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the asymptotic test, especially in the case of unbalanced and small groups. The Gini
permutation test is a permutation test procedure applied to the test statistic (Ĝ1,t −
Ĝ2,t)

2, constructed as follows:

(i) Compute the test statistic (note that this is the numerator of Tt) for the original
data.

(ii) Repeat the following M times (with index m = 1, ...,M):

– sample a permutation πm from all permutations of the (n1+n2) group labels;

– compute the test statistic value g
(m)
t from the original data, but with the

permuted group labels πm.

(iii) Estimate the permutation distribution of the test statistic with the empirical cu-
mulative distribution function obtained from the permutated samples.

(iv) Obtain the permutation p-value p0 corresponding to the value of the test statistic
observed on the original data from the empirical distribution estimated in (iii). If
p0 ≤ α for the given significance level α, we reject the null hypothesis of equality
of the two survival distributions.

Our Stata function survgini not only implements the asymptotic and the permuta-
tion restricted Gini tests, but also compares the log-rank and Wilcoxon tests, to allow
for an immediate comparison of the results. Note that this function replicates what was
available in the R package survgini (Gigliarano and Bonetti 2011).

2.1 Syntax of the survgini command

The syntax of survgini is:

survgini time failure treatment
[

if
][

in
][
, options

]
where the sequence of the variable list must be fixed.

Table 2 demonstrates a typical data structure of the three variables in survival
analysis. time is the time-to-event variable. failure is a dummy variable, which is equal
to zero if the survival time is right-censored. treatment is a categorical variable with
one standing for the first group and two standing for the second group.

The syntax also contains a set of options for various purposes:

• nolastevent : Integrate the restricted Gini statistic until the last censored or non-
censored observation

• nolinearrank : Inactivate the production of the two linear rank tests (log-rank test
and Wilcoxon test)
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Table 2: An illustration of the data structure for survgini

time failure treatment
2.69678 1 1
6.38193 0 2
5.61533 0 1

...
...

...

• noasymptotic: Inactivate the asymptotic Gini test

• nopermutation: Inactivate the permutation Gini test

• m(integer): Number of replications of permutation sampling; default = 500.

2.2 Example

We will use the survival data from the Eastern Cooperative Oncology Group (ECOG)
phase III clinic trial E16901, which accrued patients from 1991 to 1995 and was un-
blinded in 1998. This trial was aimed at comparing the effect of Interferon alpha-2b
chemotherapy (IFN) to observation only in patients affected by high-risk melanoma.
Trial E1690 was a randomized three-arm clinical trial that compared high dose IFN,
low dose IFN, and control. To illustrate survgini, we use relapse-free survival (RFS)2

data from the treatment group with high dose IFN and data from the control group
(215 and 212 patients, respectively).

Figure (2) shows the Kaplan-Meier estimates for RFS for both groups. The solid line
and dashed line represent the survival time of the treatment group and the observation
group, respectively. The analysis of trial E1690 has showed that the high dose IFN has
a significant impact on RFS (Kirkwood et al. 2000). We will now examine whether the
two survival distributions are significantly different with respect to their concentrations.

The implementation of survgini is straightforward by simply inputting the three
variables of interest in the orders as shown below. Note that when the sample size is
relatively large, we shall inactivate the permutation test, which is mainly for the cases
where the sample size is small. The function reports the corresponding p-values of
different tests. pGiniAs, pLR, and pW stand for the p-value of the Gini asymptotic
test, the log-rank test, and the Wilcoxon test, respectively. The results show that
the difference in concentration between the two groups is marginally significant at 5%
confidence level.

. survgini failtime failcens trt, noperm

Comparison among GiniAs Log-rank and Wilcoxon tests

1. The data are available from: http://merlot.stat.uconn.edu/∼mhchen/survbook/
2. This is the time from randomization until relapse (progression of the disease).
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Figure 2: Kaplan-Meier Estimate of Relapse-free survival (Kirkwood et al. 2000)

pGiniAs pLR pW

pval .0526 .05391 .03506
stat 3.7565 3.7154 4.4421

. return list

scalars:
r(pGiniAs) = .0526027215785181

r(pLR) = .0539137282127673
r(pW) = .0350623367664427

r(statGiniAs) = 3.756495446427073
r(statLR) = 3.71536833497514
r(statW) = 4.442136830000731

r(statGiniPerm) = .003742444738037

If the sample size does not seem large enough to produce reliable asymptotic results
from asymptotic Gini, log-rank, and Wilcoxon tests, the permutation test can be used
by inactivating the asymptotic tests as shown below.

. set seed 20171121

. survgini failtime failcens trt, nolin noas

Gini Permutation Test

pGiniPerm

pval .05
stat .0037

. return list

scalars:
r(pGiniPerm) = .05

r(statGiniPerm) = .003742444738037
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However, attention must be paid to the following three direct consequences of the
fact that the permutation test involves replications of permutation sampling. First, it
will significantly slow down the speed of programming, especially when m(integer) is
set to be large. Second, the result can be change slightly every time it is executed.
We strongly recommend use of the seed function before using the permutation test for
replication purposes. Finally, the test statistic is the numerator of Equation 3, which
is not comparable to the rest of the tests whose test statistic follows an asymptotic
Chi-square distribution.

3 Non-parametric Gini index estimation for left-censored
data

This section explores the upper and lower bounds of the Gini index for left-censored
income data. There are two important reasons why we consider only left-censored
income data. First, if the data are right-censored, the largest unobserved value(s) could
theoretically be as large as +∞, thus corresponding to a true Gini index as large as
1 (which would be the upper bound). Second, if the data are left-truncated, then the
proportion below the threshold is unknown, which would push the lower bound to zero.
Therefore, in this section, we explore only the left-censoring case with a fixed censoring
value k. We will discuss the truncated data case further in the next section.

3.1 Gini bounds for left-censored data

In the left-censoring setting, the percentages of incomes (survival times) below and
above the threshold are known. For ease of description, we refer to incomes below (left
censored survival times are more rare). Also, we observe all the incomes above the
threshold, but not the ones below the threshold. While it is impossible to compute the
exact Gini index for the distribution, we search for the possible upper and lower bounds
of the index by using the Gini decomposition method (Yitzhaki and Schechtman 2013).
The Gini index can be decomposed as follows:

G = s1π1G1 + s2π2G2 +
π1π2(µ2 − µ1)

µ
(4)

where indices 1 and 2 refer to below and above a fixed threshold k, respectively. The
values sj , Gj , πj , and µj indicate the share of total income, the Gini index, the share
of total number of observations, and the total mean, respectively for group j. G and µ
refer to the entire population. In our case, π1 and π2 are known. G2 and µ2 can be easily
computed from the (known) incomes above k. However, the rest of the parameters are
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unknown, and they all depend on the unknown µ1:

µ(µ1) = µ1π1 + µ2π2

s1(µ1) =
µ1π1

µ1π1 + µ2π2

s2(µ1) =
µ2π2

µ1π1 + µ2π2
.

The value of G1 is also unknown and it also depends on the unknown shape of the
distribution below the threshold k. Thus, we can rewrite G as a function of G1, G2 µ1,
µ2, π1, and π1, where only G1 and µ1 are the unknown parameters:

G =
µ1π

2
1G1

µ1π1 + µ2π2︸ ︷︷ ︸
G<k(µ1, G1)

+
µ2π

2
2G2

µ1π1 + µ2π2︸ ︷︷ ︸
G>k(µ1)

+
π1π2(µ2 − µ1)

µ1π1 + µ2π2︸ ︷︷ ︸
GB(µ1)

and where G<k, G>k, and GB are the three components of Equation (4). We now
examine the behavior of each component by taking a derivative of µ1.

1. For G<k(µ1, G1):

From the expression of G<k(µ1, G1), we cannot tell too much about its behavior as a
function of the unknown µ1, G1. However, since we know that s1 ∈ [0, π1k

π1k+π2µ2
] and

G1 ∈ [0, 1], we can compute the following bounds:

G<k(µ1) ∈ [0,
π2
1k

kπ1 + µ2π2
).

The lower bound can be reached either by setting G1 = 0 or µ1 = 0. It seems that
the upper bound may be reached by setting µ1 = k and G1 = 1; however, this is not
a realistic case. Indeed, if µ1 = k, then the incomes below k are equally distributed,
i.e. everyone below the threshold has the same income k, which means the G1 = 0. If
G1 = 1, then all the income is owned by one person, which means that with a relatively
large sample, µ1 ≈ 0. Therefore, the two conditions cannot be reached simultaneously.

2. For G>k(µ1):

∂

∂µ1
G>k(µ1) = − µ2π1π

2
2G2

(µ1π1 + µ2π2)2
< 0,

so that G>k(µ1) is, in non-trivial cases, decreasing with respect to µ1. Since µ1 ∈ [0, k],
it follows that:

G>k(µ1) ∈ [
µ2π

2
2G2

kπ1 + µ2π2
, π2G2].
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3. For GB(µ1):

∂

∂µ1
GB(µ1) = − π1π2µ2

(µ1π1 + µ2π2)2
< 0,

so that GB(µ1) is also decreasing with respect to µ1. Since µ1 ∈ [0, k], it also follows
that:

GB(µ1) ∈ [
π1π2(µ2 − k)

kπ1 + µ2π2
, π1].

Combining all the elements from above, we are now able to construct the bounds of
the overall Gini index G as follows:

G ≥ 0 +
µ2π

2
2G2

kπ1 + µ2π2
+
π1π2(µ2 − k)

kπ1 + µ2π2
=
µ2π

2
2G2 + π1π2(µ2 − k)

kπ1 + µ2π2
.

where the equal sign can be reached by setting µ1 = k and G1 = 0;

G ≤ min{1, π2
1k

kπ1 + µ2π2
+ π2G2 + π1}

where the equal sign for the second term in the curly brackets cannot be reached because
the first component requires µ1 = k while the last two components require µ1 = 0.

Our Stata function ginibound computes the bounds3, and it tries to improve on
them by also implementing a numerical method to obtain the approximate upper bound
using a grid search method (see below).

3.2 Syntax of the survbound command

The syntax of survbound is

survbound income, threshold(real) censorpct(real)
[
grid(integer)

]
where income could be any non-negative variable. In order to have a complete syntax,
one has to provide the threshold for the observed left censoring, as well as the percentage
of the data that are left-censored. In the example below, the threshold will be 10
(shillings) and the percentage 0.3 (30%).

There is a non-compulsory option “grid(n)”, where n is an integer, that allows grid-
search by taking (n− 1)2 simple combinations of (µ1, G1) to improve the upper bound.
Take n = 10 for instance. In our data, µ1 ∈ [0, k] and since the Gini index below
the threshold is by definition between 0 and 1, “grid(10)” generates 9 values of µ1:
{ k10 ,

2k
10 , ...,

9k
10} and 9 values of G1 : {.1, .2, ..., .9}. It then uses all 81 combinations of

(µ1, G1) to estimate the largest possible value for the overall Gini index (G).

3. We have used the user-written function fastgini (Sajaia 2007) to compute G2, since data are
completely observed beyond k.
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3.3 A small simulation exercise

In order to see how the bounds behave in comparison with the true Gini index in
different situations, i.e. with different percentages of population below the threshold,
we present a small empirical analysis using simulated data (sample size = 10, 000)
from a log-normal distribution with location parameter µ = 2 and shape parameters
σ = 0.5. The true Gini index for this distribution is G = 0.28. Different thresholds are
set at the 10%, 20%, 30%, 40%, 50%, and 60% percentiles (π1), respectively. We repeat
the simulation 1, 000 times and report the average lower and upper bounds, and their
lengths.

Table 3: Empirical average lower bound, lengths, and upper bounds for the Gini index

π1 Lower bound Upper (A) Length (A) Upper (G) Length (G)
0.10 .2547 .3131 .0584 .3134 .0503
0.20 .2512 .3930 .1418 .3729 .1134
0.30 .2403 .4910 .2507 .4347 .1865
0.40 .2227 .6097 .3870 .4985 .2684
0.50 .1989 .7522 .5532 .5638 .3582
0.60 .1414 .9258 .7844 .6187 .4725
Upper (A) = the average of the analytic (A) upper bound.

Length (A) = the average of the difference between lower and analytic upper bounds.

Upper (G) = the average of the numeric upper bound calculated by “grid(10)”.

Length (G) = the average of the difference between lower and numeric upper bounds.

As expected, Table 3 shows that the true value of the Gini index (0.28) always lies
between the lower bound and upper bounds. When the percentage (π1) of population
below the threshold is low, the gap between the bounds is very tight. However, as π1
becomes larger, then the length of the bounds could become quite big and not very
useful. For example, when the π1 = 0.40, i.e. 40% of the observations are not observed,
then the non-parametric estimation of the Gini index ranges from 0.22 to 0.61, which
could be of little help for describing the true Gini index.

Also, the numeric upper bound obtained by the “grid-search” method is very close
to the analytic one when π1 is small. However, as π1 becomes larger, the gap between
the numeric upper bound and the analytic upper becomes non-trivial, which sheds
light on the fact that the analytic upper bound behaves poorly when π1 gets large. In
particular, when π1 = 60%, the upper bound is quite close to 1, which does not give
as much information for the true G since G ∈ [0, 1]. The simulation exercise shows the
importance of also computing the “grid-search” numeric upper bound when π1 is large.
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3.4 Example

The data are provided by the project EINITE 4 - Economic inequality across Italy and
Europe, 1300 - 1800. The data cover historical household wealth based on the English
“lay subsidies”, which were levied across the country according to a uniform regulation.
The lay subsidies provide a unique opportunity to study economic (wealth) inequal-
ity in late-medieval England. In the following we will use the terminology “income”
throughout. Here, we use the historical data (sample size = 5, 694) from the lay sub-
sidy of the country of Warwichshire, England, levied in 1332. The tax-paying threshold
was set at 10 shillings, which means that a relatively large share of the overall popula-
tion (those with wealth below 10 shillings) was exempted from paying the lay subsidy
and consequently does not appear in the records. From other historical sources, the
missing households can be estimated at approximately 30% of the total (Alfani and
Garćıa-Montero 2018).

The implementation of survbound is straightforward by inputting the variable of
interest (income), the value of the threshold (here, 10), and the percentage of censoring
(here, 0.3). As shown below, the command computes the lower and upper bounds, and
saves as the two scalars (r(lower a) and r(upper a)). The result shows that the overall
Gini index is between 0.43 and 0.58.

. survbound income, thres(10) censorpct(0.30)

Non-Parametric Gini Numeric Boundaries:

Lower(A) Upper(A)

Non-Parametric Gini .42755 .57873

Lower(A): Analytic lower bound
Upper(A): Analytic upper bound

. return list

scalars:
r(lower_a) = .4275491624079315
r(upper_a) = .5787303443070373

The grid-searching method can be easily implemented by adding the “grid” option.
The result below shows that the upper bound found by grid-searching is slightly smaller
than the analytic upper bound. The value of the upper bound computed by the “grid”
option is saved as the scalar (r(upper g)).

. survbound income, thres(10) censorpct(0.30) grid(10)

Non-Parametric Gini Numeric Boundaries:

Lower(A) Upper(A) Upper(G)

4. Please refer to www.dondena.unibocconi.it/EINITE
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Non-Parametric Gini .42755 .57873 .53898

Lower(A): Analytic lower bound
Upper(A): Analytic upper bound
Upper(G): Upper bound approximation by Grid-search

. return list

scalars:
r(lower_a) = .4275491624079315
r(upper_a) = .5787303443070373
r(upper_g) = .5389826627857929

4 Parametric log-scale-location models for incomplete data

If the distribution of the data is (assumed) known, one can calculate the Gini index for
both censored or truncated data through maximum likelihood estimation. Because left-
censoring or truncation is analogous to right-censoring or left-truncation in our settings,
we only focus on left- censoring and truncation below.

4.1 Interval estimation of the Gini index for parametric models

Again, suppose that the income distribution can be represented by a probability density
function f(x) with the corresponding cumulative distribution function F(x). Defining
µ as the mean of the distribution, the Gini coefficient can also be written as:

G = 1− 1

µ

∫ ∞
0

(1− F (y))2dy.

For three commonly used parametric log-scale-location models, the explicit analytic
expressions of the Gini index are available as shown in Table 4. Note that since the
Gini index is scale-invariant, it does not depend on the scale parameter.

If we can reasonably assume that the left- censored or truncated sample follows
some parametric model, then we can perform maximum likelihood estimation using
the likelihood functions as defined in the previous section, and obtain the estimated
parameters. From these, we can thus calculate the Gini index. We can construct
a large-sample confidence interval for the estimated Gini index using either a direct
approach or the Delta method. Below we focus on the log-normal distribution for a
detailed illustration of the two approaches.

The direct approach (C.I. 1)

Since the Gini index of the log-normal distribution is a function of σ only, we should re-
call the relevant properties of σ. By the asymptotic property of MLEs, σ̂ asymptotically
normal:

σ̂ ≈ N (σ,
1

nI(µ, σ)
) for large n,
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Table 4: A selection of log-scale-location parametric models

Model Density Function Gini Index

Log-normal
(µ, σ)

1
xσ
√
2π

exp[− (ln x−µ)2
2σ2 ] 2Φ( σ√

2
)− 1

Weibull
(α, β)

β
α

(
x
α

)β−1
exp[−( xα )β ] 1− 2−

1
β

Log-logistic
(α, β)

(β/α)(x/α)β−1

(1+(x/α)β)2
1/β

where I(µ, σ) is the Fisher Information. Using Slusky’s theorem, the 95%-level large-
sample confidence interval for σ is

σ ∈
(
σ̂ ± z0.025 ∗ δ̂

)
,

where δ̂ =
√

1
nI(µ̂,σ̂) is the standard error of σ̂, and z0.025 the 0.975th percentile of the

N(0, 1) distribution. Stata will produce δ̂ automatically when estimating σ from the
last iteration of the Newton-Raphson algorithm5.

Once σ is estimated, one can then easily calculate the estimated Gini index using
the formula in Table 4:

Ĝ = G(σ̂) = 2Φ(
σ̂√
2

)− 1.

Note that the Gini index of the log-normal distribution is an increasing function of σ,
as

∂

∂σ
G(σ) =

√
2 ∗ φ(

σ√
2

) > 0, (5)

where φ is a density function of a normal distribution. Therefore, a 95% confidence
interval is readily constructed as:

G(σ) ∈
(
G(σ̂ − z0.025 ∗ δ̂), G(σ̂ + z0.025 ∗ δ̂)

)
. (C.I. 1)

The delta method approach (C.I. 2)

Using the first-order derivative with respect to σ of the Gini index from Equation (5),
by the delta method the following holds:

5. For more information, we refer to the Stata command ml.
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Ĝ(σ)
a∼ N

(
G(σ), [G′(σ)]2

1

nI(µ, σ)

)
= N

(
G(σ), 2[φ(

σ√
2

)]2
1

nI(µ, σ)

)
,

and by Slutsky’s theorem we can replace µ and σ by µ̂ and σ̂, respectively. Therefore,
an alternative 95%-level large-sample confidence interval for G(σ) is

G(σ) ∈
(
G(σ̂)± z0.025 ∗

√
2φ(

σ̂√
2

) ∗ δ̂
)
. (C.I. 2)

Note that the Gini index is a monotone function of the corresponding parameter for
all three parametric models in Table 4. Therefore, the confidence intervals for the other
parametric models can be obtained similarly. Table 5 summarizes the results.

Table 5: Confidence intervals for the estimated Gini index

Model C.I. 1 C.I. 2

Log-normal
(µ, σ)

G(σ̂ ± z0.025 ∗ δ̂) G(σ̂)± z0.025 ∗
√

2φ( σ̂√
2
) ∗ δ̂

Weibull
(α, β)

G(β̂ ± z0.025 ∗ δ̂) G(β̂)± z0.025 ∗ (β̂−22−1/β̂ ln 2) ∗ δ̂

Log-logistic
(α, β)

G(β̂ ± z0.025 ∗ δ̂) G(β̂)± z0.025 ∗ β̂−2 ∗ δ̂

To empirically compare the two confidence intervals, we can use simulated data from
three log-normal distributions with µ = 2, but different shape parameters: σ = 0.5, 1,
and 1.5, respectively. The threshold k is set to 6, 5, and 3.5, respectively, so that roughly
30% of the original simulated observations are below k and are not observed. We repeat
the simulation 1, 000 times and report, in Table 6, the probability that the true Gini
index lies in the two confidence intervals and the average lengths of the intervals.

Table 6 shows that as the sample size grows, as expected, approximately 95% of
the simulations produced confidence intervals that cover the true Gini index. When
the sample size is small, the coverage is typically lower than 95%. The coverage results
from C.I. 1 and C.I. 2 are similar, as are the average length of the two intervals.

4.2 Syntax of the survlsl command

The parametric methods mentioned above are implemented in the command survlsl .
The syntax of the command is as follows:
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Table 6: Example - empirical comparisons of C.I.1 and C.I.2

C.I.1 C.I.2
True G # Obs Coverage Avg length Coverage Avg length

0.28
20 .91 .2166 .905 .2158
50 .94 .1366 .938 .1364
100 .941 .0973 .94 .0972
300 .944 .0562 .944 .0562

0.52
20 .9 .3588 .892 .3566
50 .921 .2289 .916 .2283
100 .948 .1628 .947 .1625
300 .956 .0941 .954 .0941

0.71
20 .918 .3755 .912 .3791
50 .926 .2413 .927 .2419
100 .933 .1711 .922 .1713
300 .951 .0996 .952 .0996

*Avg length = the average size of all the simulated confidence intervals.

survbound income, threshold(real) censorpct(real) model(string)

which is very similar to survbound . The main difference is that survlsl has one more
compulsory option, “model(string)”, to indicate the parametric model. The currently
available models are log-normal distribution (lognormal), log-logistic distribution (loglo-
gistic), and Weibull distribution (weibull)6. If one types “censorpct(0)”, then survlsl
treats the data as truncated, otherwise as censored.

4.3 Example

To illustrate the use of survlsl, we will make use of the same historical income data
mentioned previously. The only difference is that, for now, the percentage of censoring
is uncertain. It might be 30% (as previously estimated) and in this case the data are
left-censored ; or the percentage can be completely unknown, and in this case the data
are left-truncated. The key assumption is that the data follow a log-normal distribu-
tion. Figure 3 shows a histogram of the log income distribution, with a fitted normal
distribution. The vertical line represents the log threshold, log(10). The figure suggests
that the data fit a log-normal distribution well.

The syntax of survlsl is similar to that of suvbound . The command computes the

6. The exact name should be specified in order to correctly indicate the model. For example, survlsl
cannot recognize model(lognorm).
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Figure 3: Distribution of the observed income data

maximum likelihood estimates of the location and scale parameters of the log-normal
distribution, as well as the corresponding Gini index. One may notice that the Gini
index (0.517) calculated using the parametric method is within the non-parametric
bounds (0.427, 0.539) mentioned in the previous section (note that this need not be the
case). All the estimates are saved in scalars and matrices. Moreover, survlsl reports
the confidence intervals from both the direct approach and the delta method. Note that
the confidence intervals are very tight (n = 5694). The results are stored in the 2 × 2
matrix r(conf interval).

. survlsl income, thres(10) censorpct(0.30) model(lognormal)

(... MLE output omitted ...)

Left Censored Model

Estimated Parameters:
MLE location = 2.93999
MLE scale = .99122

Parametric Gini = .51663

Parametric Gini 95% Confidence Interval:
C.I. 1 is derived from the delta method;
C.I. 2 is derived from a direct approach.

Lower Upper

Conf Interval 1 .50794 .52532
Conf Interval 2 .5079 .52528

. return list
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scalars:
r(gini) = .5166333406145751

r(alpha) = 2.939988458339696
r(beta) = .9912194875700111

matrices:
r(estimates) : 1 x 2
r(variances) : 1 x 2

r(conf_interval) : 2 x 2

If one does not actually know the percentage of the observations below the threshold,
i.e. if the data are left truncated, then the estimation relies even more heavily on the
distributional assumption. We use “censorpct(0 )” to flag this case.

. survlsl income, thres(10) censorpct(0) model(lognormal)

(... MLE output omitted ...)

Left Truncated Model

Estimated Parameters:
MLE location = 3.39364
MLE scale = .67306

Parametric Gini = .36587

Parametric Gini 95% Confidence Interval:
C.I. 1 is derived from the delta method;
C.I. 2 is derived from a direct approach.

Lower Upper

Conf Interval 1 .35736 .37439
Conf Interval 2 .35733 .37436

Note that the estimates in the two scenarios are quite different. This raises a question
about the assumptions: (i) the censoring percentage is 30%; and (ii) the data follow a
log-normal distribution. Because if both assumptions are correct, then the two estimates
should be similar. Indeed, from the truncated data likelihood we can easily estimate
the proportion of below-threshold observations as 5.25%.

If we are very confident only about the log-normal assumption, then we shall trust
the results produced from the later estimate since it only relies on the distributional
assumption. We can also conduct some sensitivity analysis using different percentages,
as shown in Table 7. On the other hand, if we are very certain about the percentage of
the unobserved below the threshold, then we shall doubt the log-normal assumption.

Note that in Table 7, as one would expect, if the censoring percentage is 5.25%
we recover the estimated values of .366 from the truncated analysis. The confidence
intervals are also very similar, with the truncated analysis producing slightly wider
intervals (as expected from Table 1). If one applied the two estimation procedures to a
subset of the data (i.e. to the first 500 observations only), then the confidence interval
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Table 7: A robustness check on the censoring assumption

Censoring % 30% 20% 10% 5.25%
Estimated Gini .517 .458 .396 .366

C.I. 1 (.508, .525) (.450, .468) (.390, .403) (.360, .372)
C.I. 2 (.508, .525) (.450, .466) (.390, .403) (.359, .372)

(Stata outputs omitted)

under truncation would be shown to be quite a bit wider than that under censoring
(data not shown).

Moreover, neither of the assumptions may be valid. Using the estimated parameters,
we can draw the two log-normal distributions and compare them with the observed
income data as shown in Figure 4. Even from such a simple graphic comparison, the
estimated distribution under truncation fits the observed data very well, and is much
better than the one under censoring. Therefore, we shall trust more the results from
the truncation case. Additional work on the goodness of fit aspects may be pursued,
but that is beyond the scope of this paper.

Note that one possible explanation of the discrepancy may be the presence of a
mixture distribution with a large fraction of (very) small incomes (e.g. due to bundling
below the threshold).
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Figure 4: Distribution of the observed income data (log income)
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5 Conclusions

We have developed the new Stata package GiniInc to measure the Gini index from
incomplete income and survival data. First, we showed how the function survgini helps
to compare two survival distributions with respect to their concentration. Second,
we introduced two functions that work with left censored or truncated data with a
fixed threshold: survbound calculates non-parametric Gini bounds when the data are
left censored, and survlsl estimates the Gini index and its corresponding large-sample
confidence intervals under a parametric model when the data are assumed to be known.

Plans for future developments include the addition of confidence intervals for the
lower and upper bounds in survbound. We would also like to extend survlsl to allow
for regression models (Gigliarano et al. 2016). Lastly, we also plan to include the (more
rarely encountered) case of right censoring in the parametric estimation of the Gini
index.
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