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Abstract

This paper proposes a framework for estimation and inference in a panel

data model of peer and spillover effects. We consider a linear-in-means model

that may include social influences through three channels: outcomes, observed

characteristics, and an unobserved individual-specific characteristic. To learn

about the magnitude of effects in models that include some but not all of

these social influences, the existing econometrics literature has adopted esti-

mators based on least squares, maximum likelihood, and two-step instrumental

variables ideas. Neither of these approaches will, in general, yield consistent

estimators in a panel data context. Instead, we propose estimation and in-

ference based on a novel objective function. We illustrate the ideas using the

universal transcript data from the University of Wisconsin-Madison and explore

the classroom peer effects during the semester when the university switched its

learning mode to online during the recent pandemic. We show that the existing

method estimates a positive and significant peer effect, while our method finds

it to be close to zero and statistically insignificant.
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1 Introduction

Many empirical studies of social interactions document strong correlations between

individuals’ outcomes and those of their peers. In an influential paper, Manski (1993)

delineates three plausible social mechanisms that may induce such dependence. These

three channels are typically referred to as contextual spillover effects, which include

influence generated by exogenous peer characteristics, endogenous peer effects, which

encompass influence generated by peer outcomes, and correlated effects, which cap-

ture that individuals in the same reference group may behave similarly because they

have similar individual characteristics or face a common environment. Credibly dis-

tinguishing between these potential explanations is a formidable challenge that has

been the topic of immense literature in economics (see, e.g., De Paula, 2017, for a

recent survey).

Even in the absence of correlated effects, Manski (1993) and Moffitt (2001) argue

that it may be impossible to distinguish contextual spillovers from endogenous peer

effects when social interactions take place in groups, as such patterns create a reflec-

tion problem. In adding nuance to this negative observation, Lee (2007) and Graham

(2008) note that identification is possible under a homoskedasticity assumption and

variation in group sizes, while Bramoullé, Djebbari and Fortin (2009) shows that

the reflection problem disappears when social interactions are structured through a

network. In such settings, consistent estimation can be facilitated by maximizing a

Gaussian likelihood function (Lee, Liu and Lin, 2010) or by a two-step instrumen-

tal variables estimator (Kelejian and Prucha, 1998; Lee, 2003). The availability of

panel data provides the potential to also allow for correlated effects that operate

through an unobserved individual-specific characteristic. Assuming homoskedastic-

ity and an absence of endogenous peer effects, Arcidiacono, Foster, Goodpaster and

Kinsler (2012) shows that identification of contextual spillovers operating through the

individual characteristic requires that there is mobility between reference groups and

that consistent estimation can be facilitated by the use of non-linear least squares.1

In this paper, we build on the existing literature by relaxing two critical assump-

tions imposed by Arcidiacono et al. (2012). First, we allow for endogenous peer effects

1Mas and Moretti (2009) proposes a two-step estimator in a model that excludes endogenous
peer effects and considers a so-called long panel data setting, where the number of observations per
individual approaches infinity. Their two-step estimator is not consistent in short panels or in the
presence of endogenous effects.
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so that social influences may operate through all of the three channels outlined by

Manski (1993). Second, we allow for heteroskedasticity in the unobserved errors so

that identification (and consistent estimation) does not rest on a strong assumption

regarding the error terms, which is often not motivated in applied work. The impor-

tance of relaxing these two assumptions was also stressed in the recent review paper

Bramoullé, Djebbari and Fortin (2020).

The paper establishes three primary results. First, we show that mobility between

peer groups and the corresponding network are the key conditions required for identi-

fication. In addition, we discuss how mobility-induced variation in peer group quality

can serve as a sufficient condition for identification. These observations are natural

extensions of the identification results presented in Bramoullé et al. (2009) and Ar-

cidiacono et al. (2012). Second, we illustrate that estimation methods used in the

existing literature can not guarantee consistent estimation of the model parameters.

This observation leads us to propose a novel cross-fit objective function that can be

used to construct consistent point estimators. Finally, we also provide accompanying

standard errors that can be used to conduct valid inferences. The last contribution

goes beyond most of the existing literature, which has focused on identification and

point estimation but not on valid inference.

Apart from contributing to the economic literature on social influences and pro-

viding an econometric tool for applied economists to use in such settings, this paper

also relates to a broader literature in econometrics that seeks to improve on estima-

tion and inference methods in models that include a large number of parameters. So

far, this literature has focused on models that are linear in the parameters, and a

concise review can be found in Anatolyev (2019). The model considered in this pa-

per not only includes a large number of parameters but also introduces non-linearity

in these parameters. Therefore, the paper also seeks to expand this literature be-

yond the confines of linear models by drawing insights from it. In particular, our

proposed framework borrows ideas from Hausman, Newey, Woutersen, Chao and

Swanson (2012); Kline, Saggio and Sølvsten (2020); Anatolyev and Sølvsten (2020)

and shows how these ideas can be adapted to a non-linear model.

We illustrate the ideas by estimating the classroom peer effect for all the freshmen

at the University of Wisconsin - Madison, where a similar application is also used

in Arcidiacono et al. (2012). In particular, we explore a special semester where

the university switched the teaching mode to be entirely online due to the recent
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pandemic. We find that the peer effect is estimated to be positive and statistically

significant using the existing method. However, our new method shows that the peer

effect is close to zero and statistically insignificant.

The paper is organized as follows. Section 2 uses a simple motivating example to

introduce our proposed estimator and contrast it with existing alternatives. Section

3 discusses the source of inconsistency in the non-linear least squares estimator and

introduces our proposed alternative. Section 4 presents accompanying confidence

sets, while Section 5 uses two canonical empirical examples to illustrate the use of

our proposed inference method. Section 6 contains asymptotic theory, and Section 7

concludes. Some implementational details, proofs, and robustness checks are relegated

to the Appendix.

2 Peer effects and non-linear regression

The primary theoretical contribution of the paper is to propose a novel cross-fit

correction for the least squares estimator in a non-linear regression model where the

number of regressors may be large. While the proposed approach applies broadly to

such settings as described in Section 3, the current section introduces a motivating

example which is the estimation of peer effects in a panel data model for wages. We

return to this example in the empirical application of Section 5.

2.1 Contextual peer effects in unobservables

Consider the following framework. The outcome variable yit denotes observed log

wage for an individual i at time t. We are interested in the relationship between yit

and the average quality of individual i’s contemporaneous group of peers. The peer

group is observed by the researcher and is denoted by the index set Pit ⊆ {1, . . . , N}.
The quality of each peer is unobserved but assumed to be captured by a measure

of permanent ability αi that also affects wages directly. Due to the possibility of

endogenous sorting into peer groups, it is necessary to control for a vector of observed

covariates wit. As is common in applied practice, wit may include a collection of group

indicators. With additive separability, these considerations lead to a non-linear panel
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data regression

yit = αi + ᾱ(i)t · β0 + w′
itγ + εit, i = 1, . . . , N, t = 1, . . . , Ti, (1)

where ᾱ(i)t = |Pit|−1 !
ι∈Pit

αι is the average of individual effects among i’s peers. The

object of interest is the coefficient on the average quality of the peers, β0 ∈ (−1, 1),

while γ and α = (α1, . . . ,αn)
′ are non-random vectors of nuisance parameters.

Frameworks of the kind given above are widely used to determine the importance

of peers in educational performance (e.g., Jackson and Bruegmann, 2009; Arcidia-

cono et al., 2012), wage settings (e.g., Lengermann, 2002; Cornelissen, Dustmann

and Schönberg, 2017; Hong and Lattanzio, 2021), worker’s productivity (e.g., Mas

and Moretti, 2009; Guryan, Kroft and Notowidigdo, 2009; Brune, Chyn and Kerwin,

2020), firm revenues (e.g., Baum-Snow, Gendron-Carrier and Pavan, 2020).

The control variables wit are included in the regression to ensure that no relevant

confounders are excluded from the model so that the strict exogeneity of the peer

group is satisfied. Letting Fi = {wit,Pit}
Ti
t=1 collect individual i’s observed history of

peer groups and control variables, strict exogeneity can be formulated as

E[εit |Fi] = 0, i = 1, . . . , N, t = 1, . . . , Ti. (2)

The set of control variables needed to ensure that (2) is satisfied depends on the

specific context. We therefore have few further general comments about the choice of

wit.
2 Specifically, we consider the following specification for the controls.

w′
itγ = ψj(i,t) + λt + c′itγc, (3)

where ψj(i,t) is the location effect (e.g., classroom or firm), λt is the time effect, and

cit is the observed time-varying individual characteristics. The inclusion of ψj(i,t) con-

trols for endogenous selection into firms or classrooms as in the seminal specification

introduced by Abowd, Kramarz and Margolis (1999), which is originally used in wage

2When peers are completely randomly assigned, there is typically no need for any control vari-
ables. However, in many cases, random assignment is done conditional on a set of observed char-
acteristics (e.g., Guryan et al., 2009), in which case it is most often necessary to include those
characteristics in the model. With observational data, a judicious choice of control variables is typ-
ically required. Still, when interactions occur in groups, it may often be sensible to include a group
fixed effect in w′

itγ to further address the issue of correlated effects.
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regression but has been widely adopted in many other settings.

In current empirical practice, estimation of (1) is commonly carried out by the

use of (non-linear) least squares. Consistency of the resulting estimator for β0 was

established by Arcidiacono et al. (2012) in a setting with no control variables and

serially uncorrelated, homoscedastic error terms. To shed light on the role played by

these assumptions, Section 3 discuss why consistency of least squares fails when the

error terms are not serially uncorrelated and homoscedastic. Given that the error

covariance structure is rarely so well-behaved, we propose a cross-fit correction to

the least squares estimator that allows for some dependence and unrestricted het-

eroscedasticity. An implication of our negative result regarding least squares and the

structure of our proposed estimator is that researchers need to be explicit about their

assumptions on the error variance structure when considering their choice of point

estimator.

The regression structure of (1) makes the interpretation of β0’s magnitude and

sign canonical: β0 captures a return to peer quality in the sense that a one unit

increase in average peer quality corresponds to a β0 · 100% increase in wages (on

average). However, as peer quality is unobserved, the meaning of a one unit increase

is ambiguous, so it is important to supplement any estimate of β0 with a summary

of possible changes in peer quality. Towards this end, we adapt the proposal in Kline

et al. (2020) to provide an estimator of the overall variance in average peer group

quality. We thereby facilitate that our proposed estimator of β0 can be related to a

standard deviation increase in average peer quality – a common way of grounding the

interpretation of magnitudes in applied research. In practice, the mechanism through

which peers affect outcomes is as interesting as the magnitude of the effect. Plausible

mechanisms include knowledge spillover (Nix, 2020), peer pressure (Mas and Moretti,

2009), and promotion competition (Bianchi, Bovini, Li, Paradisi and Powell, 2021).

The focus of this paper is the statistical problems of estimation and inference, so we

will not delve further into the specific mechanisms that may drive the magnitude and

sign of β0.

2.2 Identifying variation and point estimation

Identification of β0 requires variation in average peer group quality that cannot be

predicted by the linear part of (1). In particular, it is necessary for identification that
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some individuals have a time-varying group of peers or equivalently that there is mo-

bility between the observed peer groups. This requirement can, of course, be verified

by inspecting the data at hand. Additionally, the mobility between peer groups must

also induce variability in the average peer quality, ᾱ(i)t = |Pit|−1 !
ι∈Pit

αι. Whether

such variability is present cannot be verified ex-ante as the vector of individual hetero-

geneity α is unobserved. Instead, it must be maintained as an identifying assumption.

In the extreme case of perfect homogeneity (identical entries in α), identification is

bound to fail. When there is some individual heterogeneity and labor market fric-

tions (e.g., Mortensen and Pissarides, 1994; Postel–Vinay and Robin, 2002) prevent

perfect sorting, it is reasonable to expect that observed mobility must induce some

identifying variation in the unobserved average peer quality.

To illustrate that the mobility-induced variation in average peer quality can lead

to point identification, we consider a special case of (1). This special case also serves to

highlight how the least squares estimator rely on homoskedasticity while our proposed

cross-fit estimator does not. Suppose now that w′
itγ is equal to ψj(i,t), which was

introduced in (3), that the time horizons Ti are all equal to two, that the error

terms are independent across time and individuals, and that the data is generated in

triplets of individuals where the first individual stays with the same employer for both

periods, while the other two individuals move between two triplet-specific firms as

depicted in Figure 1. The data for a generic triplet is then governed by the following

1

2

3

A

B

Figure 1: Depiction of three individuals (denoted 1, 2, and 3) and their mobility among two firms
(denoted A and B). In the first period, individuals 1 and 2 are peers, while individuals 1 and 3 are
peers in the second period. In both periods, firm A has two employees and firm B has one employee.

six equations

y11 = α1 + α2β0 + ψA + ε11, y12 = α1 + α3β0 + ψA + ε12,

y21 = α2 + α1β0 + ψA + ε21, y22 = α2 + ψB + ε22,

y31 = α3 + ψB + ε31, y32 = α3 + α1β0 + ψA + ε32.
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The only part of this data that contains information about β0 is a first difference for

the stayer, Y = y12−y11, and two differences involving both the movers, X = y32−y21

and Z = y31− y22. We can view Y as an outcome in a regression model that includes

the unobserved regressor α3 − α2,

Y = (α3 − α2)β0 + (ε12 − ε11),

while X and Z are independent noisy measurements of the unobserved regressor,

X = α3 − α2 + (ε32 − ε21) and Z = α3 − α2 + (ε31 − ε22).

Is it therefore immediate that a necessary and sufficient condition for point identifi-

cation of β0 is that α3 − α2 is not zero across all the triplets in the data. Unless the

data is segregated into homogenous groups, such identifying variation will be present.

A particularly simple estimator of β0 can be constructed from (Y ,X ,Z) by aver-

aging the two instrumental variables estimators that let X and Z take turns as noisy

regressor and instrument. Equivalently, this estimator is the sample analog of the

moment condition

β0 =
1

2

E[ZY ]

E[ZX ]
+

1

2

E[XY ]

E[XZ]
. (4)

The resulting simple estimator is the cross-fit estimator introduced in the next Section.

To highlight the differences and similarities between the cross-fit and least squares

estimators, we first re-express the denominator of (4) so that

β0 =
E[(Z + X )Y ]

E[Z2 + X 2]− E[(Z − X )2]
. (5)

If the error terms are homoskedastic so that the unexplained variance in Y is the

same as in X and Z, we can alternatively express the variance E[(Z−X )2] appearing

in the denominator of (5) as 4σ2(β0) where σ2(β) is a variance function that draws

on both the movers and the stayer:

σ2(β) =
E[(Z − X )2 + (Y − Xβ)2 + (Y − Zβ)2]

4(2 + β2)
. (6)

The non-linear least squares estimator minimizes the sample analog of (6). Addition-
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ally, we can describe the least squares estimator as a solution to the sample analog

of a first order condition for minimization of (6), which looks exactly like (5), except

that it uses 4σ2(β) instead of E[(Z − X )2]:

β =
E[(Z + X )Y ]

E[Z2 + X 2]− 4σ2(β)
. (7)

In the presence of heteroskedasticity, it is problematic to rely on an estimator that

solves the sample analog of (7) as 4σ2(β0) will then be different from E[(Z − X )2]

and this will in turn lead to an inconsistent estimator. In that case, the least squares

estimator will be amplified (attenuated) relative to the truth if Y has higher (lower)

unexplained variance than X and Z. In this example, a natural assertion would be

that the log-wage difference for the single stayer, Y , has lower unexplained variance

than the two log-wage differences involving the two movers, X and Z. If that assertion

holds true, the least squares estimator will understate the magnitude of the peer

effects.

Remark 1. It may not be immediately obvious to every reader that the sample analogs

of the simple expressions in (4)–(7) are special cases of the general formulas introduced

in Section 3. Derivations that connect the two are provided in Appendix B where we

also derive the bias direction for the least squares estimator as discussed above and

show that (Y ,X ,Z) contains all information about β0.

3 Estimation

This section starts by characterizing the source of inconsistency in the least squares

estimator when applied to a generic regression model with multiplicative non-linearity.

Described at a high level, the source of inconsistency is that the least squares objective

function is not minimized near the truth or equivalently that the gradient of the

objective does not have a zero near β0. Using this observation as a starting point, the

section then proposes a new estimator which sets a recentered gradient of the least

squares objective function equal to zero.3

3As discussed further below, consistency also requires that there is sufficient identifying variation
in average peer quality.
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3.1 Framework

We now suppress the multiple subscripts that were used to facilitate an economic

discussion of the peer effects example introduced in Section 2. We therefore consider

a regression model with multiplicative non-linearity of the form

yℓ = x′
ℓδ + a′ℓδ · β0 + εℓ, ℓ = 1, . . . , n. (8)

Here xℓ and aℓ are observed K-dimensional vectors, δ is a vector of nuisance param-

eters, and β0 remains the object of interest. In a peer effects setting, the vector aℓ

is a function of the peer group that observation ℓ belongs to and thus dependent

across ℓ. To encompass this example, we therefore do not impose restrictions on the

dependence in xℓ and aℓ across ℓ. Instead, we conduct the analysis conditional on

the regressors, A = (a1, . . . , an)
′ and X = (x1, . . . , xn)

′, so that aℓ (and xℓ) may be

arbitrarily dependent across observations.

The primary maintained assumptions are strict exogeneity, compactness of the

parameter space for β0, and a collection of full rank conditions.

Assumption 1. (i) E[εℓ | X,A] = 0 for all ℓ and range(X) contains the constant

vectors, (ii) β0 ∈ interior(B) where B ⊆ R is compact, (iii) (X + Aβ, Aδ) has full

rank for any β ∈ B, (iv) maxℓ E[ε4ℓ |X,A] < C for some C < ∞ not depending on n.

Part (i) is a strict exogeneity condition, part (ii) restricts the true β0 to be in the

interior of a compact set B as is standard for non-linear models, and part (iii) is a

collection of full rank conditions on implied matrices of regressors. Part (iii) encap-

sulates two restrictions on the design. The first restriction excludes multicollinearity

among the entries in xℓ + aℓβ for any β in the parameter space and this condition

ensures invertibility of the design matrix for estimation of δ when β0 is equal to β:

S(β) =
!n

ℓ=1(xℓ + aℓβ)(xℓ + aℓβ)
′. The second restriction is that the “unobserved

regressor” a′ℓδ contains identifying variation, i.e., that a′ℓδ varies in ways that are not

fully captured by a linear combination of xℓ + aℓβ for any β ∈ B. In the context of

peer effects models, this part of Assumption 1 was discussed in Section 2.2 and re-

quires that the sample contains variation in peer group quality that is not completely

explained by the control variables. If a researcher is concerned about imposing this

identifying restriction, it is possible to conduct inference by test inversion as opposed

to by parameter estimation (see also Section 4). Part (iv) is a standard regularity
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condition.

Remark 2. In the peer effects setting considered in Section 2, the vector xℓ contains

individual indicators and control variables while the vector aℓ contain indicators for

peers divided by the peer group size.4 In this setting, it is often natural to consider

B ⊂ (−1, 1). This parameter space restricts the impact of the average peer quality

to be smaller in magnitude than the individuals own effect αi. With this restriction

on B, the design matrix S(β) has full rank as long as S(0) has full rank and it is

therefore easy to verify or impose the part of Assumption 1, part (iii), that does not

involve the unobserved regressor a′ℓδ.

3.2 Inconsistency of least squares

The least squares estimator applied to (8) yields the following estimator of β0:

β̂LS = argmin
β∈B

min
δ∈Rk

n"

ℓ=1

#
yℓ − x′

ℓδ − a′ℓδ · β
$2

.

To give a representation of β̂LS that is more amenable to analysis and intuition, we

eliminate the nuisance vector δ using the blockwise matrix inversion formula that

underpins the Frisch–Waugh–Lovell theorem. To do so, we define the entries of the

matrix that residualizes against the regressor xℓ + aℓβ as Mℓk(β) = 1{ℓ = k}− (xℓ +

aℓβ)
′S(β)−1(xk + akβ)

′. We can then represent β̂LS as the solution to a minimization

problem that does not involve δ:

β̂LS = argmin
β∈B

Q̂n(β) where Q̂n(β) =
n"

ℓ=1

n"

k=1

Mℓk(β)yℓyk.

The representation of the least squares estimator as a minimizer of the objective

function Q̂n implies that an almost necessary condition for consistency of β̂LS is

that the population analog Qn(β) = E[Q̂n(β) |X,A] has a unique minimum at β0.

However, even under the strict exogeneity imposed in Assumption 1, we can determine

this expectation to be composed of two terms where only the first has a unique

minimum at β0. To illustrate this point, let σℓk = E[εℓεk |X,A] be the covariance

between the ℓ-th and the k-th error terms and define the part of a′ℓδ that provides

4Additionally, aℓ is appended with a vector of zeroes in place of the control variables so that xℓ

and aℓ are both K-dimensional vectors.
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identifying variation when β0 = β as ãℓ(β)
′δ where ãℓ(β) =

!n
k=1 Mℓk(β)a

′
k. We then

have

Qn(β) = (β − β0)
2

n"

ℓ=1

(ãℓ(β)
′δ)2 +

n"

ℓ=1

n"

k=1

Mℓk(β)σℓk.

The full rank restrictions of Assumption 1 imply that
!n

ℓ=1(ãℓ(β)
′δ)2 > 0 for all

β ∈ B so that the first part of Qn is uniquely minimized at β0. However, the part of

Qn that involves the error covariances is not, in general, minimized at the truth. The

presence of the second part will therefore lead to inconsistency of the least squares

estimator except in special cases. We therefore propose, in the next subsection, an

alternative estimator based on a bias-corrected gradient of the objective function Q̂n.

Before proceeding to our proposed estimator, it is useful to highlight why least

squares remain consistent with serially uncorrelated and homoscedastic error terms.

In this case, we have that σℓk = σ21{ℓ = k}. This property implies that the second

part of Qn simplifies substantially. In fact, this second part becomes independent of β

as the matrix function M = (Mℓk)ℓ,k is a projection onto a linear space of dimension

n−K, which in turn yields that the sum of the diagonal elements of M(β) is n−K.

We therefore have

n"

ℓ=1

n"

k=1

Mℓk(β)σℓk = σ2
n"

ℓ=1

Mℓℓ(β) = σ2(n−K),

so that Qn is uniquely minimized at β0 when the error terms are serially uncorrelated

and homoscedastic. In the special case of the peer effects model (1) without additional

control variables wit, this observation was also made by Arcidiacono et al. (2012).

Remark 3. Since the least squares estimator has seen widespread use in peer effects

models, it would have been empirically relevant if it was possible to provide definite

insights about the direction or sign of the bias in the least squares estimator under

serially correlated or heteroskedastic errors. As the regression model in (8) involves

an unobserved regressor a′ℓδ, which is itself estimated from the data, it might have

been tempting to apply standard measurement error logic and conjecture that the

least squares estimator is attenuated, i.e., biased towards zero. Unfortunately, as we

show below the bias in the least squares estimator can have either sign and need not

be towards zero. We therefore caution that least squares estimates that are available

12



in the literature may differ from the underlying truth in systematic but unknown

directions.

3.3 Cross-fit correction to least squares

Our proposed estimator relies on the standard cross-sectional assumption of condi-

tionally independent errors in model (8). While such an assumption places restrictions

on the patterns of dependence that can be allowed for in the data, it does not rule

out dependence across observations at a lower level of aggregation as discussed next.

Assumption 2. Conditional on X and A, {εℓ}nℓ=1 are jointly independent.

Assumption 2 implies that the error variances are of the form σℓk = σ2
ℓ1{ℓ = k}.

Specifically, we allow for heteroscedasticity in the non-linear regression model of (8).

Remark 4. In the peer effects model of equation (1), there are reasons to be wary of

assuming independence among the error terms. For example, it seems reasonable to

allow for wage errors to be serially dependent within a particular employment spell.

Such dependence can be allowed for by writing down a model as in (1), collapsing the

data to the level of employment spells, and then considering the resulting version of

model (8) for the collapsed data. Section 5 further illustrates this approach and the

biases that can arise from ignoring serial dependence in the micro data. We thereby

highlight that in choosing the particular point estimator used (through the level at

which the data is collapsed), the researcher needs to take into account the dependence

structure of the error terms.

To introduce our proposed estimator, it is useful to describe the inconsistency of

least squares in terms of derivatives of the objective functions introduced previously.

Viewed through this lens, the least squares estimator is a zero of the sample moment

function m̂n = ∇βQ̂n, and the source of inconsistency in least squares is that the

population analog mn = ∇βQn is not equal to zero at β0. Under Assumption 2, the

gradient mn at β0 deviates from zero by

mn(β0) =
n"

ℓ=1

∇βMℓℓ(β0)σ
2
ℓ . (9)

Our proposed estimator is a zero of a sample moment function which is comprised

of the difference between m̂n and an estimator of the part that leads to the non-zero
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expectation in (9). We construct this sample moment using cross-fit or leave-one-out

estimators of the individual error variances:

σ̂2
ℓ (β) =

yℓε̂ℓ(β)

Mℓℓ(β)
(10)

where ε̂ℓ(β) = yℓ − (xℓ + aℓβ)
′δ̂LS(β) is the regression residual at β and δ̂LS(β) =

S(β)−1 !n
ℓ=1(xℓ + aℓβ)yℓ is the corresponding least squares estimator of δ. That σ̂2

ℓ

is a leave-one-out estimator follows from the equivalent representation

σ̂2
ℓ (β) = yℓ

%
yℓ − (xℓ + aℓβ)

′δ̂LS(ℓ)(β)
&
,

in which δ̂LS(ℓ) is the least squares estimator of δ applied to the sample that excludes

the ℓ-th observation: δ̂LS(ℓ)(β) =
#!

k ∕=ℓ(xk + akβ)(xk + akβ)
′$−1 !

k ∕=ℓ(xk + akβ)yk.

We use the leave-one-out individual error variance estimators to recenter the mo-

ment function m̂n. This leads to our proposed estimator

β̂CF = arg zero
β∈B

m̂CF
n (β) where m̂CF

n (β) = m̂n(β)−
n"

ℓ=1

∇βMℓℓ(β)σ̂
2
ℓ (β).

Because the cross-fit estimators {σ̂2
ℓ (β0)}nℓ=1 are unbiased for their respective error

variances, the recentered moment function m̂CF
n has a mean of zero at β0. Such a

property is essential when establishing consistency of the resulting estimator β̂CF.

Remark 5. The cross-fit variance estimators {σ̂2
ℓ}nℓ=1 that underpins the recentered

moment function m̂CF
n has previously been used in the context of linear regression

to bias-correct non-linear functions of the least squares estimator or estimators of

its variance: Kline et al. (2020); Anatolyev and Sølvsten (2020); Matsushita and

Otsu (2019); Mikusheva and Sun (2020); Jochmans (2020). The use here is starkly

different as we consider a non-linear regression model and cross-fitting is being used

to bias-correct the least squares estimator itself.

Remark 6. There is a long tradition in econometrics of bias-correcting objective func-

tions (instead of their gradients) to in an attempt at ensuring that their population

counterparts are minimized at the true value for the parameter of interest (e.g., Han

and Phillips, 2006; Hausman et al., 2012). Translating that approach to the current
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context would suggest that we considered a penalized objective function of the form

Q̂CF
n (β) = Q̂n(β)−

"n

ℓ=1
Mℓℓ(β)σ̂

2
ℓ (β).

However, in contrast to the recentered sample moment m̂CF
n , this objective function

can not yield a consistent estimator of β0 as Q̂CF
n (β) is zero for any value of β.

4 Inference

Hypothesis tests regarding the value of β0 or a confidence interval for β0 can be

constructed using a Wald approach based on a normal approximation to the dis-

tribution of β̂CF. In this case, inference requires an estimator for the variance

Vn(β) = V
'
m̂CF

n (β) | X,A
(
. This section introduces our proposed variance estima-

tor V̂n(β) and briefly provides its use for inference using a Wald approach.

4.1 Variance estimator

In order to introduce and motivate our proposed variance estimator V̂n, it is useful first

to give two separate U-statistic representations of m̂CF
n . The first representation is a

symmetric one in the sense that we write m̂CF
n =

!n
ℓ=1

!
k ∕=ℓ U

S
ℓkyℓyk and the order

of the subscripts on the kernel function US
ℓk does not matter. This representation

immediately follows from the definition of Q̂n and the formulation of {σ̂2
ℓ}nℓ=1 given

in (10), which yields

US
ℓk(β) = ∇βMℓk(β)−Mℓk(β)

#
∇β logMℓℓ(β) +∇β logMkk(β)

$
/2.

The second representation is asymmetric, i.e., m̂CF
n =

!n
ℓ=1

!
k ∕=ℓ U

A
ℓkyℓyk where U

A
ℓk ∕=

UA
kℓ. To define U

A
ℓk and connect the two representations, we will rely on a small amount

of matrix algebra. The projectionM is idempotent, M = M2, and differentiating each

entry of this identity therefore yields that ∇βM = M(∇βM) + (∇βM)M . Because

the derived matrix identity relates ∇βMℓk to the two sums,
!n

m=1 Mℓm∇βMmk and
!n

m=1 Mkm∇βMmℓ, we can therefore decompose US
ℓk into

#
UA
ℓk + UA

kℓ

$
/2 where

UA
ℓk(β) = 2

n"

m=1

Mℓm(β)∇βMmk(β)−Mℓk(β)∇β logMkk(β).
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The usefulness of providing two U-statistic representations of m̂CF
n is evident from

the following expression, which describes the variance Vn(β0) in terms of both the

symmetric and asymmetric kernel functions:

Vn(β0) = 2E

)
n"

ℓ=1

*
"

k ∕=ℓ

US
ℓk(β0)yk

+*
"

m ∕=ℓ

UA
ℓm(β0)ym

+
σ2
ℓ |X,A

,
− E

-
m̂CF

n (β0)
.2
.(11)

The squared expectation of the sample moment function, which is included at the

end of this equation, is zero. It is nevertheless included here to motivate that our

variance estimator will subtract
#
m̂CF

n (β)
$2

whenever it is evaluated at a β where the

sample moment is non-zero.

Our proposed variance estimator drops the expectations present in (11) and re-

places the unknown individual error variances {σ2
ℓ}nℓ=1 with cross-fit analogs. How-

ever, as there are already outcome variables entering the expression in (11), use of the

leave-one-out cross-fit estimators may not suffice for consistent variance estimation.

We therefore rely on leave-three-out estimators in construction of V̂n. Specifically, we

use

σ̂2
ℓ,−km(β) = yℓ

#
yℓ − (xℓ + aℓβ)

′δ̂(ℓkm)(β)
$

(12)

where the leave-three-out estimator of δ is δ̂(ℓkm)(β) = (
!

s ∕=ℓ,k,m(xs + asβ)(xs +

asβ)
′)−1 !

s ∕=ℓ,k,m(xs + asβ)ys.
5 Our proposed variance estimator is then

V̂n(β) = 2
n"

ℓ=1

"

k ∕=ℓ

"

m ∕=ℓ

US
ℓk(β)U

A
ℓm(β)

#
ykymσ̂

2
ℓ,−km(β)

$
−

%
m̂CF

n (β)
&2

.

The leave-three-out cross-fit estimators in (12) are due to Anatolyev and Sølvsten

(2020) who introduced them in the context of hypothesis testing in a linear regression.

Remark 7. For samples with about 10, 000 or fewer observations, exact computation of

V̂n is feasible (and fast) if one relies on the matrix representations derived in Anatolyev

and Sølvsten (2020). With substantially larger samples, exact computation appears to

be infeasible. For this reason, we introduce a recursive representation of the product

ykymσ̂
2
ℓ,−km, which we truncate to approximate V̂n. Defining rℓk = Mℓk/

√
MℓℓMkk,

5When k is equal to m, δ̂(ℓkk)(β) is a leave-two-out estimator since it only drops observations ℓ

and k. For this reason, we also use σ̂2
ℓ,−k when describing σ̂2

ℓ,−kk.
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which is bounded by one in absolute value, we can write

ykymσ̂
2
ℓ,−km=ykymσ̂

2
ℓ −Mℓk

yℓymσ̂
2
k

Mℓℓ

−
/
Mℓm − MℓkMkm

Mkk

0
yℓykσ̂

2
m

Mℓℓ

(13)

+(r2ℓk+r2ℓm−rℓkrℓmrkm)ykymσ̂
2
ℓ,−km+

/
Mℓm−MℓkMkm

Mjj

0
Mkm

yℓymσ̂
2
k,−ℓm

MℓℓMmm

.

The truncated approximation V̂ (tr)
n uses the right hand side of (13) to approximate

ykymσ̂
2
ℓ,−km.

4.2 Confidence interval and hypothesis test

Here we briefly review the usage of β̂CF, m̂n, and V̂n for inference. For a pre-specified

level α ∈ (0, 1), the Wald (1− α) · 100% confidence interval takes the form

CW
α =

1
β ∈ B :

#
∇βm̂

CF
n (β̂CF)

$2
V̂n(β̂

CF)−1(β̂CF − β)2 ≤ z2α/2

2
.

Here zα/2 is the α/2-th quantile of the standard normal distribution. For this confi-

dence interval to have correct asymptotic coverage, certain regularity conditions are

required. Chief among them is that β̂CF is consistent, and β0 belongs to the interior

of the parameter space.

The confidence intervals can equivalently be described through the inversion of a

hypothesis test. For testing of a simple hypothesis H0 : β0 = c against the two-sided

alternative HA : β0 ∕= c, the test whose inversion yields CW
α is

φW
α (c) = 1

1#
∇βm̂

CF
n (β̂CF)

$2
V̂n(β̂

CF)−1(β̂CF − c)2 > z2α/2

2

In the applied literature that relies on the non-linear least squares estimator β̂LS,

the standard practice for inference is to rely on bootstrapping (e.g., Arcidiacono et al.,

2012; Cornelissen et al., 2017). Unfortunately, there is no theoretical justification for

the use of the bootstrap in models like (8) and, in fact, there is theoretical justification

for why the bootstrap might fail to yield valid inference (Bickel and Freedman, 1983).

To illustrate that the wild bootstrap is indeed not a viable option in the current

context, we consider it in the simulations reported in Section 5.
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5 Applications and simulations

In this section, we illustrate our ideas using an application similar to that one used in

Arcidiacono et al. (2012). Specifically, we estimate the classroom peer effects using the

universal transcript data from a large flagship university. We also provide simulation

exercises that compare the non-linear least squared estimator and the wild bootstrap

standard error with our cross-fit estimator and the Wald standard error.

5.1 Sample selection and econometric specification

We use the administrative student-level records from the Registrar’s Office at the

University of Wisconsin-Madison, which has a universal coverage of all the students.

The database contains multiple records, including demographics, high school test

scores, and transcript information.

Sample selection We focus on all the courses that are where the students are all

undergraduate students. Under the UW system, it means all the courses with code

under 300, e.g., Econ 101, because the university allows graduate students to take

courses with code above 300. Given the university has a large body of graduate

students, we exclude such courses to avoid noisy interactions coming from graduate

students. We keep students who have valid A–F grade information for a given course.

We assign numeric grade equivalents to the letter grades following the university GPA

system: A = 4, AB = 3.5, B = 3, BC = 2.5, C = 2, D = 1, and F = 0.6

In particular, we define the peer group as all the students in the same discussion

section in the same course. Given that undergraduate courses are typically large

in class sizes, the university typically assigns multiple teaching assistants to hold

discussion sections for each course. The discussion section typically has fewer than

20 students and allows students to interact and discuss problems with the guidance

of the teaching assistant.

We are particularly interested in the semester when the Covid-19 pandemic hit

6Arcidiacono et al. (2012) uses a similar database from the University of Maryland from 1999 to
2001 – a much older period than what we focus on. They also divide their main sample into three
categories: humanities, social science, and math and science, according to the official course types.
The UW system does not have a similar corresponding classification system. As our main purpose
is to demonstrate the ideas of our proposed estimator and inference, we keep the sample selection
simple by pooling all the students together.
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the university during the Spring semester of the academic year 2019/2020. Because

the university decided to shift all the undergraduate courses entirely online. Given

this situation is unprecedented and online learning tools are new to every student, we

expect that the peer effect from student interactions may be largely reduced, if not

disappeared. In fact, this is widely observed and discussed among teaching assistants

and professors during the semester that nearly all students have turned off their

cameras during the discussion section, and classroom interaction almost vanished.

We also explore the Spring semester of the academic year 2018/2019 as our placebo

semester, as the courses offered for these two semesters are almost identical.

Econometric specification We use the following regression specification following

equation (1), which is similar to the specification in Arcidiacono et al. (2012).

yij = αi + ᾱ(i)j · β + ψj + εij, (14)

where αi is the student fixed effect, which measures the ability of a student. We

define ψj as a course-professor pair fixed effect. For example, if Econ 101 is taught

by three professors, Alan, Bob, and Cathy, we define them as three different courses.

The reason is straightforward: each professor typically makes their own syllabi and

exams. The peer quality ᾱ(i)j is defined as the average students’ ability within the

same peer group, excluding the student i.

Note that we do not include the time dimension in this specification because we

estimate each semester separately. One can still identify the student fixed effects

using data from one semester because students must take at least one course to

maintain their full-time student status. Also, each student chooses different lists of

courses every semester, and the mobility across different courses is massive, which is

important as it serves as the key identifying variation for the peer effect β0.

Besides, we estimate an extensive form of the equation (14) by incorporating the

endogenous effect as proposed by Bramoullé et al. (2020).

yij = αi + ᾱ(i)j · β + ȳ(i)j · λ+ ψj + εij, (15)

where ȳ(i)j is the average grade for the course j in the peer group, excluding the

student i. Note this ȳ(i)j is not observed by the student during the semester, although

it is observed by the researchers (ex-post). One can consider it as a measure of the
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average effects of the peer, which is observed by the students, which can also affect

their effect on the course.

5.2 Peer effects estimates

Table 1 reports the estimates from equations (14) and (15) in the Spring semesters

of the year 2019 and year 2020. Specifically, we estimate equations (14) by using the

method from Arcidiacono et al. (2012) and our new proposed method.

Let us first compare the results in the Spring semester of 2019 when the Covid-

19 pandemic has not taken place. We find the non-linear least squared (NLLS)

estimate for β is around 0.25, and the wild bootstrapping standard error is around

0.03. These figures are in a similar range to what was found in Arcidiacono et al.

(2012) although they use a sample from a different university during a much older

period. Our proposed cross-fit (CF) estimate is 0.17, which is around 30 percent

smaller than the NLLS estimate. The Wald standard error is 0.033, which is 10

percent larger than the wild bootstrap standard error. The results suggest there is a

large bias correction using our method, which is both economically and statistically

meaningful. As discussed above, the variance of the plug-in fixed effects can be biased,

σ̂ᾱ(i)t
is estimated to be much smaller using the technique adopted from Kline, Saggio

and Sølvsten (2019). As a result, the one-standard-deviation effect is 0.052 under

NLLS and plug-in estimator of σᾱ(i)t
while the counterpart effect is 0.032 under our

method, which is about 39 percent smaller.

The last column of the estimates from Spring 2019 is from equation (15), which

includes the endogenous effect. With both peer effect β and endogenous effect γ, we

use the multiplier effect β̂+λ̂

1−λ̂
as the main effect from the peer group, which is estimated

to be around 0.11. We use the delta method to infer its resulting standard error using

the standard errors from both β and γ. As expected, the one-standard-deviation of

the peer ability σ̂ᾱ(i)t
is estimated to be similar as before as the inclusion of the

endogenous should not dramatically alter the estimation of αi. The corresponding

one-standard-deviation effect is 0.021, which is about 35 percent smaller than the one

without the endogenous effect. Given the large difference, including the endogenous

effect can also be important to understand the peer effect.

Now, we turn our focus on the Spring semester of 2020 when the Covid-19 pan-

demic first hit. As we conjectured above, since the pandemic shifted the teaching
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Table 1: UW-Madison register data for spring semesters in 2019 and 2020

Spring 2019 Spring 2020

NLLS CF CF NLLS CF CF

β̂ 0.249 0.169 0.026 0.049 −0.002 −0.076
(0.030) (0.033) (0.042) (0.026) (0.033) (0.036)

λ̂ 0.075 0.043
(0.021) (0.017)

β̂+λ̂

1−λ̂
0.110 −0.034

(0.034) (0.033)

σ̂ᾱ(i)t
plug-in 0.210 0.157

σ̂ᾱ(i)t
KSS 0.188 0.190 0.143 0.143

1-sd effect 0.052 0.032 0.021 0.008 −0.000 −0.005

Notes: Wild bootstrap standard errors for NLLS. Approximate leave-three-out standard errors
for cross-fit.

mode to entirely online and social interactions during the discussion sections are very

limited, the classroom peer effect should reduce substantially, if not completely dis-

appeared. The NLLS estimate suggests that there is still a positive effect, although

much smaller, which is also statistically significant. A one-standard-deviation in-

crease in peer ability is associated with a 0.8 percent rise in the course grade. Using

our method, the CF estimate is close to zero with a point estimate of -0.002. The

corresponding standard error is 0.033, suggesting the point estimate is statistically

insignificant. As a result, the one-standard-deviation effect is essentially zero. A sim-

ilar result is also estimated under the model with endogenous effect where the effect

is tiny and statistically insignificant.

Although not reported here, we also estimated equation (14) using the Spring

semester of 2021, which was the last semester when the university imposed campus-

wide online learning for undergraduates. We find that the estimated peer effect

β̂ is slightly larger with a point estimate of 0.05 and statistically significant. We

believe that the students gradually got adapted to online tools over the past semesters.

Still, interaction during the discussion sections is much less frequent than that in the

in-person mode. It would be interesting to see how the peer effect changes when

the university switches back to the in-person teaching mode. However, we are still

applying to access the data from the most recent spring semester of 2022, when the
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university completely made all the courses in person.

5.3 Simulation exercises

The application above provides a detailed comparison between the NLLS estimator

and our CF estimator in one sample. In this subsection, we further compare their

performance using simulation exercises.

Specifically, we focus on the equation (14) using our CF parameter estimates

during the Spring semester of 2019. We simulate the new outcome variable y by

drawing heteroskedastic normal errors and the “true” underlying peer effect β0 =

0.169. We conduct the same estimation and inference as in the previous subsection

for NLLS and CF using 1,000 simulations, and Table 2 shows the results. We are

particularly interested in three sets of performance from the simulations: (i) point

estimator, (ii) standard errors, and (iii) coverage.

Table 2: Simulations using UW-Madison 2019 spring semester

NLLS CF

Point estimator:
Bias 0.041 −0.005
Standard deviation 0.028 0.026
Bias/SD 1.440 −0.183

Standard error:
Standard error/SD - 1 −19.3% 0.3%

Coverage:
Nominal 95% CI 56.5% 92.9%

Notes: Wild bootstrap standard errors for NLLS. Approximate leave-three-out standard errors
for cross-fit.

First, compared to the true β0, the average bias from NLLS is about 0.041, and

the CF estimator gives a much smaller bias of -0.005. Both point estimators have a

similar standard deviation of 0.028 and 0.026, corresponding to a bias/SD ratio of 1.44

and -0.183, respectively. The finding suggests that the point estimator of CF performs

much better than NLLS, mainly because NLLS is only consistently estimated under

homoscedasticity and the simulated error term is heteroscedastic.

Second, we calculate the average standard errors from the simulations. Specif-

ically, the standard errors from NLLS use the wild bootstrapping method, and CF
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uses the Wald standard errors. We find that the average standard error from CF is 20

percent smaller than the standard deviation of the point estimates. It suggests that

wild bootstrapping may not be an ideal way to infer the asymptotic performance of

the estimator. On the other hand, the average of our Wald standard errors is almost

identical to the standard deviation of the point estimator.

Finally, we obtain a 56.5% coverage rate for the NLLS estimator under the 95%

confidence interval. However, the coverage rate for the CF estimator is around 93%,

which is very close to 95%. We conclude from the simulation exercise under het-

eroscedasticity that our proposed method outperforms the NLLS estimator, which is

widely adopted in applied studies.

6 Conclusion

In this paper, we propose a framework for estimation and inference in a panel data

model of peer and spillover effects. In particular, we consider a linear-in-means model

that may include social influences through three channels: outcomes, observed char-

acteristics, and an unobserved individual-specific characteristic. We find that the

existing approaches, in general, do not yield consistent estimators in a panel data

context. Instead, we propose a new estimator based on a novel objective function that

corrects the bias coming from the inconsistency of the existing estimators. Moreover,

we provide analytical inference based on a Wald approach, while the current studies

mainly focus on identification and point estimator instead of valid inference.

We illustrate the ideas using the universal transcript data from the University

of Wisconsin-Madison and explore the classroom peer effects during the semester

when the university switched its learning mode to online. We show that the existing

method estimates a positive and significant peer effect, while our method finds it to

be close to zero and statistically insignificant. Also, simulation exercises suggest that

our proposed method yields substantially better estimation and inference in terms of

bias and coverage.

Our proposed method is, of course, not perfect. The current main drawback is

that it may require more computational power than the existing methods, especially

when the dataset is large (e.g., one million workers in a matched employer-employee

database). We offer stochastic approximations in Appendix A that largely reduce the

computational burden and make the method feasible to be implemented in a large
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dataset.
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Appendix A Computation on large datasets

This section spells out the key algebraical details that are needed for the implemen-

tation of the proposed point estimator and confidence sets. It first provides a matrix

representation of the moment function m̂CF
n , its derivative ∇βm̂

CF
n , and the truncated

variance estimator V̂ (tr)
n . Afterward, it introduces the stochastic approximations of

these three functions. Finally, it spells out the implementational details regarding

the computation of β̂CF, CW
α , and CLM

α .

To facilitate a description of m̂CF
n , ∇βm̂

CF
n , and V̂ (tr)

n that uses matrix algebra,

define y = (y1, . . . , yn)
′, X = (x1, . . . , xn)

′, A = (a1, . . . , an)
′, σ2 = (σ2

1, . . . , σ
2
n)

′,

σ̂2 = (σ̂2
1, . . . , σ̂

2
n)

′ and M (d) = (M11, . . . ,Mnn)
′. Note that σ̂2 and M (d) are functions

of β and recall that S(β) = (X + Aβ)′(X + Aβ) while ε̂(β) = M(β)y and δ̂LS(β) =

S(β)−1(X+Aβ)y are the residuals and estimated coefficients from a linear regression

of y on X+Aβ. For any vector v, diag[v] is the diagonal matrix with v along its main

diagonal. Elementwise products and ratios are denoted by ⊙ and ⊘, respectively.

A.1 Matrix representations

Upon utilizing the matrix derivative relationship ∇(F−1) = −F−1(∇F )F−1, we find

that ∇βM = −(D +D′) for the nilpotent matrix D(β) = M(β)AS(β)−1(X + Aβ)′.

Letting Λ(β) = diag
'
∇β log

#
M (d)(β)

$(
, we can then write m̂CF

n = −2ε̂′Aδ̂LS − ε̂′Λy.

Similarly, we have the representation

∇βm̂
CF
n = 2

%
‖MAδ̂LS‖2 + ‖Aδ̂LS‖2 − ‖Aδ̂LS −D′y‖2

&

+ (MAδ̂LS +D′y)′Λy − ε̂′(∇βΛ)y.

After collection of the asymmetric kernel weights UA
ℓk in the matrix UA = {UA

ℓk}ℓ,k,
we have the representation UA = −(2D +MΛ) where m̂CF

n = y′UAy. Similarly, the

matrix of symmetric kernel weights is US = (UA +UA′)/2 where again m̂CF
n = y′USy.
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We then have

V̂ (tr)
n /2 = y′USdiag

'
σ̂2
(
UAy −

%
m̂CF

n

&2

/2

− trace
%
diag

'
σ̂2
(
Mdiag

'
UAy ⊙ y ⊘M (d)

(
US

&

− trace
%
diag

'
σ̂2
(
Mdiag

'
USy ⊙ y ⊘M (d)

(
UA

&

+ trace
%
diag

'
σ̂2
(
Mdiag

'
y ⊘M (d)

(#
US ⊙M

$
diag

'
y ⊘M (d)

(
UA

&
.

A.2 Stochastic approximations

Exact computation of the log-derivative matrix functions Λ and ∇βΛ appearing in

m̂CF
n , UA, US, and ∇βm̂

CF
n is challenging in large samples as it typically requires

evaluation and storage of the two n×n matrix functions D and M . We therefore rely

on a stochastic approximation to the numerical derivative. Exact evaluation of the

three matrix traces appearing in V̂ (tr)
n is similarly challenging, and we therefore rely

on a related stochastic approximation to those traces. For these approximations, we

let p be a large even integer and ε a small positive real. Our implementation of the

approximation uses p = 200 and ε = 0.005. Furthermore, we let (r1, . . . , rp) ∈ Rn×p be

a random matrix with i.i.d. Rademacher entries (discrete uniform random variables

with support {−1, 1}).
Our stochastic approximation to the vector M (d) is7

M̌ (d) =
1"p

s=1
(Mrs ⊙Mrs)

2
⊘

1"p

s=1
(Mrs ⊙Mrs) + (Prs ⊙ Prs)

2

where P = I − M . Each entry in the sums that enter M̌ (d)(β) are squares of the

residuals and fitted values in a regression of rs on X + Aβ.

Remark 8. The approximation to M (d) is motivated by the following mean relation-

ships for the numerator and denominator in M̌ (d): E[
!p

s=1(Mrs⊙Mrs)] = pM (d) and

E[
!p

s=1(Mrs ⊙ Mrs) + (Prs ⊙ Prs)] = p1n where 1n = (1, . . . , 1)′ ∈ Rn. A related

version of M̌ (d) that instead uses the non-random denominator p was suggested in

Achlioptas (2003) in the spirit of Johnson and Lindenstrauss (1984); see also Kline

et al. (2020). M̌ (d) improves on that version by enforcing the shape constraints that

the entries of M (d) has support on [0, 1]. See also Kline, Saggio and Sølvsten (2021)

7For any observations where the entries of M̌ (d) are below 0.01, we replace them by 0.01.
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for a derivation of M̌ (d) as a feasible version of a minimum variance combination of

two separate stochastic approximations to M̌ (d).

The approximation to Λ is based on a finite difference and M̌ (d):

Λ̌(β) = ε−1diag
-
log

%
M̌ (d)(β + ε)⊘ M̌ (d)(β)

&.
.

The approximation to ∇βΛ is similarly

∇̌βΛ̌ = ε−1(Λ̌(β + ε)− Λ̌(β))

All simulations and empirical results use the stochastic approximations m̌CF
n =

−2ε̂′Aδ̂ − ε̂′Λ̌y, ǓA = −(2D +M Λ̌), ǓS = (ǓA + ǓA′)/2, σ̌2 = y ⊙ ε̂⊘ M̌ (d),

∇̌βm̌
CF
n = 2

%
‖MAδ̂LS‖2 + ‖Aδ̂LS‖2 − ‖Aδ̂LS −D′y‖2

&

+ (MAδ̂LS +D′y)′Λ̌y − ε̂′(∇̌βΛ̌)y,

and the stochastic approximation to V̂ (tr)
n :

V̌ (tr)
n /2 = y′ǓSdiag[σ̌2]ǓAy −

%
m̌CF

n

&2

− 1
p

"p

s=1

%
M

#
σ̌2⊙rs

$
⊙ǓAy⊙y⊘M̌ (d)

&′
ǓSrs

− 1
p

"p

s=1

%
M

#
σ̌2⊙rs

$
⊙ǓSy⊙y⊘M̌ (d)

&′
ǓArs

+ 1
p

"p/2

s=1

%
M

#
σ̌2⊙rs

$
⊙rp/2+s⊙y⊘M̌ (d)

&′
M

%
ǓArs⊙ǓSrp/2+s⊙y⊘M̌ (d)

&

+ 1
p

"p/2

s=1

%
M

#
σ̌2⊙rp/2+s

$
⊙rs⊙y⊘M̌ (d)

&′
M

%
ǓArp/2+s⊙ǓSrs⊙y⊘M̌ (d)

&
.

Remark 9. Our approximations to the first two traces in V̂ (tr)
n are called Hutchinson

approximations (Hutchinson, 1989). They utilize that an unbiased estimator for the

trace of a matrix F is the quadratic form r′1Fr1 and that this quadratic form is easy

to evaluate numerically. For the third trace entering V̂ (tr)
n the relevant quadratic form

for use with the Hutchinson approximation is numerically challenging to evaluate due

to the matrix Hadamard product US⊙M . For this trace, we combine the Hutchinson

approximation with “sample splitting” in the sense that we utilize (r1 ⊙ r2)
′(F1r1 ⊙

F2r2) as an unbiased estimator for the trace of F1 ⊙ F2.

Remark 10. The computationally most demanding part of evaluating m̌CF
n (β) and
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V̌ (tr)
n (β) are to find the solutions to linear systems of equations of the kind S(β)x = b

for various values of b. To construct m̌CF
n (β) there are 2p + 1 such systems to solve

while there is an additional 2 · (2p+ 1) systems involved in computing V̌ (tr)
n (β). The

time it takes to solve those systems of equations depends in large part on the number

of regressors present in the model.8

Appendix B Derivations

As a service to the reader we quickly state the main definitions used throughout the

paper and proofs. Here y, X, and A stacks the observations for yℓ, x
′
ℓ, and a′ℓ and

σ2 stacks the individual error variances σ2
ℓ . Furthermore, R(β) = X +Aβ, S = R′R,

P = RS−1R′, M = I − P , M (d) is the diagonal of M , Λ = diag
'
∇β log

#
M (d)

$(
,

D = MAS−1R′, UA = −(2D +MΛ), and US = (UA + UA′)/2. The non-linear least

squares estimator is (β̂LS, δ̂LS) = argmin
β∈B,δ∈Rk

!n
ℓ=1

#
yℓ − x′

ℓδ − a′ℓδ · β
$2

while the

key objective and moments functions are Q̂n = y′My, m̂n = ∇βQn, m̂
CF
n = m̂n −

y′MΛy, Qn = E[Q̂n | X,A], and mCF
n = E[m̂CF

n | A,X]. Finally, 1 = (1, . . . , 1)′ ∈ Rn.

Appendix material for Section 2.2 Suppose that data is generated according to

the setup of Section 2.2. We first use the sufficiency principle together with an added

assumption that the error terms are homoskedastic normal, to argue that (Y ,X ,Z)

contains all the information about β0. Removing this assumption of homoskedastic

normality (without adding other assumptions) can never lead the discarded data to

become informative. The original data can be recovered from (Y ,X ,Z) and (Ỹ , X̃ , Z̃)

where Ỹ = y12 + y11, X̃ = y32 + y21, and Z̃ = y31 + y22. Furthermore, it follows

from standard variance calculations that (Y ,X ,Z) and (Ỹ , X̃ , Z̃) are independent

(conditionally on explanatory variables). Finally, the mean of (Y ,X ,Z) depends

only on β0 and α3 − α2, and even when those two parameters are known, the mean

of (Ỹ , X̃ , Z̃) is unrestricted in R3. It therefore follows that (Ỹ , X̃ , Z̃) only contains

information about its mean, or in other words, that (Y ,X ,Z) is sufficient for β0,

α3 − α2, and the unknown error variance.

We now show that the least squares estimator will be amplified (attenuated) rela-

tive to the truth if Y has higher (lower) unexplained variance than X and Z. Towards

this end, define (σ2
Y , σ

2
X , σ

2
Z) as the unexplained variance of (Ỹ , X̃ , Z̃). Furthermore,

8It also depends on the structure of the model through the degree of sparsity in S.
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suppose that β∗ is the unique global minimizer of σ2(β) and that the least squares

estimator converge in probability to β∗. We can write

4σ2(β) =
2(β − β0)

2E[(α3 − α2)
2] + 2σ2

Y + E[(Z − X )2](1 + β2)

2 + β2 .

If σ2
Y ≤ min{σ2

X , σ
2
Z}, then we have the ordering 4σ2(β∗) ≤ 4σ2(β0) ≤ E[(Z −

X )2] < E[Z2 + X 2] which together with the first order condition in (7) yields

|β∗| = |E[(Z + X )Y ]|
E[Z2 + X 2]− 4σ2(β∗)

≤ |E[(Z + X )Y ]|
E[Z2 + X 2]− 4σ2(β0)

≤ |E[(Z + X )Y ]|
E[Z2 + X 2]− E[(Z − X )2]

= |β0|.

If instead we have σ2
Y ≥ max{σ2

1, σ
2
2}, then we have E[Z2 + X 2] = lim|β|→∞ 4σ2(β) >

4σ2(β∗) ≥ E[(Z − X )2] and in turn

|β∗| = |E[(Z + X )Y ]|
E[Z2 + X 2]− 4σ2(β∗)

≥ |E[(Z + X )Y ]|
E[Z2 + X 2]− E[(Z − X )2]

= |β0|.

Next, we connect the expressions in (4)–(7) with the general formulas introduced

in Section 3. As the model is over parameterized, we drop ψB from the model so that

the design has full rank. For the six observations in a given triplet, the corresponding

part of the matrix M(β) is

I − 1

2(2 + β2)

3

4444444445

2(1 + β2) 2 β β −β −β

2 2(1 + β2) −β −β β β

β −β 3 + β2 1 −1 1 + β2

β −β 1 3 + β2 1 + β2 −1

−β β −1 1 + β2 3 + β2 1

−β β 1 + β2 −1 1 3 + β2

6

7777777778

and in analogy with the sufficiency argument above, the formulation in terms of

the full data leads to one half times the objective defined for (Y ,X ,Z) where the
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corresponding matrix M(β) is

I − 1

2 + β2

3

45
β2 β β

β 1 1

β 1 1

6

78 =
1

2 + β2

3

45
2 −β −β

−β 1 + β2 −1

−β −1 1 + β2

6

78 .

Thus the contribution of any particular triplet to the least squares objective function

is four times the sample analog of (6) since

Y2 + X 2 + Z2 − (Yβ + X + Z)2

2 + β2 =
(Z − X )2 + (Y − Xβ)2 + (Y − Zβ)2

2 + β2 .

The cross-fit objective function contribution defined for a single triplet (Y ,X ,Z) at

(β1, β) is similarly found as

−2Y(Z + X )β1 − 2ZX
2 + β2

1

+
(1 + 1+β

2
1

1+β
2 )Y(Z + X )β + 21+β

2
1

1+β
2ZX

2 + β2
1

.

Therefore, each triplet contributes (−Y(Z+X )+2ZXβ) 2

(2+β
2
)(1+β

2
)
to the first order

condition for a minimum of the cross-fit objective in β1 at β1 = β. Thus, we obtain

the sample analog of the first order condition in (4).

33


