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We consider tests of equal population forecasting ability when mean squared prediction
error is the metric for forecasting ability, the two competing models are nested, and the
iterated method is used to obtain multistep forecasts. We use Monte Carlo simulations to
explore the size and power of the MSPE-adjusted test of Clark and West (2006, 2007)
(CW) and the Diebold–Mariano–West (DMW) test. The empirical size of the CW test is
almost always tolerable: across a set of 252 simulation results that span 5 DGPs, 9 hor-
izons, and various sample sizes, the median size of nominal 10% tests is 8.8%. The com-
parable figure for the DMW test, which is generally undersized, is 2.2%. An exception for
DMW occurs for long horizon forecasts and processes that quickly revert to the mean, in
which case CW and DMW perform comparably. We argue that this is to be expected,
because at long horizons the two competing models are both forecasting the process to
have reverted to its mean. An exception for CW occurs with a nonlinear DGP, in which CW
is usually oversized. CW has greater power and greater size adjusted power than does
DMW in virtually all DGPs, horizons and sample sizes. For both CW and DMW, power
tends to fall with the horizon, reflecting the fact that forecasts from the two competing
models both converge towards the mean as the horizon grows. Consistent with these
results, in an empirical exercise comparing models for inflation, CW yields many more
rejections of equal forecasting ability than does DMW, with most of the rejections
occurring at short horizons.

& 2016 University of Venice. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Forecast comparisons have long played a role in evaluation of economic models. A prominent early example was in
exchange rate economics. Meese and Rogoff's (1983) demonstration that then-popular exchange rate models forecast no
better than a random walk stimulated a huge literature, and made forecast evaluation a common element of evaluation of
both reduced form and structural exchange rate models (see Engel et al., 2007). A number of recent examples may be found
in volume 2 of the Handbook of Forecasting, whose chapters use forecast comparisons to evaluate, for example, everything
from DSGE macro-models (Del Negro and Schorfheide, 2013) to macro-finance models for interest rates (Duffee, 2013) to
Phillips curves for inflation (Faust and Wright, 2013).
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Forecast comparisons potentially involve not only point estimates of measures of forecast quality but also standard errors
on cross-model differences in forecast quality. Our paper is concerned with the accuracy of inference about forecast quality
once a standard error and t-statistic are constructed. In the literature, two leading ways to construct standard errors are the
methods proposed in Clark and West (2006, 2007) (hereafter CW) and Diebold and Mariano (1995) and West (1996)
(hereafter, DMW).1 Our aim in this paper is to use Monte Carlo simulations to explore the size and power of the CW and
DMW tests at multistep horizons. We are interested in their performance both absolutely and relative to one another.

We use the conventional measure of forecast quality, i.e., mean squared prediction error (MSPE). In our simulations, we
calibrate our parameters and sample sizes to macro and financial applications such as weekly or monthly exchange rates or
stock returns, quarterly GDP or monthly CPI inflation. Four of our five models are linear, and one is nonlinear. Our artificial
data generating processes all involve what are called “nested” models, which compare a simple stripped down null model to
an alternative model that adds on regressors whose coefficients are presumed to be zero in the null model. We make
multistep forecasts using what is called the “iterated” method. As explained in detail in the next section, this method relies
on textbook procedures to make multistep forecasts.

The empirical size of the CW test is almost always tolerable: across a set of 252 simulation results that span 5 DGPs,
9 horizons, and various sample sizes, the median size of nominal 10% tests is 8.8%. The comparable figure for the DMW test,
which is generally undersized, is 2.2%. An exception for DMW occurs for long horizon forecasts and processes that quickly
revert to the mean, in which case the fact that forecasts from both models have reverted to the mean leads DMW to perform
as well as CW. An exception for CW occurs with a nonlinear DGP, in which CW is usually oversized; DMW is also oversized
but less so than CW. CW has greater power and greater size adjusted power than does DMW in virtually all DGPs, horizons
and sample sizes. Power tends to fall with the horizon, consistent with the fact that both models converge towards fore-
casting the mean.

Two implications for applied work are to use CW in preference to DMW, and to focus on short horizons, because that is
where power is greatest. Indeed, in our empirical exercise comparing two models for inflation, CW yields many more
rejections of equal forecasting ability than does DMW, with most of the rejections occurring at short horizons.

The simulation results are broadly similar to those in Clark and West (2006, 2007), who focus on one step ahead rather
than multistep predictions. They are also similar to the results in Clark and McCracken (2013b), who also compare multistep
forecasts using the iterated method.

Our use of the iterated method to construct long horizon forecasts distinguishes our study from most earlier ones. Most
of the research evaluating multistep forecast tests assume predictions are constructed using the “direct” rather than iterated
method to forecast (the next section briefly explains the direct method). See for instance, Clark and McCracken (2005a) and
Busetti and Marcucci (2013). We distinguish ourselves from the aforementioned Clark and McCracken (2013b) paper via use
of different DGPs, horizons and sample sizes. Since, as well, some recent empirical literature (e.g., Faust and Wright (2013)
and Pincheira and Gatty (2016)) employs the iterated method for multistep forecasts, there is a need for econometric
evaluation of forecast inference techniques when the iterated forecasts are used.

We emphasize that we are testing equal population forecasting ability. That is, the relevant set of applications are ones
that use forecast comparisons as a model evaluation technique. This is to be distinguished from tests of equal forecasting
ability conditional on a given sample, where one is simply looking for a good forecast. See Clark and McCracken (2013a) for
further discussion. While DMW can be used to compare equal population forecasting ability when comparing non-nested
models (West, 1996), our application is to nested models. So our simulation results are of questionable relevance to com-
parisons of non-nested models or comparison of forecasting ability conditional on a given sample.

The rest of the paper is organized as follows. Section 2 outlines CW and DMWand the general econometric environment.
Section 3 describes our DGPs and our simulation setup. Section 4 presents simulation evidence showing the size and power
performance of the two tests. Section 5 illustrates the use of these tests in an empirical application. Section 6 concludes. An
on-line appendix available from the authors contains some additional results omitted from the published paper to
save space.
2. Econometric setup and forecast evaluation framework

2.1. Construction of forecasts

Our linear econometric setup considers nested specifications for a scalar dependent variable ytþ1 as follows:

ytþ1 ¼ X0
t βþe1tþ1 model 1:null modelð Þ; ð2:1Þ

ytþ1 ¼ X0
t βþZ0

t γþe2tþ1 model 2: alternative modelð Þ; ð2:2Þ

where e1tþ1 and e2tþ1 are mean zero and i.i.d.
1 See West (2006) and Clark and McCracken (2013a) for a discussion of some other methods to construct standard errors.
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Under the null, γ¼0. In that case, model 2 reduces to model 1. In population (i.e., abstracting from sampling error),
forecasts, forecast errors and mean squared forecast errors are the same for both models, for forecasts at any horizon. Under
the alternative, γa0.2 Thus, under the alternative, forecasts will be different for the two models. Since model 2 includes
information useful in explaining yt , the population forecasts from model 2 will be superior to those of model 1. As noted
above, we used mean squared prediction error as our measure of whether one forecast is superior to another.

Here is how we generate our forecasts. Let ŷ1;tþhjt and ŷ2;tþhjt be h period ahead forecasts from each of the two models,
with X̂ tþhjt and Ẑ tþhjt the corresponding forecasts of X and Z. Let β̂1t be a least squares estimate of model 1 that only uses
data up to period t, with β̂2t and γ̂2t the model 2 counterparts. Then

ŷ1;tþhjt ¼ X̂
0
tþh�1jt β̂1t ; ŷ2;tþhjt ¼ X̂

0
tþh�1jt β̂2tþ Ẑ

0
tþh�1jt γ̂2t : ð2:3Þ

To make these formulas operational, we must construct X̂ tþh�1jt and Ẑ tþh�1jt . We fit univariate or vector autoregressions
to the variables in Xt and Zt and use standard textbook formulas to construct forecasts. Suppose, for example, that Xt is
absent and that Zt¼rt is a scalar that is modeled as a zero mean AR(1) with parameter φ: rt ¼ φrt�1þut , ut� i.i.d. Let φ̂t be a
least squares estimate of the autoregression that only uses data up to period t. Then

r̂ tþhjt ¼ φ̂h
t rt : ð2:4Þ

A similar, though multivariate, model is used when Zt is a vector or when model 1 involves regressors Xt .
Readers familiar with the forecasting literature will recognize this as the iterated method of generating a multistep

forecast. In this method, a single set of regression estimates is used to generate forecasts for all horizons. The alternative is to
use the direct method. In this method, one runs distinct regressions for each horizon, for example for model 1 estimating

ytþh ¼ x0tβhþη1tþh: ð2:5Þ
The direct forecast is x0t β̂ th, where β̂ th is an estimate of βh that only relies on data up to period t. Note that the slope

coefficient βh is subscripted by h, as is the MA(h�1) disturbance η1tþh.
Analytical comparisons of the two methods may be found in Ing (2003) and Schorfheide (2005). A comprehensive

empirical comparison is in Marcellino et al. (2006). Our reading is that neither the theoretical nor empirical literature
endorses one approach over the other. Despite the lack of clear superiority of one method over another, virtually all previous
literature that has considered questions similar to ours has assumed use of the direct method. Hence our decision to focus
on the iterated method.

2.2. The CW and DMW tests

Let ê1;tþhjt � ŷ1;tþhjt� X̂
0
tþh�1jt β̂1t and ê2;tþhjt � ŷ2;tþhjt� X̂

0
tþh�1jt β̂2t� Ẑ

0
tþh�1jt γ̂2t denote the forecast errors at horizon h.

For simplicity drop the h subscript on P(h) so that P is the number of predictions and prediction errors. The estimates of h
period ahead mean squared prediction errors (MSPE) from the two models are

σ̂21;h ¼
1
P

XRþP�1

t ¼ R

ê21;tþhjt ; σ̂
2
2;h ¼

1
P

XRþP�1

t ¼ R

ê22;tþhjt : ð2:6Þ

σ̂21;h ¼
1
P

XRþP�1

t ¼ R

ê21;tþhjt ; σ̂
2
2;h ¼

1
P

XRþP�1

t ¼ R

ê22;tþhjt : ð2:7Þ

Under the null, σ21;h¼σ22;h; under the alternative σ21;h4σ22;h. Let V̂ be an estimate of the long run variance of

e21;tþhjt�e22;tþhjt , constructed from the time series on ê21;tþhjt� ê22;tþhjt . The DMW test constructs the t-statistic

σ̂2
1;h� σ̂2

2;hffiffiffiffi
V̂

p ð2:8Þ

and rejects the null if the t-statistic exceeds the relevant one-sided critical value – 1.28 for a 10% test, for example. Because it
is convention to use standard normal critical values in evaluating (2.8), we refer to DMW as MSPE-normal.3

One indication that this procedure is potentially troubled is that, as noted above, under the null, e1;tþhjt and e2;tþhjt are
the same random variable, rendering problematic the notion of constructing the long run variance of e21;tþhjt�e22;tþhjt . This is
an indication of a deeper problem. Holding the regression sample size R fixed, under the null the DMW statistic converges to
a negative value rather than zero as the number of predictions P-1 (Clark and West 2006, 2007). The reason is that the
inclusion of the additional regressors Zt in the alternative model inflates the finite sample value of σ̂2

2;h: in finite samples the
act of estimating coefficients on those regressors introduces noise into the forecasting equation even though the corre-
sponding population coefficient vector γ is zero. Since we are conducting a one sided test, the implication is that DMW will
be undersized.
2 See Clark and McCracken (2005b) for an analysis of power of out of sample tests of predictive ability.
3 Various Clark and McCracken papers (e.g., Clark and McCracken, 2013b) refer to DMW as MSE-t.
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The CW statistic adjusts downward the estimate of the MSPE from model 2 to account for the inflation noted in the
previous paragraph. Specifically, construction of CW begins by producing an adjusted estimate for the MSPE from model 2,

σ̂2
2;h�adj:¼ 1

P

XRþP�1

t ¼ R

�
ê22;tþhjt� ŷ1;tþhjt� ŷ2;tþhjt

� �2� ð2:9Þ

(See Clark and West (2006, 2007) for the logic that leads to this adjustment.) Now redefine V̂ to be an estimate of the
long run variance of e21;tþhjt�½e22;tþhjt� y1;tþhjt�y2;tþhjt

� �2�, constructed from the time series on ê21;tþhjt� ê22;tþhjt�
h

ŷ1;tþhjt� ŷ2;tþhjt
� �2�: The CW test relies on the t-statistic

σ̂2
1;h� σ̂2

2;h�adj:
� �

ffiffiffiffi
V̂

p ð2:10Þ

The CW test can also be considered an encompassing test akin to the test proposed by Harvey et al. (1998). This alter-
native interpretation implies that the CW test is evaluating whether a particular combination between the null and alter-
native model generates a forecasting strategy with the lowest RMSPE between the following options: (A) to generate
forecasts with the null model, (B) to generate forecasts with the alternative model, or (C) to generate forecasts with an
average between the strategies in (A) and (B). Let us elaborate.4

With some algebra (see Clark and West (2007)), the numerator of CW may be shown to be equal to

2
P

XRþP�1

t ¼ R

ê1;tþhjt ê1;tþhjt� ê2;tþhjt
� �

: ð2:11Þ

Now, for a given positive scalar λ (smaller than one) we could build the following convex forecast combination:

yCtþhjt ¼ λŷ2;tþhjtþð1�λÞŷ1;tþhjt ð2:12Þ

with forecast error given by

eCtþhjt ¼ λê2;tþhjtþ 1�λð Þê1;tþhjt ¼ λ ê2;tþhjt� ê1;tþhjt
� �þ ê1;tþhjt ð2:13Þ

The corresponding MSPE is given by

EðeCtþhjtÞ2 ¼ λ2E ê2;tþhjt� ê1;tþhjt
� �2þEðê1;tþhjtÞ2þ2λE ê2;tþhjt� ê1;tþhjt

� �
ê1;tþhjt ð2:14Þ

Since

E ê2;tþhjt� ê1;tþhjt
� �2

40 ð2:15Þ
Expression (2.14) is a strictly convex quadratic function with a unique global minimum given by

λ� ¼ �E ê2;tþhjt� ê1;tþhjt
� �

ê1;tþhjt

E ê2;tþhjt� ê1;tþhjt
� �2 ð2:16Þ

We notice that under mild conditions the numerator of the CW statistic (2.11) converges in probability to twice the
numerator of λ�. As long as λ� is different from one and zero, the MSPE of the optimal combination should be lower than the
MSPE of the two individual forecast in the combination. Rejection of the null hypothesis of the CW test indicates that a
combination with a positive weight on the forecast coming from the alternative model should be preferable to either
individual forecast.5

2.3. Asymptotic justification

To motivate (2.9), and to help interpret our findings, consider the special case in which the null and alternative models
are

ytþ1 ¼ e1tþ1; ð2:17Þ

ytþ1 ¼ ytγþe2tþ1: ð2:18Þ
This is a special case of (2.1)–(2.2) with β¼0 and Zt¼yt. Under the null, γ¼0. So in population we may drop the 1 and

2 subscripts and write

ytþ1 ¼ etþ1: ð2:19Þ
4 The argument about to be given assumes rolling windows, with asymptotics done as in Giacomini and White (2006) or Clark and West (2006): R
fixed, P-1. Hence this discussion departs from our general focus on population predictive ability rather than predictive ability in a given sample.

5 If the CW statistic cannot reject the null then we have two possibilities: combination gains are negligible or they might be obtained with a negative
weight on the forecasts from the alternative model, which has no simple interpretation.
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In (2.18), let γ̂ t denote an estimate of γ that relies on data going from either t�Rþ1 to t (rolling samples) or from 1 to t
(recursive samples).6 We have

ŷ1;tþhjt ¼ 0; ê1;tþhjt ¼ ytþh; ê2;tþhjt ¼ ytþh�yt γ̂
h
t ;

ê21;tþhjt� ê22;tþhjt ¼ y2tþh� ytþh�yt γ̂
h
t

� �2
¼ 2ytþhyt γ̂

h
t � yt γ̂

h
t

� �2
: ð2:20Þ

Thus the numerators of the DMW and CW statistics are

σ̂21;h� σ̂22;h ¼
2
P

XRþP�1

t ¼ R

ytþhyt γ̂
h
t �

1
P

XRþP�1

t ¼ R

yt γ̂
h
t

� �2
;

σ̂21;h� σ̂22;h�adj:¼ 2
P

XRþP�1

t ¼ R

ytþhyt γ̂
h
t : ð2:21Þ

Since ytþh¼etþh, � i.i.d., and γ̂ t relies only on data that ends in t, Eytþhyt γ̂
h
t ¼0. Thus the expectation of the numerators of

the DMW and CW statistics are

Eðσ̂2
1;h� σ̂2

2;hÞ ¼ �1
P

XRþP�1

t ¼ R

E yt γ̂
h
t

� �2
; E σ̂2

1;h� σ̂2
2;h�adj:¼ 0:

� �
ð2:22Þ

Although γ¼0 in population, in a sample of finite size, γ̂ t and thus γ̂ht have positive probability of being non-zero. Thus

E yt γ̂
h
t

� �2
40 for each t, yielding

Eðσ̂2
1;h� σ̂2

2;hÞo0: ð2:23Þ
By contrast, the fact that Eðσ̂2

1;h� σ̂2
2;h�adj:Þ¼0 means the CW statistic is centered at zero.

Under reasonable conditions, asymptotic normality of the CW statistic follows easily if the rolling scheme is used so that
the sample size used to estimate γ is held fixed. For in this case, per the logic in Giacomini and White (2006), ytþhyt γ̂

h
t is a

stationary random variable and under suitable technical conditions the usual central limit theorem applies.
We are not aware of a general set of conditions in which asymptotic normality results when one uses the recursive

scheme or when βa0 so that the null model includes at least one regressor. See Clark and West (2007) and Clark and
McCracken (2013a). But Clark and West (2007) argue analytically and with simulations that for the direct scheme
approximate normality results under more general circumstances. In particular, MSPE-adjusted (2.10) is the same as Clark
and McCracken’s (2001) Enc-t statistic. Simulations completed by Clark and McCracken indicate that for the direct scheme,
use of (2.10) with (say) 10% tests will result in actual sizes of between 5% and 10%. Hence the statistic can reasonably be
thought of as approximately normal, though a bit undersized. We conjecture the same holds for iterated forecasts.7 This
conjecture that seems to be upheld in our simulations.

Four final points. First, since the numerator of DMW is centered in negative territory (see Eq. (2.23)), we expect one sided
DMW tests, which at the 10% level reject only if the t-statistic is greater than þ1.28, to be undersized. Second, for larger Pwe
expect the undersizing to be worse: holding R fixed and letting P-1, the first term on the right hand side of (2.21)
converges in probability to zero, the second term to a negative constant. So for large P, DMW will pile up around a
negative value.

The third and fourth points reflect the observation that as the forecast horizon h gets big, the forecasts from both the null
and alternative model will tend towards the mean of y. The sample MSPE from each model will therefore tend to be similar,
and each will tend to be near the unconditional variance. Further, the CW adjustment will tend to be near zero. (To put this

in terms of the example above: γ̂ht will be near zero for large h. Thus the CW adjustment (the final term in (2.21)) will tend to

be near zero, and DMWECW. As well (see (2.20)), γ̂ht E0 means σ̂2
1;h � σ̂2

2;h � 1
P

PRþP�1

t ¼ R
y2tþh.) Thus (our third point), we expect

DMW to behave like CW and thus be less undersized for larger h. Our fourth and final point is that this convergence to the
mean implies that differences in power will fade as h gets big.
3. Monte Carlo simulations

Our five simulation DGPs include four linear ones stimulated by empirical work in asset pricing (DGPs 1–3) and mac-
roeconomics (DGP 4). Our fifth and final DGP is stimulated by recent work on the CPI by Pincheira et al. (2016). All driving
shocks (etþ1 and vtþ1 in DGPs 1–4, utþ1 and μtþ1 in DGP 5) are i.i.d. normal. In all simulations we experimented with both
rolling and recursive samples, a single value of initial regression sample size R and four values of the number of one step
6 For overviews of the relevant forecasting literature, including definition and discussion of rolling vs. recursive, see West (2006) and Clark and
McCracken (2013a).

7 See Clark and McCracken (2013b) for a brief exposition of the complications involved in extending the results for direct forecasts to iterated forecasts.
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ahead predictions P.8 For conciseness, we report results in detail for only one value of P, with results for other values of P
detailed in the on-line appendix.

3.1. Experimental design

DGPs 1–2: For a case where the null is a martingale model (possibly with drift), we consider DGPs such as the ones used
in Clark and West (2006), Mankiw and Shapiro (1986), Nelson and Kim (1993), Stambaugh (1999), Campbell (2001) and
Tauchen (2001). The general setup is the following:

Null model:

ytþ1 ¼ etþ1 ðmodel1Þ: ð3:1Þ

Alternative model:

ytþ1 ¼ αyþγrtþetþ1 ðmodel2Þ; ð3:2aÞ

rtþ1 ¼ αrþφ1rtþφ2rt�1þ…þφprt�pþvtþ1: ð3:2bÞ

This simple setup maps into the notation of (2.1)–(2.2) via: the term X0
tβ is absent and Zt¼(1 rt )0. In all our simulations,

αy ¼ αr ¼ φ3 ¼…¼ φp ¼ 0: Let

var etþ1ð Þ ¼ σ2e ;var vtþ1ð Þ ¼ σ2v ;corr etþ1; vtþ1ð Þ ¼ ρ: ð3:3Þ
We parameterize this as follows (rationale for these values is given below):

φ1 φ2 σ2e σ2v ρ γ; under H0 γ; under HA

DGP 1 1:19 �0:25 1:75ð Þ2 0:075ð Þ2 0 0 �2
DGP 2 0:5 0 0:06ð Þ2 0:06ð Þ2 �0:4 0 �0:9

ð3:4Þ

In both DGPs, the null forecast (model 1) imposes αy¼γ¼0, thus assuming ytþ1¼etþ1. The null yields simply the
martingale difference or ‘‘no change’’ forecast of 0 for all t and all forecasting horizons. (In terms of the notation above,
ŷ1;tþhjt¼0 for all t and h.) In both DGPs, the alternative forecast (model 2) for multistep horizons is obtained in part from
equation (3.2b), i.e., a regression of rtþ1 on its own lags and a constant. (“In part” because (3.2a) is of course required as
well.) In some simulations we imposed the correct lag order in (3.2b) (¼2 in DGP 1, ¼1 in DGP 2); in others we use BIC to
choose the lag length with maximum lag p¼8. For the alternative, we compute forecasts using the iterated method and OLS
estimates of our parameters, yielding for horizon h¼2 and lag length p¼2 in (3.2b), for example,

r̂ tþ1jt ¼ α̂rtþ φ̂1trtþ φ̂2trt�1; ð3:40Þ

ŷtþ2jt ¼ α̂ytþ γ̂ t r̂ tþ1jt : ð3:5Þ

Here, the t subscripts on the coefficients α̂rt , φ̂1t ,φ̂2t ; α̂yt and γ̂ t emphasize that they are estimated from a sample that
ends at date t.

The first parameterization, labeled DGP 1, is based roughly on estimates from the exchange rate application considered in
the empirical work reported in Clark and West (2006), in which ytþ1 is the monthly percentage change in a US dollar
bilateral exchange rate and rt is the corresponding interest differential. The parameters were obtained from monthly data.
For this DGP we consider an initial estimation window of 120 observations (R¼120) and report results for P¼300 pre-
dictions. The initial window of R¼120 corresponds to a reasonable (to us) initial 10 year sample size to estimate regression
parameters; the implied sample size (420 months, or 35 years) is one consistent with studies of the modern floating era. The
on-line appendix also presents results for P¼100, P¼200, and P¼740. The first two are sizes seen in studies applied to the
current floating era; the last is for comparison. We consider experiments in which the number of lags in expression (3.2) is
known and ones in which the number of lags in each estimation window is selected using BIC. The maximum lag length is 8
(i.e., p¼8).

The second parameterization, DGP 2, is calibrated to monthly returns in the copper price ytþ1 and the Chilean Peso-
Dollar exchange rate rt , using monthly data 1990–2015. The exchange rate was monthly average of daily observations,
which accounts for the serial correlation coefficient of ϕ1¼0.5. According to Chen et al. (2010) commodity currencies should
have the ability to predict commodity returns. Accordingly, we set γ¼�0.9 in experiments evaluating power. For this DGP
we consider an initial estimation window of 100 observations (R¼100) and again report results for P¼300 months. The on-
line appendix also considers P¼100, P¼200, and P¼400. The implied sample size (RþP) is in the range found in relevant
studies.

DGP 3: Like DGP 2, DGP 3 is motivated by the literature on commodity currencies. DGP 3 is calibrated to monthly returns
of the Non-Fuel Price Index of the IMF ytþ1 and three commodity currencies versus the U.S. dollar: r1t¼Australia, r2t¼South
8 For a horizon h, the number of predictions is P�hþ1.
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Africa and r3t¼Chile. Null model:

ytþ1 ¼ αyþδytþetþ1 ðmodel1Þ: ð3:6Þ

Alternative model:

ytþ1 ¼ αyþγ1r1tþγ2r2tþγ3r3tþδytþetþ1 ðmodel2Þ; ð3:7aÞ

ritþ1 ¼ αirþφiritþvitþ1; i¼ 1;2;3: ð3:7bÞ
In the notation of (2.1)–(2.2), Xt¼yt and Zt¼(1 r1t r2t r3t )0. In contrast to DGPs 1 and 2, we generate forecasts of future Xt’s

(¼future yt’s) with a vector rather than univariate autoregression. Parameters:

αy ¼ α1r ¼ α2r ¼ α3r ¼ 0; δ¼ 0:3;φ1 ¼ φ2 ¼ 0:33;φ3 ¼ 0:5;
under H0; γ1 ¼ γ2 ¼ γ3 ¼ 0; under HA; γ1 ¼ �0:12; γ2 ¼ �0:03γ3 ¼ �0:12: ð3:8Þ

These parameters were calibrated to 1990–2015 monthly data, with the three currencies monthly average of daily values.
The variance–covariance structure of the shocks (etþ1;v1tþ1; v2tþ1; v3tþ1Þ is given by 10�3 times the following matrix:

0:536 �0:296 �0:229 �0:221
�0:296 0:666 0:352 0:251
�0:229 0:352 1:09 0:251
�0:221 0:251 0:251 0:478

0
BBB@

1
CCCA

We consider an initial estimation window of 120 observations (R¼120) and P¼240 predictions. The on-line appendix
also presents results for P¼80, P¼160, and P¼320.

DGP 4: For DGPs calibrated to macro data, we consider two final DGPs. DGP 4 is the very same DGP 2 in Clark and West
(2007). This data generating process is based on models estimated with quarterly data exploring the relationship between
US GDP growth and the Federal Reserve Bank of Chicago's factor index of economic activity. This DGP takes the
following form:

Null:

ytþ1 ¼ αyþδytþetþ1 ðmodel1Þ: ð3:9Þ

Alternative:

ytþ1 ¼ αyþδytþγ1rtþγ2rt�1þγ3rt�2þγ4rt�3þ…þγprt�pþetþ1 ðmodel 2Þ; ð3:10aÞ

rtþ1 ¼ αrþ0:804rt�0:221rt�1þ0:226rt�2�0:205rt�3þvtþ1: ð3:10bÞ
In the notation of (2.1)–(2.2), Xt¼(1 yt )0 and Zt¼(rt … rt�p )0. In all simulations, γ5¼ … ¼γp¼0. Other parameters

αy ¼ 2:237; δ¼ 0:261;αr ¼ 0; σ2e ¼ 10:505; σ2v ¼ 0:366; ρ¼ 0:528;

under H0; γ1 ¼ γ2 ¼ γ3 ¼ γ4 ¼ 0;under HA; γ2 ¼ �0:633; γ3 ¼ �0:377 and γ4 ¼ �0:52: ð3:11Þ
In some simulations we imposed the correct lag order of 4 in (3.10a); in others we use BIC to choose the lag length with

maximum lag p¼8. We consider an initial estimation window of 80 observations (R¼80) and P¼120 forecasts. The sample
sizes are smaller than in DGPs 1–3 because we are calibrating to quarterly data; the implied quarterly sample of 200
observations corresponds to 50 years of data. The on-line appendix also presents results for P¼40, P¼80 and P¼160.

DGP 5: Our last DGP (DGP 5) is based on recent work in which traditional measures of monthly CPI core inflation are used
to forecast monthly CPI headline inflation (see Pincheira et al., 2016, for details). This is our only nonlinear model. For clarity,
we relabel yt as πt and rt as πcoret . The DGP is as follows. Let ut and μt be i.i.d. shocks. Null:

πtþ1 ¼ αþφππtþϵtþ1 model 1ð Þ; ð3:12aÞ

εtþ1 ¼ utþ1�θut�τut�11þτθut�12: ð3:12bÞ
Alternative:

πtþ1 ¼ αþφππtþγπcoret þεtþ1 model 2ð Þ; ð3:13aÞ

εtþ1 ¼ utþ1�θut�τut�11þτθut�12; ð3:13bÞ

πcoretþ1 ¼ δþωtþ1; ð3:13cÞ

ωtþ1 ¼ φωωtþμtþ1�bμt�11: ð3:13dÞ
This DGP does not quite map into (2.1)–(2.2) because the disturbances εtþ1 and ωtþ1 are serially correlated. Specifically,

for i.i.d. utþ1 and μtþ1, εtþ1 ¼ 1�τL12
� �

1�θLð Þutþ1 and 1�φωL
� �

ωtþ1 ¼ 1�bL12
� �

μtþ1.



Table 1
Empirical size, nominal 10% tests, DGPs 1 and 2.

MSPE-adjusted/CW MSPE-normal/DMW

(1) (2) (3) (4) (5) (6) (7)

Horizon DGP 1 DGP 2 DGP 1 DGP 2

p¼1 BIC p¼1 BIC

Panel A: Rolling regressions
h¼1 0.071 0.071 0.074 0.000 0.000 0.000
h¼2 0.071 0.071 0.072 0.000 0.000 0.001
h¼3 0.077 0.078 0.066 0.000 0.000 0.002
h¼6 0.078 0.077 0.068 0.002 0.002 0.002
h¼9 0.074 0.074 0.070 0.003 0.003 0.002
h¼12 0.071 0.072 0.069 0.003 0.003 0.002
h¼18 0.073 0.074 0.072 0.005 0.005 0.003
h¼24 0.070 0.069 0.074 0.007 0.007 0.004
h¼36 0.071 0.071 0.078 0.009 0.009 0.008
Panel B: Recursive regressions
h¼1 0.070 0.070 0.063 0.004 0.004 0.004
h¼2 0.071 0.071 0.066 0.005 0.005 0.008
h¼3 0.069 0.069 0.057 0.007 0.007 0.008
h¼6 0.072 0.072 0.058 0.009 0.008 0.010
h¼9 0.066 0.067 0.057 0.010 0.010 0.009
h¼12 0.066 0.066 0.059 0.010 0.010 0.010
h¼18 0.062 0.062 0.060 0.016 0.015 0.011
h¼24 0.063 0.063 0.061 0.015 0.014 0.011
h¼36 0.065 0.065 0.068 0.016 0.015 0.017

Note: 1. The table presents empirical sizes for two tests for equality of population mean squared prediction errors (MSPEs) against the one-sided alternative
that the alternative model has lower MSPE. Columns (2)–(4) present the test proposed in Clark and West (2006), (5)–(7) the test proposed in Diebold and
Mariano (1995) and West (1996). The CW test (2.10) adjusts the difference in sample MSPEs for noise that results because the alternative model’s forecast
relies on estimates of parameters whose population values are zero. The DMW test (2.8) simply uses differences in MSPEs. Multistep forecasts are
computed with the iterated method; see Section 2.
2. The null is that the predictand yt is white noise, the alternative that yt depends on a constant and a variable rt that follows an autoregression. Section 3 of
the text gives exact specifications and parameter values. In columns (2), (4), (5) and (7), the alternative model uses the population lag length in the
autoregression for rt ; in columns (3) and (6) the alternative model uses BIC to select the lag length. All models are estimated by least squares.
3. Results are based on 5000 replications. A figure of 0.071 in column (2), h¼1, for example, indicates that about 350 of the 5000 t-statistics (2.10) were
greater than 1.28, where 1.28 is the 10% critical value for a one-sided test.
4. Let R be the rolling sample size (panel A) or the smallest recursive sample used to estimate parameters needed under the alternative to make a forecast
(panel B). Then R¼120 in DGP 1, R¼100 in DGP 2. In both DGPs, the number of predictions is P¼300. Results for other values of P, and for nominal 0.05 and
0.01 tests, are available in the on-line Appendix.
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We calibrate these two processes to match in-sample estimates for monthly demeaned U.S. CPI data:

α¼ 0;φπ ¼ 0:96; θ¼ �0:45; τ¼ 0:93; δ¼ 0;φω ¼ 0:99;b¼ 0:93; σ2u ¼ 0:075; σ2μ ¼ 0:011;

covðut ; μtÞ ¼ 0:007;under H0; γ ¼ 0;under HA; γ ¼ 0:05: ð3:14Þ

In contrast to our previous DGPs, DGP 5 requires nonlinear estimation, because of the seasonal serial correlation in εtþ1

and ωtþ1. As a consequence we estimate this DGP with nonlinear least squares. We consider an initial estimation window of
250 observations (R¼250) and P¼375 forecasts. The implied sample of 625 months is about 52 years. The on-line appendix
also presents results for: P¼125, P¼250 and P¼500.

3.2. Some details about our simulations

For each DGP we consider 5000 independent replications. In each replication, we generate 1500 observations on our
dependent and independent variables. We discard the first 500 values to ensure stationarity. We evaluate the CW and DMW
tests using a variety of combinations of the number of observations used in the first estimation window R and the number of
one-step-ahead forecasts P(1). We consider both recursive and rolling schemes. In addition to forecasts h¼1 periods ahead,
we compute iterated forecasts at several forecasting horizons h¼2, 3, 6, 9, 12, 18, 24 and 36. For all these forecasting
horizons we compute the CW and DMW t-statistics to compare themwith standard normal critical values at the 10%, 5% and
1% significance level for one sided tests. We only show results at the 10% significance level, but the rest of the tables are
available upon request.

Here is how we divided up our artificial samples into a segment used for estimation of parameters needed to make
forecasts and to a segment used for prediction and prediction errors. Let us assume that we have a total of Tþ1 observations
on yt . The end point of the first sample used to estimate regression parameters is observation R (as in regression). We



Table 2
Empirical size, nominal 10% tests, DGPs 3–5.

MSPE-adjusted/CW MSPE-normal/DMW

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Horizon DGP 3 DGP 4 DGP 5 DGP 3 DGP 4 DGP 5

p¼3 BIC p¼3 BIC

Panel A: Rolling regressions
h¼1 0.075 0.089 0.073 0.099 0.000 0.000 0.003 0.005
h¼2 0.088 0.091 0.090 0.112 0.013 0.001 0.012 0.010
h¼3 0.094 0.094 0.093 0.124 0.036 0.002 0.026 0.013
h¼6 0.109 0.103 0.115 0.155 0.094 0.039 0.086 0.025
h¼9 0.111 0.122 0.120 0.187 0.103 0.086 0.102 0.038
h¼12 0.107 0.120 0.119 0.208 0.101 0.101 0.105 0.053
h¼18 0.109 0.113 0.115 0.185 0.103 0.103 0.109 0.082
h¼24 0.118 0.121 0.116 0.170 0.111 0.108 0.111 0.093
h¼36 0.107 0.115 0.118 0.149 0.101 0.107 0.113 0.104
Panel B: Recursive regressions
h¼1 0.069 0.081 0.060 0.078 0.003 0.001 0.008 0.010
h¼2 0.087 0.083 0.075 0.089 0.025 0.005 0.022 0.012
h¼3 0.090 0.081 0.088 0.095 0.052 0.010 0.042 0.015
h¼6 0.107 0.102 0.105 0.117 0.101 0.054 0.089 0.025
h¼9 0.115 0.108 0.108 0.147 0.112 0.088 0.099 0.040
h¼12 0.115 0.119 0.117 0.162 0.113 0.108 0.113 0.054
h¼18 0.120 0.127 0.112 0.149 0.117 0.119 0.109 0.068
h¼24 0.121 0.133 0.115 0.130 0.120 0.129 0.113 0.073
h¼36 0.125 0.131 0.124 0.121 0.123 0.126 0.121 0.089

Note: 1. See notes of Table 1.
2. In DGPs 3 and 4, the null is that yt follows an AR(1), the alternative that yt is driven by a multivariate VAR that implies that the univariate process for yt is
not an AR(1). In DGP 5, the null is that yt follows a certain univariate seasonal ARMA process, the alternative that yt follows a certain multivariate seasonal
ARMA process that implies that the univariate process for yt is not the seasonal ARMA assumed under the null. Section 3 of the text gives exact speci-
fications. In columns (2), (3), (6), (7) and (9), the alternative uses population lag lengths; in columns (3) and (7) the alternative uses BIC to pick lags in the
equation for yt . DGPs 3 and 4 are estimated by least squares, DGP 5 by nonlinear least squares.
3. The initial regression size R is R¼120 (DGP 3), R¼80 (DGP 4) and R¼250 (DGP 5). The number of predictions is P¼300 (DGP 3), P¼120 ( DGP 4) and
P¼375 (DGP 5). Results for other values of P, and for nominal 0.05 and 0.01 tests, are available in the on-line Appendix.

P.M. Pincheira, K.D. West / Research in Economics 70 (2016) 304–319312
generate a sequence of P(h) h-step-ahead predictions estimating the models in either rolling windows of fixed size R or
recursive windows of size equal or greater than R.

For rolling windows, to generate the first set of forecasts we estimate our models with the first R observations of our
sample. Thus, these forecasts are built with information available only at time R and are compared to the observationyRþh

for each value of h. (Here, R is playing the role of t in Section 2 above.) Next, we estimate our models with the second rolling
window of size R that includes observations 2 through Rþ1. These h-step-ahead forecasts are compared to the observation
yRþhþ1 for each value of h. We continue until the last forecasts are built using the last R available observations for esti-
mation. These forecasts are compared to the observation yTþ1.

When recursive or expanding windows are used instead, the only difference with the procedure described in the pre-
vious paragraph relates to the size of the estimation windows. In the recursive scheme, the estimation window size grows
with the number of available observations for estimation. For instance, the first set of forecasts is constructed estimating the
models in a window of size R, whereas the final set of forecasts is constructed based on models estimated in a window of
size Tþ1�h. Thus, we generate a total of P(h) forecasts, with P(h) satisfying Rþ(P(h)�1)þh¼Tþ1. So P(h)¼Tþ2�h�R.

As indicated above, our choices of P and R vary with the DGP, so as to align with samples used in the applications that
motivate the DGP. But throughout we consider forecasting horizons h¼1, 2, 3, 6, 9, 12, 18, 24 and 36 periods.

We construct estimates of the long run variance (V̂ in (2.8) and (2.10)) using Newey and West (1987, 1994).
4. Simulation results

To save space, for each DGP, we report results only for (1) a single value of the number of predictions P, and (2) one sided
tests of nominal size 0.10. Results for the full range of values of P described above, as well as results for tests of nominal size
0.05 and 0.01 are reported in the on-line Appendix.



Table 3
Size adjusted power, nominal 10% tests, DGPs 1 and 2.

MSPE-adjusted/CW MSPE-normal/DMW

(1) (2) (3) (4) (5) (6) (7)

Horizon DGP 1 DGP 2 DGP 1 DGP 2

p¼1 BIC p¼1 BIC

Panel A: Rolling regressions
h¼1 0.995 0.995 1.000 0.990 0.990 1.000
h¼2 0.991 0.991 0.892 0.982 0.982 0.768
h¼3 0.981 0.981 0.375 0.956 0.955 0.302
h¼6 0.890 0.889 0.110 0.792 0.776 0.094
h¼9 0.703 0.702 0.110 0.540 0.526 0.091
h¼12 0.512 0.515 0.107 0.343 0.334 0.092
h¼18 0.297 0.303 0.111 0.155 0.154 0.097
h¼24 0.218 0.222 0.111 0.115 0.115 0.094
h¼36 0.178 0.178 0.111 0.094 0.093 0.104
Panel B: Recursive regressions (P¼300)
h¼1 0.999 0.999 1.000 0.992 0.992 1.000
h¼2 0.998 0.998 0.945 0.982 0.982 0.805
h¼3 0.992 0.992 0.508 0.962 0.961 0.420
h¼6 0.939 0.938 0.110 0.827 0.824 0.102
h¼9 0.797 0.796 0.109 0.624 0.616 0.094
h¼12 0.599 0.603 0.108 0.449 0.446 0.095
h¼18 0.326 0.330 0.112 0.218 0.215 0.103
h¼24 0.219 0.219 0.114 0.146 0.145 0.108
h¼36 0.172 0.173 0.110 0.115 0.114 0.103

Note: 1. See notes of Table 1.
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4.1. Simulation results: size

For the case of a martingale difference sequence, details of our simulations for DGP 1 and DGP 2 are in Table 1. From
Table 1, columns (2)–(4), we see that the CW test is modestly undersized. Actual sizes of nominal 0.10 tests range from about
0.06 to 0.08. Performance is slightly worse in recursive (panel B) than in rolling (panel A) samples. In columns (5)–(7) we see
that DMW is seriously undersized, with actual sizes of 0.00 to about 0.02.

Both the modest undersizing of CW and the extreme undersizing of DMW is consistent with Clark and West (2006) and
the logic described in Section 2 above. So, too, is the fact that the DMW test is less undersized as the horizon increases; this
is consistent with the point made above that the alternative model tends to forecast the unconditional mean at longer
horizons, or more generally that forecasts from the null and alternative models become increasingly similar at longer
horizons. Other than DMW dependence on horizon, there is remarkably little variation across DGPs, horizon and whether or
not the alternative model uses BIC to estimate the lag length (3.2b) (columns (3) and (6)).

How does variation in the number of predictions P affect results? Here are the numbers for DGP 1, h¼12:

MSPE� adjusted=CW MSPE� normal=DMW
P ¼ 100 P ¼ 200 P ¼ 300 P ¼ 740 P ¼ 100 P ¼ 200 P ¼ 300 P ¼ 740

0:075 0:070 0:071 0:084 0:017 0:007 0:003 0:000
ð4:1Þ

In (4.1), the figures for P¼300 repeat the h¼12 values in columns (2) and (5) of Table 1; the other values come from our
on-line appendix. CW is more or less insensitive to P. This is consistent with Clark and McCracken (2001), whose analytical
results and simulations for the direct method indicate that for a nominal .10 test CW should have size between 0.05 and 0.10.
In our simulations, we find that this result also applies to the iterated method. By contrast, DMW is increasingly undersized
as P increases. This is consistent with the logic noted above: as P increases, DMW will increasingly pile up around the
negative expected value of the second term on the right hand side of (2.21). (4.1) reflects a pattern in the results so ubi-
quitous that in our subsequent discussion of size we will not have occasion to show values for any P other than the baseline
one reported in the tables.

We present summary results for DGPs 3–5 in Table 2. Begin with DGPs 3 and 4. Table 3, columns (2)–(4) indicates that
the CW test has size ranging from about 0.07 to 0.13. It tends to be undersized at shorter horizons (hr3), oversized at
longer horizons (hZ6). Columns (6)–(8) indicate that DMW is, once again, undersized for hr6 but is well-sized for hZ9. It
appears that forecasts from both models have converged to the unconditional mean by h¼9. Hence both CW and DMW have
similar sizes. Faster convergence here than in DGP 1 is unsurprising, given the relevant AR processes have smaller roots.
Convergence is slower in DGP 2 than in these two DGPs because in DGP 2, only one model (the alternative) includes a
constant. The forecast from the null model is exactly zero at all horizons, whereas for large h forecasts from the alternative



Table 4
Size adjusted power, nominal 10% tests, DGPs 3–5.

MSPE-adjusted/CW MSPE-normal/DMW

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Horizon DGP 3 DGP 4 DGP 5 DGP 3 DGP 4 DGP 5

p¼3 BIC p¼3 BIC

Panel A: Rolling regressions
h¼1 0.866 1.000 1.000 0.248 0.831 1.000 0.999 0.236
h¼2 0.619 0.992 0.994 0.246 0.498 0.975 0.913 0.243
h¼3 0.334 0.710 0.639 0.250 0.270 0.626 0.348 0.235
h¼6 0.127 0.483 0.390 0.248 0.116 0.293 0.191 0.250
h¼9 0.121 0.201 0.196 0.254 0.116 0.134 0.119 0.252
h¼12 0.110 0.145 0.137 0.254 0.106 0.125 0.111 0.249
h¼18 0.108 0.159 0.154 0.233 0.106 0.143 0.129 0.212
h¼24 0.107 0.175 0.166 0.188 0.106 0.160 0.149 0.173
h¼36 0.112 0.173 0.155 0.146 0.109 0.157 0.139 0.136
Panel B: Recursive regressions
h¼1 0.939 1.000 1.000 0.404 0.863 1.000 0.999 0.379
h¼2 0.689 0.998 0.998 0.396 0.524 0.978 0.933 0.371
h¼3 0.373 0.787 0.693 0.398 0.274 0.654 0.396 0.379
h¼6 0.129 0.503 0.435 0.395 0.120 0.325 0.235 0.365
h¼9 0.107 0.224 0.220 0.380 0.105 0.159 0.149 0.358
h¼12 0.109 0.119 0.117 0.378 0.106 0.105 0.098 0.351
h¼18 0.112 0.135 0.146 0.347 0.111 0.127 0.136 0.311
h¼24 0.116 0.141 0.151 0.293 0.114 0.130 0.143 0.251
h¼36 0.104 0.131 0.136 0.182 0.103 0.125 0.127 0.154

Note: 1. See note of Table 2.
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model converge to a sample mean which is close to, but not exactly, zero. Simulations not reported for the sake of brevity
show that when forecasts of the alternative model are constructed imposing α̂yt ¼ 0 in (3.5), convergence of both forecasts
to the mean is as rapid in DGP 2 as in DGPs 3 and 4.

In DGPs 1 and 4, lag selection by BIC has little effect on size, except in DGP 4, where DMW is better sized when using BIC.
Recall that DGP 4 is calibrated to quarterly data. We note that in applications for which DGP 4 is representative, one

would almost certainly not forecast more than 12 quarters ahead. Hence the relevant results are for short horizons (ho9),
where DMW is consistently undersized, and medium horizons (h¼9,12), where DMW performs comparably to CW.

Turn now to DGP 5, the model estimated by nonlinear least squares. The CW test (column (5)) now behaves quite
differently. It is distinctly oversized except at short (hr3) horizons. The oversizing increases with horizon until h¼12, at
which point it declines, presumably reflecting forecasts that are closer and closer to the unconditional mean. The DMW test
(column (9)) displays the familiar pattern of undersizing that diminishes with the horizon. We do not have an explanation
for the behavior of CW. Possibilities include sample sizes that are too small, simulations that by chance are unrepresentative,
or a failure of the theory to apply.

In the end we ran simulations over 9 horizons�4 values of P�7 DGPs¼252 sets of simulations. (We get 7 rather than
5 for the number of DGPs by counting the use of BIC for DGPs 1 and 4 as two additional DGPs.) Let us sort the empirical size
from lowest to highest. Over those 252 results, here are the values at the first quartile (the 63rd smallest value), the median,
and the third quartile (63rd largest value):

MSPE� adjusted=CW MSPE� normal=DMW
Q1 median Q3 Q1 median Q3

0:071 0:088 0:118 0:007 0:022 0:101
ð4:2Þ

Eq. (4.2) and the results in Tables 1 and 2 lead to the following summary on size. Consistent with the theory described in
Section 2, DMW is undersized, CW is adequately sized. In DGPs 1–4 the CW test displays adequate size at all forecasting
horizons, much better than the DMW test with the exception of long horizon forecasts for DGPs 3 and 4 where CW and
DMW are comparable. For our model estimated by nonlinear least squares (DGP 5), CW is preferable at short horizons but
choosing between CW and DMW at long horizons involves comparing oversized (CW) and undersized (DMW) tests.

DMW behaves like CW, and hence is adequately sized, when the forecasts from the null and alternative models are

similar. In this case the adjustment term P�1P
t ŷ1;tþhjt� ŷ2;tþhjt
� �2 (see (2.9)) is quantitatively small. This happens, for



Table 5
Empirical power, nominal 10% tests, DGPs 1 and 2.

MSPE-adjusted/CW MSPE-normal/DMW

(1) (2) (3) (4) (5) (6) (7)

Horizon DGP 1 DGP 2 DGP 1 DGP 2

p¼1 BIC p¼1 BIC p¼1

Panel A: Rolling regressions
h¼1 0.993 0.993 1.000 0.707 0.707 0.960
h¼2 0.986 0.986 0.850 0.647 0.645 0.192
h¼3 0.976 0.976 0.289 0.556 0.552 0.012
h¼6 0.865 0.866 0.080 0.267 0.255 0.002
h¼9 0.649 0.649 0.079 0.106 0.100 0.003
h¼12 0.450 0.460 0.077 0.042 0.038 0.002
h¼18 0.242 0.250 0.080 0.017 0.016 0.004
h¼24 0.182 0.186 0.083 0.015 0.014 0.006
h¼36 0.144 0.145 0.086 0.018 0.015 0.008
Panel B: Recursive regressions (P¼300)
h¼1 0.998 0.998 1.000 0.845 0.845 0.981
h¼2 0.996 0.996 0.914 0.793 0.793 0.404
h¼3 0.989 0.988 0.373 0.728 0.725 0.072
h¼6 0.916 0.914 0.064 0.452 0.450 0.010
h¼9 0.736 0.734 0.064 0.256 0.256 0.011
h¼12 0.517 0.516 0.066 0.130 0.128 0.011
h¼18 0.252 0.250 0.068 0.055 0.054 0.013
h¼24 0.159 0.161 0.070 0.034 0.033 0.014
h¼36 0.129 0.130 0.076 0.031 0.031 0.019

Note: 1. See note of Table 1.

Table 6
Empirical power, nominal 10% tests, DGPs 3–5.

MSPE-adjusted/CW MSPE-normal/DMW

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Horizon DGP 3 DGP 4 DGP 5 DGP 3 DGP 4 DGP 5

p¼3 BIC p¼3 BIC

Panel A: Rolling regressions
h¼1 0.837 1.000 1.000 0.246 0.138 0.952 0.936 0.028
h¼2 0.590 0.991 0.992 0.265 0.165 0.623 0.635 0.044
h¼3 0.323 0.699 0.622 0.281 0.134 0.158 0.150 0.058
h¼6 0.137 0.485 0.417 0.324 0.111 0.164 0.172 0.093
h¼9 0.129 0.229 0.226 0.360 0.120 0.118 0.121 0.129
h¼12 0.116 0.168 0.157 0.384 0.108 0.126 0.114 0.159
h¼18 0.116 0.182 0.173 0.348 0.108 0.148 0.139 0.179
h¼24 0.125 0.203 0.185 0.282 0.117 0.173 0.159 0.161
h¼36 0.118 0.193 0.173 0.210 0.111 0.165 0.151 0.139
Panel B: Recursive regressions
h¼1 0.917 1.000 1.000 0.356 0.362 0.976 0.965 0.093
h¼2 0.657 0.998 0.997 0.375 0.255 0.759 0.748 0.108
h¼3 0.353 0.754 0.666 0.386 0.174 0.280 0.247 0.121
h¼6 0.144 0.509 0.448 0.426 0.121 0.218 0.219 0.164
h¼9 0.122 0.233 0.236 0.461 0.118 0.145 0.148 0.212
h¼12 0.123 0.141 0.138 0.485 0.119 0.113 0.113 0.246
h¼18 0.131 0.164 0.160 0.432 0.128 0.146 0.145 0.240
h¼24 0.142 0.183 0.168 0.344 0.139 0.169 0.154 0.200
h¼36 0.135 0.167 0.158 0.207 0.132 0.154 0.146 0.137

Note: 1. See note of Table 2.
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example, for horizons long enough so that both null and alternative forecasts have converged to the mean. This will only
happen for very large horizons for persistent DGPs such as DGP 1; it will happen for more modest horizons for rapidly mean
reverting processes such as DGPs 3 and 4.
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4.2. Simulation results: power

Tables 3 and 4 present results for size adjusted power, Tables 5 and 6 for power.
In DGPs 1–4, CW shows good power and size adjusted power at low horizons, with power falling towards 0.10 as the

horizon increases. For example, for DGP 1, in Panel A, column (2) of Table 3, size adjusted power is 0.995 for h¼1, falling to
0.178 for h¼36; for DGP 3, in Panel A, column (2) of Table 4 the comparable figures are 0.866 and 0.112 . The fall is slowest in
DGP 1, where the alternative exploits a very persistent regressor. That the fall is slowest in DGP 1, and the fact that power
falls as h increases, is consistent with long horizon forecasts under both null and alternative approaching the unconditional
mean. This means that in all DGPs MSPEs from both forecasts are numerically similar for large h, but the value of h that
qualifies as “large” is biggest for DGP 1 where the alternative relies on a very persistent regressor.

In DGP 5, power is not good for CW even at low horizons. Of course this is a direct reflection of the calibration of the
alternative (as is the good power at low horizons for DGPs 1–4): in (3.13a) the key parameter γ is set to a very small value
(see Eq. (3.14)). But as well, the qualitative pattern of power declining towards nominal size does not apply in this DGP.
Instead power rises and then falls with the horizon, mimicking the rise and fall of empirical size in Table 1. We do not have
an intuitive explanation for this.

Unsurprisingly, power increases as P increases. Here are results for various P for DGP 1, h¼12:

MSPE� adjusted=CW MSPE� normal=DMW
P ¼ 100 P ¼ 200 P ¼ 300 P ¼ 740 P ¼ 100 P ¼ 200 P ¼ 300 P ¼ 740

0:343 0:439 0:512 0:707 0:237 0:290 0:343 0:488
ð4:3Þ

The figures for P¼300 repeat the h¼12 values in columns (2) and (5) of Table 3. The pattern of power increasing with P
was ubiquitous, characterizing all DGPs.

In general, for CW, power tends to be higher for recursive than for rolling regressions, though there are some exceptions.
The differences between recursive and rolling are, however, small.

DMW is more erratic. Overall, the qualitative pattern is as in CW, with high size adjusted power for small horizons that
declines as the horizon increases – see for example column (5) in Table 3. But raw power sometimes declines well below
0.10. See, for example the figures for hZ3 for DGP 2 in column (7) of Table 5. For this DGP, for both CW and DMW, power is
barely above size for hZ3. The implication is that behavior under the null and alternative are very similar for such horizons
– that is, under both null and alternative forecasts have converged to the mean for hZ3.

Here are the quartiles for size adjusted power and for power, analogous to the figures for size in Eq. (4.2). Size adjusted
power

MSPE� adjusted=CW MSPE� normal=DMW
Q1 Median Q3 Q1 Median Q3

0:138 0:255 0:708 0:119 0:197 0:557
ð4:4Þ

Power:

MSPE� adjusted=CW MSPE� normal=DMW
Q1 Median Q3 Q1 Median Q3

0:161 0:282 0:682 0:090 0:145 0:229
ð4:5Þ

Eqs. (4.4) and (4.5) and Tables 3–6 lead to the following summary on power. In every single entry in Tables 3–6, CW has
higher power or size adjusted power than does DMW. Sometimes the gap is large. (Example in Table 5: DGP 1, h¼6: 0.865
for CW vs. 0.267 for DMW (rolling) and 0.916 for CW vs. 0.452 for DMW (recursive).) Sometimes the gap is small. But the
fact that CW has higher power in each simulation leads to CW having higher power everywhere in the distribution in Eqs.
(4.4) and (4.5). Higher raw power (Eq. (4.5), Tables 5 and 6) is consistent with the theory outlined in Section 2.
5. Empirical Illustration

We consider predicting inflation with an international factor. A relatively recent literature has explored the predictive
linkages between domestic and international inflation concluding that, at least for some countries, this linkage is important
both at the core and headline level. See for instance Ciccarelli and Mojon (2010), Morales-Arias and Moura (2013), Hakkio
(2009), Pincheira and Gatty (2016) and Medel et al. (forthcoming).

Let πit be year-on-year domestic inflation rates in country i. Following the literature cited in the previous paragraph, we
build an international inflation factor (IIF) as the simple average of πit measured using monthly CPI data, with i ranging over



Table 7
Forecasts of year-on-year headline CPI Inflation.

(1) MSPE-adjusted/CW MSPE-normal/DMW

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Country h¼1 h¼3 h¼6 h¼12 h¼24 h¼1 h¼3 h¼6 h¼12 h¼24
0.00 0.01 0.02 0.04 0.09 0.00 0.00 0.00 �0.01 0.02

Austria (0.00) (0.01) (0.03) (0.06) (0.12) (0.00) (0.01) (0.03) (0.06) (0.12)
1.75** 0.88 0.68 0.58 0.77 0.59 0.30 0.09 -0.08 0.17
0.01 0.03 0.08 0.27 0.23 0.00 0.01 0.05 0.20 0.13

Belgium (0.00) (0.02) (0.07) (0.16) (0.23) (0.00) (0.02) (0.06) (0.15) (0.22)
1.98** 1.16 1.17 1.73** 1.03 1.09 0.67 0.73 1.32* 0.59
0.11 0.25 0.36 �0.50 �2.14 0.06 0.15 0.16 �0.93 �3.03

Chile (0.04) (0.13) (0.28) (0.65) (1.32) (0.03) (0.12) (0.28) (0.63) (1.35)
2.79*** 1.99** 1.27 �0.77 �1.63 1.98** 1.24 0.57 �1.46 �2.25
0.01 0.03 0.03 0.17 0.36 0.01 0.01 �0.02 0.03 �0.03

Italy (0.01) (0.02) (0.04) (0.12) (0.31) (0.00) (0.02) (0.04) (0.12) (0.31)
2.34*** 1.31* 0.68 1.44* 1.17 1.52* 0.47 �0.42 0.26 -0.10
0.01 0.06 0.16 1.14 2.63 �0.03 �0.21 �0.59 �0.63 �1.37

Mexico (0.01) (0.09) (0.18) (0.46) (0.97) (0.01) (0.11) (0.28) (0.55) (0.81)
0.83 0.73 0.86 2.46*** 2.71*** �2.50 �1.94 �2.09 �1.12 �1.69
0.04 0.09 0.30 0.51 0.29 0.02 0.03 0.15 0.27 0.04

USA (0.02) (0.10) (0.27) (0.27) (0.45) (0.02) (0.10) (0.24) (0.21) (0.34)
2.09** 0.83 1.08 1.88** 0.64 1.37* 0.33 0.65 1.29* 0.10

Note:
1. In this table forecasts from a simple AR(1) (null model, or model 1) for year-on-year monthly CPI inflation rate are compared to forecasts coming from an
alternative model (model 2) that augments model 1 with a measure of international inflation. See Section 5 for details.
2. International inflation is defined as the simple average of monthly year-on-year domestic CPI inflation rates for 31 OECD economies.
3. The first row for each country is σ̂2

1;h� σ̂2
2;h , the difference in sample MSPE between the null and the alternative model. A positive value means the null

model (model 1) had a larger sample MSPE than did the alternative model (model 2). A negative value means that the null model had a larger
sample MSPE.
4. Newey-West (1987, 1994) standard errors are in parentheses.
5. * Means statistically significant at the 10% significant level. ** Means statistically significant at the 5% level and *** denotes statistically significance at the
1% level.
6. Data are described in the text. See notes of earlier tables for additional definitions.
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the current 31 OECD countries9

πIIFt ¼ 1
31

X31

i ¼ 1
πit : ð5:1Þ

We use data ranging from January 1995 to December 2015 (252 observations). We focus on headline inflation. For the
out-of-sample analysis we estimate our models by OLS in recursive windows with an initial window length of 100
observations (R¼100, from January 1995 to April 2003). This means that our first one-step-ahead forecast is made for May
2003, while the last one is made for December 2015. We consider forecasts for the following horizons: h¼1, 3, 6, 12 and 24
months ahead. We analyze if the IIF has the ability to predict inflation for i¼Austria, Belgium, Chile, Italy, Mexico and the US.
For each country, we consider the following nested models:

πitþ1 ¼ απþβπitþetþ1 ðmodel 1: null modelÞ; ð5:2Þ

πitþ1 ¼ απþβπitþγ Lð ÞπIIFt þetþ1 model 2: alternative modelð Þ; ð5:3Þ

πIIFtþ1 ¼ αrþφπIIFt þvtþ1: ð5:4Þ

Here, γ Lð Þ ¼ Pq
j ¼ 0 γjL

j represents a lag polynomial and L is the lag operator such that LjXt ¼ Xt� j. In contrast to our DGP 5,
but consistent with our linear DGPs 1–4, the disturbances etþ1 and vtþ1 are i.i.d.

The lag order q is selected in each estimation window with BIC with 1rqr12.
Table 7 shows our results. For CW, in columns (2)–(6), the point estimate is the numerator of MSPE adjusted, given in

(2.10). For DMW, the point estimate is simply the difference between model 1 and model 2 MSPEs, i.e., σ21;h–σ
2
2;h (see (2.8)).

Thus in columns (7)–(11), a negative value means the null model has a smaller sample MSPE than did the alternative model
(σ̂2

1;ho σ̂2
2;h) while a positive value means the converse (σ̂2

1;h4 σ̂2
2;h). By construction, the point estimates for CW are

algebraically larger than those for DMW.
9 We consider the following countries: Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, The Netherlands, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland,
Turkey, U.K. and the U.S. Data source: OECD Main Economic Indicators.



Table 8
RMSPE for Mexico.

RMSPE for Mexico

Model h¼1 h¼3 h¼6 h¼12 h¼24

Model without the IIF (model 1: null model) 0.299 0.636 0.775 1.162 1.286
Model with IIF (model 2: alternative model) 0.352 0.785 1.093 1.406 1.739
0.8*(model 1)þ0.2*(model 2) 0.298 0.635 0.774 1.092 1.135

Note:
1. In this table forecasts from a simple AR(1) (null model) for year-on-year monthly CPI inflation rate are compared to forecasts coming from the same
model but augmented with lags of international inflation. (the alternative model), and with a linear combination between the forecasts of these two
models with weights 0.8 on the null model and 0.2 on the alternative model.
2. Figures in the table represent RMSPE for headline year-on-year CPI inflation in Mexico. For example, for h¼1, the �0.03 figure for the MSPE difference in
column (7) in Table 7 for Mexico aligns with the figures in the first two rows of the h¼1 column in the present table via: �0.03¼(0.299)2�(0.352)2.
3. See notes to the previous table for additional definitions.
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Consistent with the simulations on both size and power, DMW rejects less frequently than does CW. In columns 7–11 in
Table 7 there are 5 rejections at the 10% level using DMW (Belgium and the US, when forecasting one year ahead (h¼12)),
and for Chile, Italy and the US when forecasting h¼1 month ahead). In columns (2)–(6) of that table there are 12 rejections
using the CW (h¼1 for all countries but Mexico, h¼3 for Chile and Italy, h¼12 for Belgium, Italy, Mexico and the USA, and
h¼24 for Mexico).

A country with striking results is Mexico, where the CW test strongly rejects the null hypothesis for horizons of one and
two years (h¼12 and h¼24). For the same country we do not reject the null with the DMW test. Furthermore, the
unadjusted MSPE differences in columns (9) and (10) are negative, meaning σ̂2

1;h, the sample MSPE from the null model, is
less than σ̂2

2;h, the sample MSPE of the alternative model that exploits international inflation. We can interpret this result
according to expression (2.14) that we rewrite for the particular case in which λ¼ 1:

E ê2;tþhjt
� �2�E ê1;tþhjt

� �2 ¼ E ê2;tþhjt� ê1;tþhjt
� �2þ2E ê2;tþhjt� ê1;tþhjt

� �
ê1;tþhjt ð5:5Þ

Results for Mexico have a positive left hand side, but a negative second term in the right hand side of expression (5.5).
This results from the positive first term on the right hand side, which is the term that Clark and West (2007) propose to
remove. The contrast between CW and DMW indicates that a combination between the alternative and null models with a
positive but small weight on the alternative model should outperform either of the individual models. The optimal weight,
computed for each horizon h using (2.16) and the obvious sample analogs to the expectations in (2.16), yields λ* above 0.2 at
each horizon. We use this ex-post information to forecast using a linear combination between the alternative and null
models that gives a weight of λ¼20% to the model with the IIF and a weight of 80% to the null model. We obtain more
accurate forecasts at every single horizon. See Table 8.10
6. Summary and concluding remarks

In this paper we explore the behavior of two tests commonly used to compare forecasts from competing nested models:
the MSPE adjusted statistic of Clark and West (2006, 2007) (CW) and the Diebold–Mariano–West (DMW) tests, which we
call MSPE-normal. The focus of interest is multistep ahead forecasts computed using the iterated method. Our Monte Carlo
simulations for linear models indicate that CW tests are reasonably well sized across all horizons, while DMW is quite
undersized except, in some DGPs, at horizons long enough that forecasts from competing models are similar. Our simu-
lations for a nonlinear model indicated that neither test was very well sized. In terms of power, the CW is preferred to DMW
test at all horizons. Power is an increasing function of the sample size (i.e., the number of forecasts P). Longer horizons mean
less power, presumably because at longer horizons both null and alternative converge to forecasting the mean.

An application in the context of inflation forecasts is consistent with our simulation results.
Future research could explore in more detail the behavior of the CW test in nonlinear DGPs or compare its performance

against other benchmarks, like the tests proposed by Clark and McCracken (2001). Similarly, the analysis of a joint test of
predictability across all possible forecasting horizons could represent a natural extension of the present work.
10 Note that Table 8 is not a forecasting comparison in the sense of all the other comparisons in this paper: we used the results of Table 7’s forecasting
comparison to pick λ¼20%. Rather, Table 8 illustrates the fact that when CW and DMW conflict, an implication is that one can do better by combining
forecasts.
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