- What is an experiment? How is it different from other methods?
 - Purpose: to demonstrate causation, that A ---> B
 - What are the requirements to demonstrate causality?
 - Correlation
 - Order. A must precede B.
 - Control over other variables
 - Extraneous variables and alternative explanations
 - Definitions
 - Examples

- How are experiments different from other types of research?
 - Manipulated independent variable
 - Control of organismic variables either by
 - Random assignment of units of analysis to conditions of the independent variable, or by
 - Assignment of each unit to all conditions, with controls on order of presentation
 - Control of other variables by holding them constant
 - What are extraneous variables?
 - Can explain the findings of a study without resorting to the hypothesis.
 - Lead to an alternative explanation of the findings from the one you had .
 - "In an airtight experiment, there is only one rival hypothesis: chance."

- Strengths and weakneses of experiments
 - Strengths
 - Control
 - Ability to demonstrate causality
 - Weaknesses
 - Artificiality
 - Lack of external validity
- The field experiment in many ways the best of both worlds.
 - Still lacking in external validity
 - Cannot get at complex interactions

- Within vs. Between subject experiments
 - Within has
 - complete control of all organismic variables
 - Possibility of one condition to influence others, possible "on stage' and "demand" effects
 - Between has
 - Less chance of subjects "catching on"
 - Higher error rates
- Comparing the correlational and experimental methods. example: testing the hypothesis that people with low self-esteem will be more attracted to an accepting other
 - Correlational: measure self-esteem, observe response when other expresses interest
 - Experimental: manipulated self-esteem, then do the same

The Experiment Exercise

- How do you do a between-subjects experiment? Doob & Gross as example
 - Devise a "set-up", including a cover story if needed
 - Construct independent variable and way to assign subjects to categories
 - Figure out how to measure the dependent variable
- A student example: the waitress and the mints
 - Set-up
 - Independent variable and random assignment
 - Dependent variable
- Walk through instructions for experiment exercise
- Further examples of past student experiments

- What is internal validity and why do we care?
 - Definition: extent to which one can be confident that the results as reported support the causal hypothesis being tested (Quotes from Campbell & Stanley, 1966)
 - "Internal validity is the basic minimum without which any experiment is uninterpretable: Did in fact the experimental treatments magke a difference in the experimental instance?"
 - More generally, are the variables that appear to be causally related REALLY causally related, or is the apparent relationship spurious?
 - Why should we care? Discuss.
 - What's the difference between internal and external validity?
 - External validity asks the question of generalizability: to what populations, settings, treatment variables, and measurement variables can this effect be generalized.
 - Internal and external validity are often at odds. Why?

Cal	npbell and	Stanley	y: type:	s of	pre-exp	eriments,
	oėriments,					

	_	Pre-	exp	eri	ime	ents
--	---	------	-----	-----	-----	------

X O Or O X O

- True experiments: random assignment to conditions

X O Or O X O

 Quasi-experiments - same as experiments, except with no random assignment to conditions

- An example of a quasi-experiment: jobs for at risk youth in Milwaukee
 - Describe study
 - Purpose of study
 - Initial design
 - How it turned out
 - What is the problem?
 - Possible extraneous variables?

- Threats to internal validity (from Schutt)
 - Selection bias and differential attrition (mortality)
 - Endogenous change
 - Testing
 - Maturation
 - Regression
 - History/external events
 - Contamination: control/experimental group crosseffects
 - Treatment misidentification
 - Experimenter expectancies / social desirability
 - Placebo effect
 - Hawthorne effect / "on stage" effect
 - Conceptual --> operational link not effectively made

Using these terms, what are the problems with pre- experiments?						
	X	0	Or	0	X	0
What are the problems with quasi-experiments?						
	X	0	Or	0	X	0
	_	0		0	-	0
(Without random assignment to conditions)						

■ Why are experiments OK?

The Darley and Batson Experiment

- Design
 - Sample
 - Is this a between- or a within-subjects experiment?
 - "Set-up"
 - Measurement
 - Independent variables
 - Dependent variable
 - Findings
 - What is an interaction effect?
 - Threats to internal validity

The Goldberg Experiment

- Design
 - Sample
 - Is this a between- or a within-subjects experiment?
 - "Set-up"
 - Measurement
 - Independent variables
 - Dependent variable
 - Findings
 - Threats to internal validity

The Goldstein and Arms Study

- Design
 - Sample
 - Is this a between- or a within-subjects experiment?
 - "Set-up"
 - Measurement
 - Independent variables
 - Dependent variable
 - Findings
 - Threats to internal validity
 - ▶ Is this an experiment? Why or why not?