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14 Differential Reproduction with Two Sexes

In Chapter 3, we considered a “one-sex” model of intergenerational social mobility
with differential reproduction. For simplicity, that model maintained the fiction that
each child has only one parent. Of course, in reality, each child has two parents. In
the present chapter, we thus develop and analyze a “two-sex” version of the model.
While the linearity of the one-sex model guarantees that the population will reach
a unique limiting distribution, the non-linearity of the two-sex version creates the
potential for more complicated dynamics. In particular, we will see the possibility
of multiple equilibria and catastrophes.

14.1 The two-sex model

Conceptually, the one-sex model assumed a two-step process within each generation.
First, parents have children according to the reproduction matrix R. Second, each
child’s type is selected according to the intergenerational transition matrix P. Once
these two steps are completed, the children in the current generation become the
parents in the next generation. We thus obtain the equation

Xtr1 = XtRP

where x; is the frequency distribution for generation ¢. Letting n denote the number
of types of individuals,! note that the frequency distribution vector x; is 1 x n, the
reproduction matrix R is n X n, and the transition matrix P is n X n.

Moving to a two-sex version of the model, we now assume a three-step process
within each generation. First, individuals form couples in the manner described by
a “matching” matrix N;. (For simplicity, we will assume that all individuals are
matched into couples. The rationale for the time subscript on N; will be addressed
in the next section.) Adopting the female perspective, each element N;(i, k) of this
matrix may be interpreted as the probability that a girl of type ¢ forms a couple of
type k in generation t. Because each girl or boy can possess any of the n types, there
are n? types of couples. Consequently, the matching matrix NN, is n x n?. Letting
the vector x; (which remains 1 x n) denote the frequency distribution of girls in
generation ¢, the vector x;N; (which is 1 x n?) gives the frequency distribution of
couples in generation t.

The final two steps remain reproduction and intergenerational transition. How-
ever, each diagonal element (k) of the reproduction matrix now indicates the average

!Chapter 3 included examples in which the “types” were based on income or occupation or 1Q
score. Other applications might include education or religion.



number of girls for each type-k couple.? Thus, the R matrix is n? x n?. Relatedly,
because each element P(k,7) of the intergenerational transition matrix now indicates
the probability that a child born to type-k parents will acquire type i, the P matrix
is n? x n. Once these three steps are completed, the children born at the end of
generation t become the population at the beginning of generation t + 1. We thus
obtain the equation

Xt+1 = XtNtRP

where the frequency distribution vector x; is 1 x n, the matching matrix N, is n x n?,
the reproduction matrix R is n? x n?, and the transition matrix P is n? x n.3

14.2 The matching matrix

Following our treatment of the one-sex model in Chapter 3, we may assume that
reproduction rates (the elements of the R matrix) and intergenerational transition
probabilities (the elements of the P matrix) are fixed parameters that do not vary
over time. In contrast, the matching probabilities (elements of the N; matrix) will
generally depend on the current state of the process (the vector x;). This is why we
have placed the time subscript on the N, matrix.
To elaborate, suppose there are n = 2 type of individuals. We can then list the
n? = 4 types of couples as
11,12,21,22

where 77 indicates a couple composed of a type-i girl and a type-j boy. Note that a
type-1 girl cannot form a couple of type 21 or 22, which would require a type-2 girl.
Similarly, a type-2 girl cannot form a couple of type 11 or 12, which would require
a type-1 girl. Further, because all girls are matched, all type-1 girls must form a
couple of either type 11 or 12. Similarly, all type-2 girls must form a couple of either
type 21 or 22. Given these considerations, we might attempt to specify the matching
matrix as

a 1—a O 0

N=10o 0 b 1-b

2We assume that couples have, on average, equal numbers of boys and girls. Thus, (k) can also
be interpreted as one-half the average number of children for each type-k couple.

3The present chapter draws on Preston & Campbell (1993), who specify the two-sex model in a
slightly different way. Maintaining our present assumption on time-indexing (so that matching is
the first step in each generation), their specification becomes

m;yq, = mtRPNt+1 X (1/2)

where m; denotes the (1 x n?) frequency distribution of couples in generation ¢. In the Preston
& Campbell formulation, each diagonal element r(k) of the reproduction matrix indicates the
average number of children (not girls) per couple, necessitating the final multiplication by (1/2).
To further reconcile the two specifications, note that x;;; = m;RP and that m; = x;N;. While
both specifications produce the same results, ours is more convenient because we need to keep track
of only n types of individuals (rather than n? types of couples).



where a and b are fixed parameters that do not vary over time.

However, this formulation of the matching matrix ignores an important “account-
ing constraint” which links the parameters a and b to the current state of the process.
In words, this constraint is

number of type-11 couples + number of type-21 couples
= number of type-1 boys

which can be expanded as

(number of type-1 girls)(probability that a type-1 girl forms a type-11 couple)
+ (number of type-2 girls)(probability that a type-2 girl forms a type-21 couple)
= number of type-1 boys.

Because we assume that couples have (on average) equal number of girls and boys,
and that intergenerational transition probabilities do not vary by the child’s gender,
the number of type-1 boys is equal to the number of type-1 girls. The accounting
constraint can thus be written formally as

hta + (1 - ht)b = ht

where
x:(1)

x(1) + x¢(2)
denotes the proportion of type-1 (or “high” type) individuals in generation ¢. Rear-
ranging the accounting constraint, we obtain

ht:

hy
1—h

b = (1—a)

Thus, if we assume that a does not vary over time, then b is determined by a and h;.
Intuitively, if we first assign boys to the type-1 girls using the matching probability
a, then the number of boys of each type that are “left over” for the type-2 girls will
determine the matching probability b.* Of course, we could alternatively write the

accounting constraint as
1—h
a =1-0b ( t)
hy

and assume that b is fixed over time while a depends on b and h;. But the crucial
point is that a or b (or both) generally depend on the current state of the process.

4To illustrate, suppose a = 1/2 and x; = [20 80] so that h; = 1/5. After we assign 10 type-1 boys
and 10 type-2 boys to the 20 type-1 girls, there are 10 type-1 boys and 70 type-2 boys remaining
for the type-2 girls. Thus, a =1/2 and h; = 1/5 implies b = 1/8.



Instead of fixing either a or b, we’ll adopt an alternative specification of the
matching matrix which involves an “endogamy” parameter. This parameter o, which
is scaled between 0 and 1, is defined so that

a = a+(l—-a)h
and thus the matching matrix becomes

N [etA-ah 1-a)d—h) 0 0
= 0 0 I-a)h a+(l—a)(l—h) |

This specification incorporates two special cases. Setting o = 1, individuals are
always matched to partners of their own type. In this “complete endogamy” case,
the matching matrix becomes

100 0
N_[O()Ol]'

Note that a time subscript on N is unnecessary because this matrix does not change
over time. In contrast, setting a = 0, matching probabilities depend entirely on the
proportions of each type in the population. In this “random matching” case, the
matching matrix becomes

[ he 1=he 0 0
Nt_[o 0 Iy 1—ht]'

In reality, individuals often match with parters of the same type, though the strength
of this tendency may depend upon the particular “type” under consideration (whether
income or IQ) score or religion). Thus, given our specification of the matching matrix,
we may set a between 0 and 1 to capture the reflect the strength of the endogamy
effect in particular applications.

14.3 Population projection

In the extreme case of complete endogamy (o = 1), the matching probabilities do
not depend on the current state of the system. Consequently, we may write the
matching matrix as N (without the time subscript) and population dynamics are
determined by the equation

X1 = X NRP.

Given an initial condition x,

X1 = X()NRP
X9 = XlNRP = Xo(NRP)2
x3 = X3NRP = xo(NRP)?
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and thus by induction we obtain
x; = xg(NRP)

for any ¢. In contrast, when endogamy is incomplete (o < 1), the matching prob-
abilities are dependent on the current state. Consequently, we write the matching
matrix as N; (with the time subscript) and population dynamics are determined by
the equation

X1 = X N.RP.

Importantly, because we must know x; in order to obtain N, for each generation ¢,
population projections must be computed iteratively.

To illustrate, let’s consider a numerical example with the parameter values indi-
cated below.

>> alpha = .56 7 endogamy parameter

alpha =
0.5000

>> R = diag([.8 1 1 1.3]) % reproduction matrix

R =
0.8000 0 0 0
0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.3000

> P =[.7 .3; .5 .5; .5 .5; .2 .8] % transition matrix

P =
0.7000 0.3000
0.5000 0.5000
0.5000 0.5000
0.2000 0.8000

For concreteness, suppose that types are based on IQ scores, so that the population
is partitioned into those with high 1Q (type 1) and low 1Q (type 2). Our parame-
ter assumptions then imply that the “high-high” (type-11) couples have the lowest
reproduction rate (r(11) = 0.8), the “low-low” (type-22) couples have the highest
reproduction rate (r(22) = 1.3), and the “mixed” (type-12 or type-21) couples have
intermediate reproduction rates (r(12) = r(21) = 1). We have further assumed that
the high-high couples are the most likely to have a high-1Q child (P(11,1) = 0.7),
low-low couples are the least likely (P(22,1) = 0.2), and mixed couples have an
intermediate probability (P(12,1) = P(21,1) = 0.5).

Further choosing an initial frequency distribution x,, we can now determine the
frequency distribution x; for generation 1. To do so, we first compute the proportion



of high-1Q) individuals hg, then compute the matching matrix Ny, and finally compute
the new frequency distribution. We can then repeat the same series of steps to obtain
the frequency distribution x5 for generation 2.

>> x = [100 100] % frequency distribution for girls in generation O

X=
100 100

>> h = x(1)/sum(x) % proportion of high-IQ individuals

h =
0.5000

>> N = [alpha+(l1-alpha)*h, (1-alpha)*(1-h), 0, 0; 0, 0, (l-alpha)*h, alpha+(l-alpha)*(1-h)]
N =
0.7500 0.2500 0 0
0 0 0.2500 0.7500
>> x*N % frequency distribution for couples
ans =
75 25 25 75

>> x = x*N*R*P I, frequency distribution for girls in generation 1

X=
86.5000 121.0000

>> h = x(1)/sum(x) % proportion of high-IQ individuals

h =
0.4169

>> N = [alpha+(l-alpha)*h, (1-alpha)*(1-h), 0, 0; 0, 0, (l1-alpha)*h, alpha+(l-alpha)*(1-h)]
N =
0.7084 0.2916 0 0
0 0 0.2084 0.7916

>> xxN % frequency distribution for couples

ans =
61.2795 25.2205 25.2205 95.7795

>> x = x*N*R#P I, frequency distribution for girls in generation 2

X=
84.4397 139.5383



Note how the decrease in the proportion of high-1Q individuals (from 50% in gen-
eration 0 to 41.69% in generation 1) causes the matching matrix to change between
generations. The probability of matching with a high-1Q boys drops for both high-1Q
girls (from 75% in generation 0 to 70.84% in generation 1) and low-1Q girls (from
25% in generation 0 to 20.84% in generation 1).

To project the population ahead for 15 generations, we can embed the matlab
commands within a for loop. Note that the matching matrix is recomputed at each
iteration of the loop.

>> x = [100 100];
>> popfreq = x;
>> for t = 1:15;
h = x(1)/sum(x);
N [alpha+(1-alpha)*h, (1-alpha)*(1-h), O, O0; O, O, (1-alpha)*h, alpha+(1l-alpha)*(1-h)];
X x*xN*R*P ;
popfreq = [popfreq; x];
end
>> popfreq

popfreq =
100.0000 100.0000
86.5000 121.0000
84.4397 139.5383
88.3007 158.0205
95.6319 177.6029
105.3251 198.9562
116.9087 222.5510
130.2303 248.7807
145.3054 278.0197
162.2448 310.6536
181.2193 347.0972
202.4434 387.8055
226.1686 433.2828
252.6820 484.0905
282.3075 540.8546
315.4084 604.2742

Normalizing by population size to obtain probability distributions for each genera-
tion, we find that the population has converged to a stable-growth equilibrium.

>> popsize = sum(popfreq,2)

popsize =
200.0000
207.5000
223.9780
246.3212
273.2349
304.2813



339.4598
379.0110
423.3251
472.8984
528.3165
590.2489
659.4514
736.7725
823.1621
919.6825

>> popdist = diag(popsize.~-1)*popfreq

popdist =
0.5000 0.5000
0.4169 0.5831
0.3770 0.6230
0.3585 0.6415
0.3500 0.6500
0.3461 0.6539
0.3444 0.6556
0.3436 0.6564
0.3432 0.6568
0.3431 0.6569
0.3430 0.6570
0.3430 0.6570
0.3430 0.6570
0.3430 0.6570
0.3430 0.6570
0.3430 0.6570

Thus, for the present example, we obtain a limiting distribution in which 34.3% of
the population has high-IQ while the remaining 65.7% has low-1Q.

14.4 A one-dimensional dynamical system

Following the linear models developed in the first half of this book, the preceding
section specified the dynamics of the frequency distribution, which indicates the
number of individuals of each type in each generation. Of course, as we have just
seen, it is possible to normalize the frequency distribution by population size to
obtain the proportions of individuals of each type in each generation. However, to
link to the nonlinear models developed in the second half of the book, we will now
specify the dynamics of the probability distribution more directly.

To begin, consider the special case in which all types of couples have (on average)
1 girl each. Because R is the identity matrix, population dynamics are given by

X1 = X NP



and population size does not change over time. Thus, if the initial frequency distribu-
tion x¢ is normalized as a probability distribution, then all subsequent distributions
are also probability distributions. That is,

for all t. Consequently, we obtain

x(1) = My
x(2) = 1—M

and can rewrite the population dynamics as
[ht—i-l 1_ht+1] - [ht 1—ht]NtP

Having obtained this two-equation system, it is evident that we do not need to keep
track of both types of individuals. In particular, given x;(1) = h;, we know that
x¢(2) must be equal to 1 — h;. Thus, focusing solely on type-1 individuals, we obtain
a one-dimensional model with dynamics given by

ht+1 == [ht 1—ht]NtP<,1>

where

P(11,1)
P(12,1)
P(21,1)

P(22,1)

denotes the first column of the P matrix. Alternatively, to move away from matrix
notation, we could write the dynamics in the form

ht+1 = f(ht)

where

f(h) = hla+(1—a)h] P(11,1)
4 (1—a)h(1—h) [P(12,1) + P(21,1)]
+(1—h) [a+(1—a)l—h)] P(22,1)

is the generator function.

Given numerical assumptions on the parameters, we can plot this generator func-
tion against the 45-degree line to determine fixed points and assess their stability.
To illustrate, consider the example below (which retains the assumptions on a and
P made in the preceding section).



>> alpha = .5; P = [.7 .3; .5 .5; .5 .5; .2 .8]; % parameters

> f = [1;

>> for h = 0:.05:1;
N = [alpha+(l-alpha)*h, (1-alpha)*(1-h), 0, 0; O, O, (1-alpha)*h, alpha+(1l-alpha)*(1-h)];
fh = [h 1-h] * N * P(:,1);
f = [f, fh];

end

>> plot(0:.05:1,f,0:1,0:1) % generator function
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From this diagram, we see that there is a unique, stable equilibrium. Computing a
time path from any initial condition (I'll leave this task to the reader as an exercise),
we find that 42.44% of the population is type 1 in equilibrium.

Of course, this solution differs from the equilibrium computed in the preceding
section because we have not allowed differential reproduction. Once we do so, the
model becomes
[hy 1—h N;RP(:,1)

Sum([ht 1—ht]NtR)

where the summation in the denominator is taken over the (n? = 4) elements of the
input vector. Alternatively, while the generator function becomes rather cumber-
some, it remains possible to write these dynamics in the form

ht+1 = f(ht)

hiyr =

10



where hlao+ (1 — a)h]r(11)P(11,1)
+(1 —a)h(1 — h)[r(12)P(12,1) + r(21)P(21,1)]
+(1—=h)Ja+ (1 —a)(1l = h)r(22)P(22,1)
hla+ (1 — a)h]r(11)
+(1 — @)h(1 — h)[r(12) + r(21)]
+(1 = h)fa+ (1 —a)(1—h)]r(22)

Intuitively, having normalized population size to 1 in period ¢, the numerator of
the generator function indicates the number of type-1 individuals in period ¢ + 1,
while the denominator indicates the size of the population in period ¢+ 1. Thus, the
quotient represents the proportion of type-1 individuals in period t + 1.

It may be useful to note that, in the absence of differential reproduction, the
generator function simplies to the equation presented above. To see this, suppose
that all types of parents have (on average) r girls. This implies

f(h) =

R=rl

and hence

r [ht 1—ht]NtP<:, 1)
rsum([hy 1—h]Ny)
Because [h; 1—hy] Ny is the probability distribution over couples, the elements of this

vector must sum to 1. Further cancelling the rs from the numerator and denominator,
we obtain

hiyr =

ht+1 = [ht 1—ht]NtP(,]_)

as before.
Having incorporated differential reproduction into the model, we can now return
to the numerical example from the preceding section. We’ll first plot the generator

function, and then compute a time path starting from the same initial condition
(ho = 0.5) as before.

>> alpha = .5; R = diag([.8 11 1.3]); P=[.7 .3; .5 .5; .6 .5; .2 .8]; % parameters

> f = [];

>> for h = 0:.05:1
N = [alpha+(l-alpha)*h, (1-alpha)*(1-h), O, O0; O, O, (1-alpha)*h, alpha+(1l-alpha)*(1-h)];
fh = ([h 1-h] * N * R * P(:,1)) / sum([h 1-h] * N * R);
f = [f, fhl;

end

>> plot(0:.05:1,f,0:1,0:1) % generator function

11
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>> h = 0.5;

>> popdist = h;

>> for t = 1:15
N [alpha+(1-alpha)*h, (1-alpha)*(1-h), O, O; O, O, (1-alpha)*h, alpha+(l-alpha)*(1-h)];
h = ([h 1-h] * N * R * P(:,1)) / sum([h 1-h] * N * R);
popdist = [popdist; hl;

end

>> popdist

popdist =

0.5000
.4169
.3770
.3585
.3500
.3461
.3444
.3436
.3432
.3431
.3430
.3430
.3430
.3430
.3430
.3430

O OO O OO OO0 OO OoOOoOoOo

Comparing these results to those obtained earlier, note that our population projec-
tions precisely match (the first column of) those shown in the preceding section.

12



14.5 Uniqueness of the equilibrium

The preceding example featured a unique equilibrium. In fact, for some special
cases of the model, it is possible to prove that the equilibrium must be unique. In
particular, multiple equilibrium cannot arise when endogamy is complete (aw = 1) or
when there is no differential reproduction (R = rI).

To establish the first result, we can draw on our knowledge of linear models from
Chapter 3. Recall that, for the one-sex version of the model, primitivity of the RP
matrix implies that the population will eventually reach a unique stable-growth equi-
librium. Given complete endogamy (« = 1), the two-sex model essentially reduces
to the one-sex model. To see this, note that

r(11) 0 0 0 P(11,1) 1—-P(11,1)

NRP — {1 0 0 o} 0 r(12) 0 0 P(12,1) 1-P(12,1)
0001 0 0 r(21) 0 P(21,1) 1-P(21,1)

0 0 0 (22 P(22,1) 1-P(22,1)

can be rewritten as

NRP — [7‘(11) 0 } {P(ll,l) 1-P(11,1)

0 r(22) P(22,1) 1-P(22,1)

This matrix is primitive when both reproduction rates are positive, so that
> 0
> 0

Assuming these conditions hold, we know that the unique equilibrium A* is deter-
mined by the condition

Alh*1—h*] = [h*1—h*]NRP

where A is the dominant eigenvalue of the (N RP)" matrix. Thus, because the model
is linear when endogamy is complete, multiple equilibria cannot arise.
To establish the second result, recall that the generator function can be written

f(h) = hla+(1—a)h] P(11,1)
+(1—a)h (1—h) [P(12,1) + P(21,1)]
+(1—h) [a+(1—a)l—h)] P(22,1)

13



when there is no differential reproduction. Using calculus, we obtain
f"(h) = 2(1 —a)(P(11,1) + P(22,1) — P(12,1) — P(21,1))

which is a constant (that depends on the model parameters but not h). Thus, the
generator function is convex (the slope rises in h) when this constant is positive,
concave (the slope falls in h) when this constant is negative, and linear when this
constant is zero. Further evaluating this function at h = 0 and h = 1, we obtain

F0) = P(22,1) >0

f(1) = P(11,1) <1

where the inequalities follow from primitivity of the P matrix. Graphically, plotting
the generator function, it must start above the 45-degree line (for h = 0), end below
the 45-degree line (for h = 1). Obviously, linearity of generator function implies a
unique intersection with the 45-degree line. But upon reflection, it should be clear
that either convexity or concavity of the generator function also implies a unique
intersection. That is, there is a unique fixed point h* = f(h*).?

14.6 Multiple equilibria

Moving beyond these special cases, it is possible to construct examples with multiple
equilibria. In particular, Preston and Campbell (1993) have demonstrated the pos-
sibility of multiple equilibria when reproduction is “centrifugal.” This means that
reproduction rates are higher for couples in which the partners are more similar to
each other. In particular, for our current model (with n = 2), reproduction is cen-
trifugal when same-type couples (types 11 and 22) have more children than mixed
couples (types 12 and 21).

To illustrate the possibility of multiple equilibria, consider an example with the
following parameter values.

>> alpha = O; % assume random matching

>> R

diag([5 1 1 5]) % centrifugal reproduction

R =

O O O wm
O = O O
g O O O

O O~ O

> P =1[.9 .1; .5 .5; .5 .5; .1 .9] % intergenerational transmission

SReturning to the first example in the preceding section (with no diffential reproduction), you
can check that h(0) = P(22,1) = 0.2, h(1) = P(11,1) = 0.7, and P(11,1) + P(22,1) — P(12,1) —
P(21,1) = —0.1. Thus, the generator function for that example is convex.

14



0.9000 0.1000
0.5000 0.5000
0.5000 0.5000
0.1000 0.9000

In this (admittedly extreme) example, same-type couples have five times as many
children as mixed couples, and intergenerational persistence is very high for same-
type couples. Plotting the generator function, we find three different fixed points.

>> f = [1;

>> for x = 0:.05:1
N = [alpha+(1l-alpha)*x,(1-alpha)*(1-x),0,0; 0,0, (l-alpha)*x,alpha+(l-alpha)*(1-x)];
fx = [x 1-x]*N*R*P(:,1)/sum([x 1-x]*N%*R);
f = [f; £x];

end

>> plot(0:.05:1,f,0:1,0:1) % generator function

1
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Further computation (left to the reader) would show that the stable equilibria occur
when 14.64% or 85.35% of the population is type 1.

The possibility of multiple equilibria also raises the possibility of catastophes. To
illustrate, suppose that the population is initially at the stable upper equilibrium,
and that the reproduction rate for type-11 couples gradually falls from r(11) =5 to
r(11) = 3. Graphically, the decline in this parameter causes the generator to shift
downwards.
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>> R(1,1) = 3 % new reproduction rate for type-11 couples

R=
3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 5
>> f =[]

>> for x = 0:.05:1
N = [alpha+(1l-alpha)*x,(1-alpha)*(1-x),0,0; 0,0, (l-alpha)*x,alpha+(l1-alpha)*(1-x)];
fx = [x 1-x]*N*R*P(:,1)/sum([x 1-x]*N*R);
f = [f; £x];

end

>> plot(0:.05:1,f,0:1,0:1) % generator function

1
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Crucially, once r(11) falls below a critical value (slightly higher than 3), the upper
equilibrium no longer exists. In particular, for r(11) = 3, there is a unique equilib-
rium in which 13.35% of the population is type 1. Thus, it is possible for a gradual
decline in this parameter to produce a “catastrophic” decrease in the proportion of
type-1 individuals.

In light of this example, we might revisit our discussion of the intergenerational
dynamics of IQ scores from Chapter 3. As emphasized in that chapter, the linearity
of the one-sex model guarantees a unique limiting distribution. Any small changes
in parameter values would have a small effect on the generator function, and hence
a small effect on the equilibrium. In contrast, the non-linearity of the two-sex model
permits multiple equilibria and creates the potential for catastropes. Arguably, this
might provide some theoretical support for commentators concerned about the effect

16



of differential reproduction on the dynamics of 1Q scores. If our society was in
fact on the “brink” of a catastrophe, small adverse changes in reproduction rates
(or intergenerational transition probabilities) could have a dramatic effect on the
equilibrium distribution of IQ scores. On the other hand, it is important to note
that we obtained multiple equilibria only by making some extreme assumptions on
these parameters. Restricting parameter values to empirical sensible ranges, further
numerical examples suggest that there is little scope for multiple equilibria.®

14.7 Further reading
Preston and Campbell (Am J Soc, 1993)

In particular, given the (empirically sensible) assumptions that couples with higher 1Q have
lower reproduction rates (r(11) < r(12),r(21) < r(22)) and are more likely to have high-IQ children
(P(11,1) > P(12,1), P(21,1) > P(22,1)), Isuspect (but have not proven) that the equilibrium must
be unique.
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