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15 Two-Dimensional Nonlinear Models

While we have by no means exhausted the applications of one-dimensional models,
we turn in this chapter to two-dimensional nonlinear models. Generically, these
systems can be written as

U+1 = g1 (Ut> Ut)

V41 = 92(Ut> Ut)

where the scalars u and v are called the state variables. Our application in this
chapter is a simple group-process model which addresses the mutual interdependence
between “friendliness” and “activity” within a group of people. After specifying the
model, we show how to analyze it graphically using a phase diagram. We then
generalize stability analysis to the two-dimensional case.

15.1 A simple group-process model

Drawing on empirical studies of human groups, Homans (1950) argued that positive
sentiment (“friendliness”) among group members encourages a higher level of group
participation (“activity”). At the same time, he held that activity encourages friend-
liness. The two variables are thus linked through a positive feedback loop. Homans
was also interested in the effect that outside forces (the “external system”) would
have on group dynamics (the “internal system”). Building on Homan’s informal
theorizing, Simon (1952) developed a formal model that became an early classic of
mathematical sociology. In his original paper, Simon focused most of his attention
on a linear model, but also discussed a nonlinear version. Here, we’ll consider a
simple specification of the nonlinear model.

Following Simon (1952), we begin with a continuous-time specification of the
model. Letting the scalars F' and A denote friendliness and activity, we assume

dF/dt = A— pF?
dAJdt = F+&—~yA?
where (3, v, and £ are parameters. Fixing the level of activity, the first differential

equation indicates that friendliness is rising when it is “too low” relative to activity,
is falling when it is “too high” relative to activity, and is stable when

F = VA

The nonlinearity in this equation might reflect the “diminishing returns” of addi-
tional activity on the level of friendliness. The parameter ¢ in the second differential



equation may be interpreted as the level of “external activity” imposed on the group.
(For example, consider the amount of homework that a professor assigns to a study
group.) Fixing the levels of friendliness and external activity, that equation indicates
that activity is rising when it is “too low” relative to F' and &, is falling when it is
“too high” relative to F' and &, and is stable when

A = V(F+8)/y

We might again invoke a “diminishing returns” argument to motivate the nonlinear
effect of additional friendliness or external activity on the level of activity.
Moving to a discrete-time specification, the model becomes

AF = (A—pBFHh
AA = (F+&—vAY h

where the parameter h reflects period length. Equivalently, we may write

Fipn = Fi+ (A —BF) h
At+l = At+(Ft+€—’}/A?) h

where the t subscripts index periods. As discussed in Chapter 11, we will set h small
so that our discrete-time model approximates the continuous-time dynamics. While
this might seem unnecessary (why not simply set h to 17), the importance of period
length will be discussed in section 15.7 below.

To begin exploring the behavior of this model, we initially assume no external
activity (£ = 0) and fix the other parameters at § = 0.2, v = 0.5, and h = 0.1.
The diagrams on the next page show the time path of F' (solid curve) and A (dotted
curve) for the first 50 periods. The first diagram assumes the initial conditions (A4y =
3, Fy = 1) while the second diagram assumes the initial conditions (A = 2, Fy = 5).
In both cases, the system converges to the same long-run outcome (A* = 2.7144,
F* = 3.6841). Thus, one immediate question is whether the system converges to
this equilibrium for every possible set of initial conditions. We will address this issue
graphically in the next section.



>b=.2; g=.5 h=.1; A=3; F=1; yl = [A F];
for t = 1:50;

dF = (A - bxF"2)*h; dA = (F - gxA"2)*h; F = F+dF; A = A+dA; y1 = [y1; A F];
end;

plot(0:50,y1(:,1),0:50,y1(:,2))
% time paths of F and A given AO = 3 and FO

I
-

level of friendliness (F) and activity (A)

0.5 —
UO E‘! 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50
period (t)
> b= .2, g= .5 h=.1; A=2; F=5; y2 = [AF];
for t = 1:50;
dF = (A - bxF"2)*h; dA = (F - g*xA™2)*h; F = F+dF; A = A+dA; y2 = [y2; A F];
end;

plot(0:50,y2(:,1),0:50,y2(:,2))
% time paths of F and A given AO = 2 and FO
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15.2 The phase diagram

Graphical analysis of two-dimensional models is facilitated by use of a phase diagram.
In steady state, both of the state variables must be stable. For a generic two-equation
system with state variables u and v, steady state thus requires

Au = gi(u,v) —u = 0
Av = g(u,v)—v =0

Each of these conditions defines a relationship between the state variables. When
plotted (in either (u,v) or (v, u) space), these curves are called nullclines. In partic-
ular, the curve corresponding to the Au = 0 condition may be called the u-nullcline.
This terminology reflects the fact that w is stable (neither rising nor falling) every-
where along the u-nullcline. Similarly, v is stable everywhere along the v-nullcline
determined by the Av = 0 condition. An intersection of the nullclines, corresponding
to a pair (u*,v*) such that Au* = 0 and Av* = 0, indicates a steady state of the
system.

Returning to our present example, the system is in steady state when both F'
and A are stable. We have already noted that AF = 0 implies

F— VAT

which is the equation for the F-nullcline. Rewriting the AA = 0 condition to facili-
tate plotting in (A, F') space, we obtain

F = A% ¢

which is the equation for the A-nullcline. Setting the parameter values (so that
B =02, v =05 and £ = 0), we obtain the phase diagram shown below. Note
that the equilibrium identified in our time-path computations corresponds to the
intersection of the nullclines at (A* = 2.71, F* = 3.68). However, as indicated by
the phase diagram, there is a second equilibrium at (A* = 0, F* = 0). Intuitively,
a group which initially has no friendliness and no activity would (in the absence of
shocks or external activity) remain in that state indefinitely.

Of course, we could also have used algebra to derive the steady states of the
model. Having assumed & = 0, we can substitute A = 3F? into F' = yA? to obtain

F = 9f°F

Because this equation is satisfied when F' = 0, there is a steady state at (A* =
0, F* = 0). Alternatively, assuming that F is positive, we obtain

F = 771/3572/3

which, given our parameter assumptions § = 0.2 and v = 0.5, implies F* = 3.68 and
hence a second steady state at (A* = 2.71, F* = 3.68).



> b= .2; g= .5; A=0:.05:4; nullF = (A/b)."(1/2); nullA = g x A."2;
>> plot(A,nullF,A,nullA,y1(:,1),y1(:,2),y2(:,1),y2(:,2))
>> % phase diagram with trajectories
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In addition to the nullclines, our phase diagram also shows the trajectories cor-
responding to the two cases in Figure 1. Each trajectory is a sequence

{(Ao, Fo), (A1, F1), (Ag, F2), ...}

In contrast to time-path diagrams, in which each state variable is plotted as a func-
tion of time, the time dimension is merely implicit in the plot of a trajectory. Con-
sequently, there is some loss of information in moving from the time-path diagram
to a trajectory. While a trajectory shows how the process moves through the two-
dimensional state space, it does not show how much time was required for the process
to reach equilibrium.! However, offsetting this disadvantage, trajectories can be plot-
ted directly on the phase diagram, making it easy to reconcile numerical examples
with the graphical analysis of the system.

15.3 Graphical analysis of stability

Beyond identifying the steady states of the system, we can also use the phase diagram
to help assess the stability of each steady state. The nullclines partition the phase

1Using Matlab to plot trajectories, one can partially overcome this problem by adding markers
at each point (A, Fy). However, if we set period length h small to approximate continous-time
dynamics, the markers will be spaced closely together. Moreover, as the dynamics become slower
in the neighborhood of an equilibrium, the markers begin to overlap, making it impossible to
distinguish visually between time steps.



diagram into regions in which each state variable (u or v) is either rising or falling.
Once we determine the sign of Au and Awv in each region (and notate our phase
diagram accordingly), we may be able to determine whether the system would return
to a particular steady state (u*,v*) after a small shock.

For our present example, note that

AF > 0 implies F < /A/(

while AF < 0 implies ' > \/A/B. Graphically, F' is rising at points below the
F-nullcline, and falling at points above the F-nullcline. Note further that

AA > 0 implies A < \/F/y

while AA < 0 implies A > \/F/v. Graphically, A is rising at points to the left of
the A-nullcline, and falling at points to the right of the A-nullcline. Returning to our
phase diagram, we now can add pairs of arrows to indicate the dynamics of each state
variable in each of the four regions created by the nullclines.? In addition, we have
also drawn arrows along each nullcline to indicate the dynamics of the other (non-
stable) state variable. Note that all of the arrows are consistent with the trajectories
plotted on the phase diagram above.

6

o

| | f

friendliness (F)

AF=0

L. ]

0 1 I I I I I I
0 0.5 1 15 2 25 3 35 4

activity (A)

While these arrows merely provide some qualitative information about the dy-
namics of the system, we can often learn much from them. In particular, for our

2All arrows were inserted manually in the Matlab graphics editor. Following a slightly different
convention, we might replace each pair of arrows (say one pointing “east” and one pointing “south”)
with a single arrow (pointing “southeast”).



present example, this diagram reveals that the upper equilibrium (A* = 2.71, F*
3.68) is stable. This result follows essentially from the observation that all arrows
are “pointing inward” toward this equilibrium.? We can also see that the lower equi-
librium (A* = 0, F* = 0) is unstable. Any small shock to the system would place it
on a trajectory headed toward the upper equilibrium.

This sort of qualitative analysis is common and may be sufficient for many pur-
poses. However, using Matlab, it is not difficult to add arrows which indicate more
precisely the rate and direction of flow at each point on the phase diagram. We first
create a grid in (A, F') space using the meshgrid command, then evaluate AA and
AF at each point in this grid, then plot the result using the quiver command.*
This type of diagram is called a wvectorfield. Note that we have also superimposed

the nullclines using the hold on command.

% creating grid
% evaluating dF and dA at each point

% plotting the vectorfield

>> [A,F] = meshgrid(0:.4:4,0:.4:6);
>> dF = (A-b*F."2)*h; dA = (F-g*A."2)%*h;

>> hold on; quiver(A,F,dA,dF)
>> A = 0:.05:4; nullF = (A/b)."(1/2); nullA = g*A."2; plot(A,nullF,A,nullA)

>> Y, phase diagram with vectorfield
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3Here is a more rigorous argument: Given the arrows on the nullclines, we see that each of the
two regions between the nullclines is trapping region (i.e., any trajectory which enters the region
will never exit). Further, we see that any trajectory entering either of the trapping regions must
converge in the long-run to the upper equilibrium. Finally, note that any trajectory which starts
in one of the other (non-trapping regions) must either approach the upper equilibrium directly
(without entering another region) or else enter one of the trapping regions (resulting in long-run
convergence to the upper equilibrium). Thus, all trajectories in the neighborhood of the upper

equilibrium will eventually converge to that equilibrium.
4Readers are encouraged to consult the respective Matlab help files for more information.



15.4 Other uses of the phase diagram

The phase diagram is also useful for conducting other sorts of analyses. To illustrate,
we’ll now consider the effect of the “external system” on the equilibrium of the
“internal system.” Recalling the equation for AF, it is apparent that the level of
external activity (reflected by the parameter £) has no effect on the F-nullcline. In
contrast, given the equation for the A-nullcline,

F = ’yAQ—é

we see that an increase in £ implies a lower level of F for any level of A. Graphically,
the A-nullcline shifts downwards as £ rises. (Equivalently, rewriting the equation
for the A-nullcline so that A is a function of F'; we would see that an increase in &
implies a higher level of A for any of level F, resulting in a rightward shift of the
A-nullcline.) The phase diagram below illustrates the shift in the A-nullcline as &
rises from 0 to 2.

>> A = 0:.05:4; nullF = (A/b)."(1/2); nullAl = gxA."2; nullA2 = g*A."2 - 2;
>> plot(A,nullF,A,nullAl,A,nullA2) % phase diagram with shift in A-nullcline

6

0
» AF=0
[%]
£ 2f g
=]
j =
Q2
s i
0 AA=0 B
(with € = 0)
4k AA=0 i
(with & = 2)
2 I I I I I I
0 0.5 1 15 2 25 3 35 4
activity (A)

From this diagram, we see that an increase in external activity (£) causes the equi-
librium levels of both activity (A*) and friendliness (F™*) to rise. Graphically, by
shifting the A-nullcline, an increase in ¢ causes the equilibrium to “move along” the
N-nullcline. Of course, we didn’t need the phase diagram to obtain this result. Given
that F™* is determined implicitly by the equation

F*—i—f — '752F*4



we could have solved this equation numerically to obtain the new equilibrium (A* =
3.52, F* = 4.20). Nevertheless, the qualitative graphical analysis may be adequate
for many purposes and is often convenient when the nullclines have complicated
functional forms.

15.5 Stability analysis

In Chapter 11, we explained how to conduct stability analysis for one-dimensional
nonlinear models. Here, we extend that method to the two-dimensional case. As be-
fore, we suppose that the system is initially in steady state (A*, F*), but experiences
a small, one-time shock in period ¢. We assume that this shock could affect either
(or both) of the state variables. Thus, we may write

F,o= F '+ f
At = A*—i—at

where the lower-case variables f; and a; denote deviations from the steady state. Even
with no subsequent shocks, the system will not return immediately to equilibrium.
We may thus write

Fooo = F'+ fin
Ay = A"+ aq

where f;11 and a;.; are the deviations from equilibrium in period ¢ + 1. Given
the parallel to the one-dimensional case, you might anticipate that the steady state
(A*, F*) is stable if the derivations become smaller over time. This is essentially
correct. However, because there are now two deviations (which could potentially
change at different rates and even move in opposite directions), the formal equilib-
rium condition requires some further development.

We wish to determine how the deviations in period ¢+ 1 depend on the deviations
in period t. To begin, we rewrite the F;,, equation to obtain

Fiyn = F+ (A —BF)h
F*+ fin = F*+ft+(A*+at—ﬁ(F*+ft)2)h
F' 4 fi = F*+ft+(A*+at—5(F*2+2F*ft+ft2))h
Jir1 = i+ (at_ﬂ(QF*ft+ft2)) h
for = fi+(a —28F"f) h
Note the parallel to our derivations in Chapter 11. The next-to-last line follows

because F* is an equilibrium; the final line follows because f7 is very small. Similarly,
manipulation of the A;,; equation yields

A = At+(Ft+€_7A§) h

9



At ayy = A*+at+(F*+ft+§—7(14*+at)2) h
Aty = A 4a+ (F*+ fi+&—v(A7 +24%, +a})) h
i1 = G+ (ft —y(24%a; + af)) h
a1 & a+ (fi —27A%a) b

We have thus obtained a two-equation system relating the deviations in period ¢ + 1
to the deviations in period t. This system can be written in matrix form as

fra1 - 1—26hF* h fi
|:at+1:| N [ h 1—27hA*} {at}

It is important to note that this system is linear. Indeed, it is customary to say
that we have “linearized” the system at the fixed point (A*, F*). For our example,
linearity results from ignoring the small nonlinear (squared deviation) terms.
Generically, the equation relating the deviations in period ¢ + 1 to the deviations
in period t can be written as
X1 = JXy

where x; is a column vector reflecting deviations in period ¢, and J is called the
Jacobian matrix. As indicated in our example, the Jacobian matrix not only depends
on the parameters of the model, but must also be evaluated at a particular steady
state. Drawing on our knowledge of linear systems from the first half of the book,
the deviations in period ¢ 4+ s will be given by

Xips = J°Xy
Moreover, we know that the stable-growth equilibrium is determined by the equation
Ax = Jx

where A is the largest (in absolute value) eigenvalue of the J matrix, and x is the
associated eigenvector. Recognizing that A represents the long-run growth factor,
the deviations become smaller over time when

Al < 1
and become larger over time when
Al > 1

Thus, stability of a steady state depends on the leading eigenvalue of the Jacobian
matrix. The steady state is stable when this eigenvalue has absolute value less than
1, and is unstable when this eigenvalue has absolute value greater than 1.

To illustrate this approach to stability analysis, we return to our present example,
fixing the parameter values § = 0.2, vy = 0.5, ¢ = 0, and h = 0.1. We have already
seen that these parameter values imply an upper equilibrium (A* = 2.71, F* = 3.68)
and a lower equilibrium (A* = 0, F* = 0). Evaluating the Jacobian matrix at the
upper equilibrium, we can use Matlab to compute the eigenvalues of this matrix.

10



> b= .2; g= .5 e=0;h .1;
2. =

>> Astar = 71; Fstar 3.68;
>> J = [1 - 2xb*h*Fstar, h; h, 1-2*gxh*Astar]

0.8528 0.1000
0.1000 0.7290

>> [eigvec, eigvall = eig(J)

eigvec =
0.4867 -0.8736
-0.8736  -0.4867

eigval =
0.6733 0
0 0.9085

Because the leading eigenvalue of the Jacobian matrix is A = 0.9085, we have ver-
ified that the upper equilibrium is stable. We can assess the stability of the lower
equilibrium in a similar fashion.

>> Astar = 0; Fstar = 0;
>> J = [1 - 2#b*h*Fstar, h; h, 1-2%gxh*Astar]

J =
1.0000 0.1000
0.1000 1.0000

>> [eigvec, eigvall = eig(J)
eigvec =

-0.7071 0.7071

0.7071 0.7071
eigval =

0.9000 0
0 1.1000

In this case, the leading eigenvalue of the Jacobian matrix is A = 1.1000, indicating
instability of the lower equilibrium.

11



15.6 Another derivation of the Jacobian matrix

Readers who know calculus will be happy to learn that there is a more direct way to
obtain the Jacobian matrix. The generic two-dimensional system

U1 = 01 (ut7 ?Jt)

Vi1 = go(ug, vy)
has the Jacobian matrix given by

dg1/0u  0gy/ov

J =
agQ/au ag?/av (

u* v*)

where the subscript indicates that the partial derivatives are evaluated at the steady
state (u*,v*). For our present example, where

G(F,A) = F+(A—-pBFHh
G@(F,A) = A+ (F+&—~vAY) R

you can verify that

891 /OF = 1—286hF
Dg1/0A = h
0ge/OF = h
Dga/0A = 1—2vhA

Evaluating these partial derivatives at the steady state (A*, F'*), we thus obtain the
Jacobian matrix derived earlier through our “non-calculus” approach.

Although we are focusing on two-dimensional models, it is useful to know that
this calculus approach generalizes in a straightforward way for higher dimensional
models (with n > 2). (In contrast, because it becomes impossible to draw phase
diagrams for n > 3, our graphical approach to stability analysis is possible only for
low-dimensional models.) You might also note that our one-dimensional analysis was
merely a special case of our present analysis. For the generic one-dimensional system

Tey1 = g(21)
the Jacobian “matrix” is simply
J = [0g/0x] = ¢'(x¥)

and ¢'(z*) also represents the sole eigenvalue of the Jacobian matrix. Thus, even
in the one-dimensional case, stability depends on the absolute value of the (only)
eigenvalue of the Jacobian matrix.
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15.7 The importance of period length

Throughout this chapter, we have set period length small (b = 0.1) so that our
discrete-time model approximates continous-time dynamics. From our stability anal-
ysis, we can see that the dynamics change qualitatively when h is higher. For in-
stance, setting h = 0.62 (and leaving the other parameters unchanged), the following
computations reveal that the upper equilibrium is no longer stable.

> b= .2; g= .5; e =0; h= .62;
>> Astar = 2.71; Fstar = 3.68; J = [1 - 2«b*hxFstar, h; h, 1-2*gxh*Astar]
J =

0.0874 0.6200
0.6200 -0.6802

>> [eigvec, eigvall = eig(J)
eigvec =

-0.4867 -0.8736
0.8736  -0.4867

eigval =

-1.0256 0
0 0.4327

For this case, the behavior of the system is illustrated by the time-path and phase
diagrams on the next page. Further computations show that the system eventually
converges to a 2-cycle in which (A, F') alternates between (2.22, 3.89) and (3.11, 3.39).
The reader can verify that longer period lengths (say h = 1) result in even “wilder”
behavior (with the trajectory leaving the positive quadrant, and the dynamics never
converging to an equilibrium).’

The point of this example is to instill some caution about the use of phase dia-
grams in the analysis of discrete-time systems. In section 15.3, we drew arrows to
indicate the direction of change for each state variable in each region of the phase di-
agram. These arrows correctly indicate the direction of change for both discrete-time
and continuous-time systems. However, our graphical analysis of stability is valid for
discrete-time models only if period length is short enough to approximate continuous-
time dynamics. For continous-time systems, the trajectory flows smoothly through
the state space. In contrast, for discrete-time systems, we have just seen how the
trajectory may “jump” over nullclines and even entire regions of the phase diagram.®

5These results might well prompt some reflection on our specification of the model. Should the
model permit negative levels of friendliness or activity? If so, how should the dynamics be specified
in those regions of the state space?

6For one-dimensional models, we could use the cobweb diagram to help visualize this sort of
behavior. (Recall our graphical analysis of the 2-cycle in Chapter 11.) Unfortunately, for two-
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> A =3; F=1; y=[AF]; for t = 1:50; dF = (A - b*xF"2)*h; dA = (F - g*A~2)*h;
F = F+dF; A = A+dA; y = [y; A F]; end; plot(0:50,y(:,1),0:50,y(:,2));
% time paths for h = .62
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>> A = 0:.05:4; nullF = (A/b)."(1/2); nullA = g * A."2;
plot(A,nullF,A,nullA,y(:,1),y(:,2)); % trajectory for h = .62
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Nevertheless, for many applications, we are in fact interested in the behavior of the
system when period length is short. For instance, in the context of our present exam-
ple, it seems reasonable to assume that the group dynamics would be continually (or
at least frequently) modified in light of the current levels of friendliness and activity.
Thus, while we will continue to specify models in discrete time (to facilitate compu-
tation and reduce the need for calculus), we will also continue to make (judicious)
use of continuous-time methods.

15.8 Recommended readings

George Homan’s book, The Human Group (1950 [1992]), is a sociological classic
which helped inspire not only group-process theory but also social network analysis.
Herbert Simon’s formalization was based primarily on Chapter 5. Simon’s paper
originally appeared in the American Sociological Review (1952) and was subsequently
reprinted in his book, Models of Man (1957). See Thomas Fararo, The Meaning of
General Theoretical Sociology (1992), for another treatment of the Simon-Homans
model and introduction to sociological applications of dynamical systems. See Drazin
(1992) or Strogatz (1994) for more rigorous development of stability conditions for
both discrete-time and continuous-time systems.

dimensional models, the analog of the cobweb diagram would need to be four-dimensional (given
the two inputs and two outputs of the generator function).
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