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12 Threshold Models

12.1 Introduction
12.2 Small population

Consider a small (finite) population composed of n individuals. Each individual i
chooses to participate in some form of collective action (e.g., a protest rally) if and
only if she expects sufficient participation by others. To be more precise, suppose
that individual i’s threshold level is given by 6(i) € {0,1,...}. Further letting «
denote the expected number of participants, individual ¢ chooses to participate if

r > 0(i)
and chooses not to participate if
x < 6(i).

Note that individuals with lower threshold levels are more willing to participate.
Indeed, any individual ¢ with threshold (i) = 0 will always participate regardless of
the expected number of participants (i.e., for any x € {0,...,n}). Conversely, any
individual ¢ with threshold 6(i) > n will never participate. The remaining individuals
— those with intermediate threshold levels — may (or may not) participate depending
on the precise number of participants expected.

For any expected participation level z, let f(x) denote the number of individuals
with threshold levels equal to z. Adopting statistical terminology, f(z) is the fre-
quency distribution of thresholds. We may further let F'(z) denote the number of
individual with threshold levels less than or equal to x. This cumulative frequency
distribution is given by

F(z) = Y f().

This cumulative function plays an important role in threshold models. Because each
individual participates if and only if her threshold is less than or equal to x, F(z)
indicates the number of individuals who would choose to participate if the expected
level of participation was equal to x.

To develop a process model, suppose that individuals choose whether to partici-
pate in each period ¢ € {0,1,2,...}. Suppose further that individuals have adaptive
expections, so that expected participation in period t + 1 is equal to actual partic-
ipation in period t. Under this assumption, the generator function for the process



is simply the cumulative distribution function, and dynamics are determined by the
equation
Tir1 = F(l’t)

Given the initial condition xq, we thus obtain

xry = F(Sﬂo)

Ty = F(r1) = F(F(x))

z3 = F(az) = F(F(z1)) = F(F(F(x)))
and so on. It is possible to show that this sequence of participation levels must
monotonic (either weakly rising or else weakly falling over time), and that the process

must eventually reach a fixed point z* such that z* = F(z*).!
To illustrate, consider the following example with n = 10 individuals.

>> theta; % theta(i) is threshold level for individual i

h =
3 5 4 Inf 6 5 2 8 4 5
>> f = histc(theta, 0:10) % frequency distribution
f =
0 0 1 1 2 3 1 0 1 0 0
>> F = cumsum(f) Y cumulative frequency distribution
F =

Note that the vectors £ and F have 11 elements, corresponding to values of x €
{0,...,10}. Further, because individual 4 has a threshold greater than 10 (indeed,
has an infinite threshold), we find that F'(10) < 10. Substantively, even if everyone
was expected to participate, individual 4 would not choose to participate.

To analyze the dynamics of the system, we can plot the generator function F'(z)
against the 45-degree line.

!These claims may become obvious after the example below, but a formal proof may still be
instructive. To see that the sequence {zg,z1,...} must be monotonic, note that any cumulative
function F(z) must be non-decreasing in z. That is, 2’ > " implies F(2’) > F(z”). Thus,
F(zy) > x¢ implies F(F(xt)) > F(x). Conversely, F(x:) < x¢ implies F(F(z;)) < F(x:). To see
that the process eventually reaches a fixed point, suppose F(x;) # z;. Because the population has
a finite number of individuals, either F(x;) > z; + 1 or else F(x;) < x; — 1. However, F(x) is
bounded from below and above: F(0) > 0 and F(n) < n. Thus, the process must reach a fixed
point within n periods.



>> plot(0:10,F,0:10,0:10) % threshold diagram
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From this diagram, we see that the process has 3 fixed points, given by x* = 0, x*
= 4, and x* = 9. Inspection further reveals that the upper and lower fixed points
are stable, while the intermediate fixed point is unstable. Note that, consistent with
the claim made above, the process converges to one of the stable fixed points for
any initial condition xzy € {0,...,10}. You can also verify that any sequence is
monotonic. For example, given the initial condition xzy = 5, we obtain

rw = Fb) =7
ry = F(7) = F(F(5) = 8
w3y = F@®) = F(F(7) = F(F(F(G)) =9

and the process remains at the upper fixed point x* = 9 for every subsequent period.
Alternatively, given the initial condition xg = 3, we obtain

z = F(2) = F(F(3) = 1
v = F(1) = F(F(2) = F(F(F(3))) = 0

and the process remains at the lower fixed point x* = 0 for every subsequent period.

12.2.1 A Markov chain specification

To help bridge the divide between linear and non-linear models — the two halves of
this of this book — it may be useful to see that our present example can be respecified



as a Markov chain process. In each period, the state of the process is given by the
number of individuals currently articipating. Thus, the set of possible states is

{0,...,10}.

Transitions are completely deterministic. More precisely, if the process occupies in
state x in period ¢, then it surely (with probability 1) occupies state F'(x) in period
t + 1. We thus obtain the (zero-pattern) transition diagram below.

Alternatively, we can specify the transition matrix, and then obtain the long-run
outcome through iterated multiplication.

>> P = zeros(11); for x = 1:11; P(x,F(x)+1) = 1; end; P % transition matrix

P =
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0

>> P"3 ¥ long-run outcome (from each initial state)

ans =
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
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Using either the transition diagram or transition matrix, we thus find that the process
reaches one of the absorbing states within 3 periods. More precisely, the process is
absorbed in state 0 for any initial condition zo € {0, ..., 3}, is absorbed in state 4
given the initial condition xq = 4, and is absorbed in state 9 for any initial condition
xg € {5,...,10}.

We thus find a correspondence between the fixed points of dynamical systems
and the absorbing states of Markov chains. However, while the dynamical systems
perspective permits further distinction between stable and unstable fixed points (de-
termined by the slope of the generator function at the fixed point), there is no direct
analog to this stability concept in Markov chain analysis.? Further, it is appar-
ent that the Markov chain specification will become impractical as the number of
individuals in the population grows larger.

12.3 Large population

We now consider threshold models with a large (infinite) population. Conceptually,
the model remains quite similar to the small-population version developed in the
preceding section. However, we now assume that thresholds depend on the proportion
of the population participating in the collective action. That is, individual ¢ chooses
to participate if

x > 0(i)

and chooses not to participate if

x < 0(7)

where z € [0,1] is the expected proportion of the population participating in the
collective action. Relatedly, we now specify f(x) as a probability density function
(pdf). Like any pdf, this function must satisfy the condition

/Z f(x)de = 1.

2We could potentially employ the concept of stochastic stability discussed in Chapters 5 and 6.
However, there is no necessary correspondence between the stable fixed points of dynamical systems
and the stochastically stable states of Markov chains. The dynamical systems stability concept is
“local” (reflecting dynamics very close to the fixed point) while stochastic stability involves more
“global” considerations (involving the “distance” from the absorbing state to intermediate states
which can “reach” other absorbing states).




Graphically, the area under the f(x) curve must be equal to 1. The corresponding
cumulative distribution function (cdf) is given by

Flz) = /_ OO (o).

Graphically, F'(x) gives the area under the f(z') curve for 2’ < x.

Because F'(z) indicates the proportion of the population with thresholds less than
or equal to z, an expected participation rate of x implies an actual participation rate
of F(x). Retaining our assumption of adaptive expectations, the dynamics of the
model are again determined by the equation

.',Ut+1 = F(ﬂft)

and F'(z) is again the generator function.

Obviously, the proportion of the population participating in the collective action
is bounded between 0 and 1. Thus, it might also seem natural to require that
0(i) € [0,1] for all i. However, to capture the possibility that some individuals always
participate, we allow some individuals to have negative thresholds. Hence, F'(0) > 0
indicates the proportion of the population who always participate. Similarly, to
capture that possibility that some individuals never participate, we assume that
some individuals have thresholds greater than 1. Hence, F/(1) < 1 indicates the
proportion of the population who might be willing to participate, and 1 — F(1) > 0
indicates the proportion of the population who never participate.

To illustrate, suppose that thresholds are distributed uniformly between —2/5
and 6/5. That is,

o) = { 5/8 for z € [-2/5, 6/5]

0 otherwise

Graphically, this pdf is a rectangle with height 5/8 and width 8/5 (and hence area
equal to 1 as required). Thus, the proportion of the population with thresholds less
than or equal to x is given by

F(z) = (5/8)(x+2/5) = (5/8)z +1/4

for any z € [0,1].% In particular, note that F'(0) = 1/4 and F(1) = 7/8. Thus, 25%
of the population will always participate while 12.5% of the population will never
participate. To analyze the dynamics of the model, we plot the generator function
F(z) against the 45-degree line.

3While this cdf can be found through integration of the pdf, it is also easy to derive graphically,
since F'(x) is the area of a rectangle with height 5/8 and width (z + 2/5).



>> hold on; ezplot(’.625*%x + .257,[0,1,0,1]); plot(0:1,0:1); hold off
>> % threshold diagram

F(x) = .625 x + .25
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Solving algebraically for the unique fixed point shown on this diagram, we obtain

= F(z")
ot = (5/8)2" +1/4
= 2/3

This fixed point is stable because
[F'(2/3)] = [5/8] < 1

Further, it is apparent from the diagram that the process will eventually converge to
this fixed point for any initial condition x4 € [0, 1]. For instance, given xy = 0.1, we
obtain the time path {zg,z1,...} given below.

> x = .1; y=x; for t = 1:15; x = .bxx + .25; y = [y; x]; end; y

y =
.1000
.3000
.4000
.4500
.4750
.4875
.4938

O OO O O O O



.4969
.4984
.4992
.4996
.4998
.4999
.5000
.5000
.5000
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To offer another example, suppose now that thresholds are distributed uniformly
between 1/10 and 3/5. This implies

fa) = { 2 for xz € [1/10, 3/5]

0 otherwise

so that
0 for € [0, 1/10]
F(z) = ¢ 2(x—1/10) for x € [1/10, 3/5]
1 for x € [3/5, 1]

Rewriting this piecewise linear function as
F(z) = max{0, min{2(x — 1/10),1}},
we can use Matlab to plot it against the 45-degree line.

>> hold on; ezplot(’max(0,min(2*(x-.1),1))’,[0,1,0,1]1); plot(0:1,0:1); hold off
>> % threshold diagram

F(x) = max(0,min(2 (x-.1),1))
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For this example, there are no individuals who would always participate (F'(0 ) 0)
and no individuals who never participate (F'(1) = 1). Consequently, both z* = 0
and z* = 1 are fixed points. Further, both of these fixed points are stable because

[F'O) = [F'(W)] = 0] < 1.

From the diagram, we see there is another fixed point which lies on the upward-
sloping segment of the threshold curve. This fixed point can be determined alge-
braically by setting

x* = F(z2")
= 2(z" —1/10)
= 1/5

This fixed point is unstable because
[F'(1/5)] = 2] > 1.

Further, it is apparent from the diagram that the process will converge to the lower
stable fixed point (z* = 0) for any initial condition = € [0, 1/5), and will converge
to the upper stable fixed point (z* = 1) for any initial condition =y € (1/5, 1]. For
instance, given the initial condition o = 1/4, we obtain the time path {zg, x1,...}
computed below.

>> x = .25; y =x; for t = 1:5; x = max(0, min(2*(x-.1), 1)); y = [y; x]; end; y

y =
.2500
.3000
.4000
.6000
.0000
.0000

= = O O O O

Both of the preceding examples assumed that thresholds are uniformly distributed.
While this simplifies derivation of the cdf, perhaps it is more realistic to assume a
smoother distribution function. For a final example, we’ll assume that F'(x) is the
cdf for the normal distribution. To make use of Matlab functions, this distribution

can be written as
F(z) = (1/2) (1+erf(a\/_>>

where p is the mean of the distribution, o is the standard deviation, and

erty) = = [

Setting u = 0.4 and o = 0.2, we can once again plot F'(x) against the 45-degree line
to analyze the dynamics of the model.




>> hold on; ezplot(’.5x(1+erf((x-.4)/(.2*sqrt(2))))’,[0,1,0,11); plot(0:1,0:1); hold off
>> % threshold diagram

F(x) = .5 (1+erf((x-.4)/(.2 sqrt(2))))
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Qualitatively, this example is similar to the previous one, since there are stable upper
and lower fixed points and an unstable intermediate fixed point. However, because
the normal distribution has positive density f(z) for values of z, there will be some
individuals who always participate and others who never participate. More precisely,
computing F'(0) and F(1), we find

>> x = 0; .5x(1+erf((x-.4)/(.2xsqrt(2)))) % F(0)

ans =
0.0228

>> x = 1; .Bx(l+erf((x-.4)/(.2*%sqrt(2)))) % F(1)

ans =
0.9987

which indicates that 2.28% of the population will always participate while 0.13% of
the population will never participate. Consequently, for the present example, the
lower fixed point is greater than 0, while the upper fixed point is less than 1. To
compute these stable fixed points, we can choose the initial conditions zy = 0 and
xo = 1, and iterate until x; converges to the corresponding fixed point.

> x =0; y=x; for t = 1:8; x =.5%(1+erf((x-.4)/(.2*%sqrt(2)))); y = [y; x]; end; y
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0.0228
0.0296
0.0320
0.0329
0.0332
0.0333
0.0334
0.0334

> x =1; y=x; for t = 1:5; x =.6x(1+erf((x-.4)/(.2*%sqrt(2)))); y = [y; x]; end; y

1.0000
0.9987
0.9986
0.9986
0.9986
0.9986

Thus, the lower fixed point is at z* = .0334 while the upper fixed point is at x* =
.9986.

12.4 Removing individuals from the group

When thresholds are based on the group participation rate, it may sometimes be
possible to alter the equilibrium participation rate by removing individuals from the
group. For instance, leaders of some political or religious movements might attempt
to increase participation rates by excluding those followers with the highest thresh-
olds — those individuals who are least inclined to participate in group activities. The
removal of these individuals has an obvious “direct” effect on the participation rate:
individuals who were not participating anyway are no longer included in the denom-
inator of this rate. But perhaps more crucially, removal of these individuals may
also have an “indirect” effect: the higher participation rate causes some remaining
individuals to switch from non-participation to participation.

In other settings, leaders might remove individuals from the group in order to
decrease the equilibrium participation rate. For instance, consider a grade-school
classroom in which each child chooses whether to “act out.” To help preserve order,
the teacher might send those children with the lowest thresholds — those most inclined
to misbehave — to the principal’s office. Having (at least temporary) altered the
distribution of thresholds in the group, the teacher may thus decrease the equilibrium
level of acting out, and perhaps alter the behavior of some of the remaining children.
Presumably, similar logic underlied the (rather more insidious) Soviet policy of exiling
dissidents to Siberia.

11



More formally, consider a group in which thresholds are originally distributed
according to the density function f(x) with cumulative function F'(z). By removing
from the group those individuals with thresholds above z, we are truncating (“cutting
off”) the upper tail of the density function f(x). The area under the density function
is now less than 1. To renormalize the density function, we divide by F(z), the
proportion of the original group which remains. Thus, for the remaining (“lower”)
group, the probability density function is

l(z) = {f(I)/F(z) for x < z

0 for x > 2

and the cumulative distribution function is

F(z)/F(z) forx <z
L(x):{l for x > 2

Given this new threshold curve, we can analyze the model as before (plotting the
threshold curve against the 45-degree line), so fixed points are now determined by
the condition z* = L(z*).

Conversely, if we remove from the original group those individuals with thresholds
below z, we truncate the lower tail of the density function. The portion of the group
which remains is now given by 1 — F'(z). Thus, for the remaining (“higher”) group,
the probability density function is

0 for z < 2z
hz) = {f(a:)/(l—F(z)) for x > z

and the cumulative distribution function is

0 for x < z
H(z) = { (F(z) — F(2))/(1 = F(z)) forxz>z

and fixed points are given by the condition z* = H(z*).
To illustrate, let’s return to our first example from the preceding section where

F(z) = (5/8)z +1/4

which implied a unique equilibrium participation rate of x* = 2/3. If we remove
from this group those individuals with thresholds above z = 1, we obtain

L(z) = F(2)/F(1) = (5/T)x +2/7

for all z € [0, 1]. Plotting this generator function, it is apparent that the participation
rate converges to the unique fixed point * = 1 for any initial condition.

12



>> hold on; ezplot(’(5/7)*x + 2/7°,[0,1,0,1]); plot(0:1,0:1); hold off
>> % threshold curve

L(x) = (5/7) x + 217
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Further, decomposing the total change in the equilibrium participation rate (from
2/3 to 1) into direct and indirect effects, it is interesting to note that most of the
increase in participation is due to the latter effect. More precisely, the fraction of the
remaining group with thresholds below the original participation rate is L(2/3) =
16/21. Thus, the participation rate rose from 2/3 to 16/21 as a consequence of the
direct effect.* The remaining change in the participation rate (from 16/21 to 1) is
thus the consequence of the indirect effect. Some individuals (those with thresholds
between 2/3 and 1) who initially chose not to participate have now changed their
behavior.

Alternatively, if we remove from the group those individuals with thresholds below
z = 1/2, we obtain

_Jo0 for x < 1/2
H(z) = { (10/7)x —5/7 for z > 1/2

which may be restated as
H(z) = max{0,(10/7)z —5/7}.

Plotting this generator function, we find that the participation rate will converge to
0 for any initial condition.

4To obtain this result in a different way, note that the non-participants removed from the group
constituted (1/8)th of the original group. Thus, the direct effect causes participation to rise from

(2/3)/1 to (2/3)/(7/8) = 16/21.
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>> hold on; ezplot(’max(0,(10/7)*x-5/7)’,[0,1,0,1]1); plot(0:1,0:1); hold off
>> % threshold curve

H(x) = max(0,(10/7) x-5/7)
T T T
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For this example, the direct effect of removing participants accounts for a drop in
equilibrium participation from 2/3 to H(2/3) = 5/21, while the remaining drop in
participation (from 5/21 to 0) results from the indirect effect.

12.5 Declining threshold curves

To this point, we have assumed that an increase in expected participation will never
decrease actual participation. But for some applications of threshold models — sup-
pose that individuals are deciding whether to attend a community festival or to eat
at a particular restaurant — overcrowding could potentially make participation less
attractive.’ To proceed formally, we now assume that each individual ¢ is character-
ized by both a lower threshold #(i) and an upper threshold (i), and will choose to
participate if and only if
(i) < = < 0(i)

where z is the expected participation rate. To interpret, if z < (i), then individ-
ual 7 is unwilling to participate because she expects that participation will be too
low. Conversely, if z > (i), then individual 7 is unwilling to participate because
she expects that participation will be too high. Essentially, our preceding analysis
incorporated only the lower threshold, implicitly setting 5(2) = oo for all .

Given that each individual has two thresholds, we will now need to keep track
of two distributions. As before, let f(x) and F(z) denote the pdf and cdf for the

5To quote Yogi Berra: “No one goes there anymore; it’s too crowded.” Of course, taken literally,
this claim makes no sense. But it does indicate that some individual are driven away by overly high
levels of participation.
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lower threshold . Further, let g(z) and G(z) denote the pdf and cdf for the upper
threshold . Because we assume 6(i) < 0(7) for all 7, this implies

F(z) > G(z) forall z.

Adopting statistical terminology, we say that the F' distribution is stochastically
dominated by the G distribution (or, equivalently, that G stochastically dominates
F). Continuing to assume adaptive expectations, the dynamics of the model are
determined by

1 = F(xy) — G(ay).

Intuitively, given the expected participation rate x;, F(z;) indicates the proportion
of the population above their lower threshold (who feel that expected participation
is high enough to warrant their own participation). However, to determine actual
participation, we must subtract G(x;), the proportion of the population above their
upper threshold (who have “dropped out” because of overcrowding).

To illustrate, suppose that the cdf for lower thresholds is given by

| 1/542x for x € [0,2/5]
F(z) = { 1 for z € [2/5, 1]

which can be restated as
F(z) = min{1/5+ 2z,1}.
Further suppose that the cdf for upper thresholds is given by

(o0 for x € [0,1/5]
G(z) = { —1/10+ (1/2)x for z € [1/5,1]

which can be restated as
G(z) = max{0,—1/10+ (1/2)z}.
Thus, we obtain

1/10 4+ 2z for x € [0,1/5]
F(x)—G(z) = ¢ 3/10+3/2x for x € [1/5,2/5]
11/10 — (1/2)x for x € [2/5,1]
or we may simply write

F(z) — G(z) = min{1/5+ 2x,1} — max{0,—1/10+ (1/2)x}.

Plotting this generator function, we find a unique fixed point.
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>> hold on; ezplot(’min(.2+2*x, 1) - max(0, -.1+.5%x)’,[0,1,0,1]); plot(0:1,0:1); hold off
>> % threshold curve

F(x) - G(x) = min(.2 + 2 x, 1) - max(0, -.1 + .5x)
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Noting that this fixed point lies in the interval [2/5, 1], some algebra yields

= F(z")—G(z")
z* = 11/10 — (1/2)z"
o = 22/30

This fixed point is stable because
|F'(22/30) — G'(22/30)] = |—1/2| < 1.

However, as indicated by the following time paths (which assume the initial condi-
tions xg = 0.2 and 2y = 0.4, the cobweb spirals inwards to this fixed point.

> x = .2; y=x; for t = 1:10; x = min(.2 + 2*x, 1) - max(0, -.1 + .5xx); y = [y; x]; end; y

y =
.2000
.6000
.8000
.7000
.7500
.7250
L7375
.7312
. 7344
.7328
.7336
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> x = .4; y=x; for t = 1:10; x = min(.2 + 2*x, 1) - max(0, -.1 + .5xx); y = [y; x]; end; y

.4000
.9000
.6500
L7750
.7125
. 7438
.7281
.7359
.7320
.7340
.7330
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12.6 Further reading

Schelling (Micromotives and Macrobehavior, 1978, Chap 3)
Granovetter (Am J Soc 1978)
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