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2 Social Mobility

The previous chapter introduced the topic of social mobility with a hypothetical
example. In this chapter, we’ll examine some actual data on social mobility, applying
Markov chain analysis and testing some of its assumptions. We’ll also consider the
mover-stayer model, developed to account for persistence within social classes not
well explained by simpler Markov chain models.

2.1 A cross-national comparison

Table 2.1 reports recent estimates of father-to-son mobility between income quintiles
within the United States and Sweden. For each matrix in this table, element (i, j)
thus indicates the probability that the son’s income falls within quintile j given that

Table 2.1 Intergenerational mobility between income quintiles

United States

Son’s income quintile
1 2 3 4 5

1 0.422 0.245 0.153 0.102 0.079
Father’s 2 0.194 0.283 0.208 0.174 0.140
income 3 0.194 0.186 0.256 0.202 0.162
quintile 4 0.125 0.182 0.198 0.252 0.243

5 0.095 0.122 0.189 0.234 0.360

Sweden

Son’s income quintile
1 2 3 4 5

1 0.258 0.243 0.215 0.176 0.109
Father’s 2 0.209 0.225 0.237 0.195 0.133
income 3 0.183 0.211 0.219 0.223 0.164
quintile 4 0.175 0.177 0.196 0.218 0.234

5 0.163 0.140 0.134 0.193 0.371

Source: Jäntti, et al (2006) “American Exceptionalism in a New Light: Comparison of Intergener-
ational Earnings Mobility in the Nordic countries, the United Kingdom, and the United States,”
IZA Discussion paper 1938.
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his father’s income fell within quintile i. Following the usual convention, social classes
are indexed so that class 1 is the bottom quintile (i.e., the 0 to 20th percentile) of the
income distribution, while class 5 is the top quintile (i.e., 80th to 100th percentile)
of the distribution.

Do these matrices indicate that social mobility is “high” or “low” in each country?
One possible benchmark is the case of “perfect mobility” in which the father’s class
has no effect on the son’s life chances. Because we’ve defined social classes as income
quintiles, this would require every son to have a 20% chance of each occupying
each class regardless of his father’s class. Another benchmark is “zero mobility”
which implies that no son ever leaves his father’s class. In this case, the transition
matrix would appear as an identity matrix (with 1’s along the main diagonal and 0’s
elsewhere). Comparing actual mobility to these extreme cases, it appears that social
mobility is closer to the perfect mobility case in both countries.

Nevertheless, comparison of the two matrices reveal some interesting differences.
Perhaps the most striking is intergenerational persistence in the lowest quintile (i.e,
the probability of transition from class 1 to class 1). In the US, given a father in the
lowest quintile, the son has a greater than 42% chance of remaining in that quintile.
In Sweden, the corresponding probability is less than 26%. While the differences are
less striking, very large “jumps” either upward (from class 1 to 5) or downward (from
class 5 to 1) also appear slightly more likely Sweden than in the US. On the other
hand, intergenerational persistence in the highest quintile (from class 5 to class 5) is
actually slightly higher in Sweden.

To facilitate cross-national comparisons, researchers have developed a variety of
mobility indices. Perhaps the simplest is the trace index of mobility, defined as

mT =
k − trace(P )

k − 1

where P is the transition matrix and k is the number of classes. Recalling that the
trace of a (square) matrix is the sum of its diagonal elements, note that zero mobility
would imply mT = 0 while perfect mobility would imply mT = 1. Social mobility
might also be measured by Bartholomew’s index, which may be defined in the present
context as

mB = (1/k)
∑

i

∑
j

P (i, j)|i− j|.

Thus, Bartholomew’s index weights transitions by the number of categories traversed.
Using Matlab to compute these indices, we find that Sweden scores higher than

the US on both measures of social mobility.

>> U; % mobility matrix for US (upper panel of Table 2.1)
>> S; % mobility matrix for Sweden (lower panel of Table 2.1)

>> (5-trace(U))/(5-1) % trace index for US
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ans = 0.8568

>> (5-trace(S))/(5-1) % trace index for Sweden

ans = 0.9273

>> % computing Bartholomew’s index of mobility

>> X = [0 1 2 3 4; 1 0 1 2 3; 2 1 0 1 2; 3 2 1 0 1; 4 3 2 1 0]

X =
0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

>> U.*X

ans =
0 0.2450 0.3040 0.3060 0.3160

0.1940 0 0.2090 0.3480 0.4200
0.3880 0.1860 0 0.2020 0.3240
0.3750 0.3640 0.1980 0 0.2430
0.3800 0.3660 0.3780 0.2340 0

>> (1/5)*sum(sum(U.*X)) % Bartholomew’s index for US

ans = 1.1960

>> (1/5)*sum(sum(S.*X)) % Bartholomew’s index for Sweden

ans = 1.3678

Researchers have proposed many other mobility indices, and there are many more
countries that might be compared. But these findings are consistent with other
recent comparisons of the US and Sweden.

To push our analysis further, we might suppose that intergenerational social
mobility is a Markov chain process, and examine how a father’s social class affects
the life chances of future descendents. But before jumping immediately to the matrix
computations, it is instructive to look more closely at the transition matrices in Table
2.1. By construction, each row of these matrices is a probability vector (allowing
for rounding error). Because the social classes are income quintiles – so that each
class necessarily contains 20% of the population – we might näıvely expect that the
columns of these tables must also be probability vectors.1 However, as you can

1Because 20% of fathers belong to each class, the proportion of sons in class j is equal to∑
i(0.2)P (i, j). If 20% of sons belong to each class, we obtain

∑
i(0.2)P (i, j) = 0.2 and hence the

requirement that
∑

i P (i, j) = 1.
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check, some of the column sums are a bit smaller or larger than 1. While this could
result partly from sampling variation (since the probabilities are estimates based on
samples of the population), it might also reflect a variety of population processes
(e.g., differential fertility or immigration) ignored in the simple Markov-chain model
developed in the last chapter. Thus, while there is some insight to be gained from
Markov chain analysis, we shouldn’t ignore these hints that real-world social mobility
processes may be more complicated.

To proceed, I have slightly modified the mobility matrices, rounding the entries
so that both the rows and the columns of each matrix are probability vectors. Es-
sentially, for analytical purposes, I have created two hypothetical social systems in
which social mobility follows a Markov chain process. The first has a “US-like”
mobility pattern while the second has a “Sweden-like” mobility pattern. Following
our analysis in Chapter 1, we may use matrix computations to determine how an
individual’s class will affect the life chances of his descendents for the next three
generations.

>> U % elements rounded so that both rows and COLUMNS are probability vectors

U =
0.4200 0.2400 0.1500 0.1100 0.0800
0.1900 0.2800 0.2100 0.1800 0.1400
0.1900 0.1800 0.2500 0.2100 0.1700
0.1100 0.1800 0.2000 0.2600 0.2500
0.0900 0.1200 0.1900 0.2400 0.3600

>> U^2

ans =
0.2698 0.2244 0.1881 0.1687 0.1490
0.2053 0.2110 0.2024 0.1958 0.1855
0.1999 0.1992 0.2031 0.2012 0.1966
0.1695 0.1896 0.2038 0.2141 0.2230
0.1555 0.1758 0.2026 0.2202 0.2459

>> U^3

ans =
0.2237 0.2097 0.1967 0.1892 0.1808
0.2030 0.2023 0.2001 0.1985 0.1961
0.2002 0.2001 0.2002 0.2000 0.1995
0.1896 0.1958 0.2014 0.2048 0.2086
0.1836 0.1922 0.2017 0.2076 0.2151

>> S % elements rounded so that both rows and COLUMNS are probability vectors

S =
0.2600 0.2400 0.2100 0.1800 0.1100
0.2100 0.2300 0.2400 0.1900 0.1300
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0.1900 0.2100 0.2200 0.2200 0.1600
0.1700 0.1800 0.2000 0.2200 0.2300
0.1700 0.1400 0.1300 0.1900 0.3700

>> S^2

ans =
0.2072 0.2095 0.2087 0.1991 0.1755
0.2029 0.2061 0.2070 0.2008 0.1832
0.1999 0.2021 0.2035 0.2013 0.1932
0.1965 0.1960 0.1968 0.2009 0.2098
0.1935 0.1863 0.1840 0.1979 0.2383

>> S^3

ans =
0.2012 0.2021 0.2023 0.2002 0.1941
0.2006 0.2014 0.2016 0.2002 0.1962
0.2001 0.2005 0.2006 0.2001 0.1986
0.1995 0.1991 0.1991 0.2000 0.2024
0.1985 0.1969 0.1964 0.1995 0.2086

Perhaps the most obvious result is that, in either system, there is little effect
of the initial father’s class after two or three generations. That is, both U t and St

converge rapidly to the “perfect mobility” matrix as t increases. Nevertheless, to
the extent that there are lingering effects of the father’s initial class, these effects
are most evident at the corners of these matrices. For instance, focusing on a father
initially in the lowest quintile, suppose that intergenerational mobility is governed by
the U matrix. His child has a 42% chance of occupying the lowest quintile, his grand-
childchild has a 27% chance of occupying the lowest quintile, and his greatgrandchild
has a 22% chance of occupying this quintile. Because social mobility is somewhat
higher given the S matrix, the corresponding percentages are 26% for children, 21%
for grandchildren, and 20% for greatgrandchildren. Thus, effects of lower class status
are completely “erased” within three generations in the “Sweden-like” system, but
linger slightly longer in the “US-like” system.

2.2 Social mobility over three generations

The preceding results assumed that intergenerational social mobility is a Markov
chain process. But we already have some cause to believe that real-world social
mobility processes are more complicated. To begin to test the assumptions implicit
in Markov models, it would be useful to have data on the social classes of not only
fathers and sons, but also previous (or subsequent) generations within these families.2

2As a practical matter, such data is sometimes obtained by asking survey respondents about
the social class of their fathers and grandfathers. Alternatively, respondents might be questioned
about the social class of their fathers and sons.
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Table 2.2 reports the data from a Canadian study of social mobility across multi-
ple generations. In this study, social classes were defined by the broad occupational
categories of white collar (1), blue collar (2), and farm (3). Because the top table
reports frequency counts, the sum of all elements (= 697) indicates the number of
respondents. In the bottom table, each row is normalized to be a probability vector,
so that we obtain the probability of the respondent’s class conditional on the class
of his father and paternal grandfather.

To test some of the assumptions of the Markov model, we first need to use this
data to construct three transition matrices: a grandfather-to-father matrix A, a
father-to-respondent matrix B, and a grandfather-to-respondent matrix C. While
this may be accomplished in Matlab in several different ways, I’ve included my
intermediate computations to show you one approach.

>> M % frequency counts from upper panel of Table 2.2
M =

67 11 0
19 19 1
3 2 6

45 18 1
55 80 2
5 8 1

37 18 3
56 47 4
54 89 46

>> % useful to reorganize data into a 3 x 3 x 3 array

>> N(1,:,:) = M(1:3,:); % first submatrix from M (grandfather’s class is 1)
>> N(2,:,:) = M(4:6,:); % second submatrix from M (grandfather’s class is 2)
>> N(3,:,:) = M(7:9,:); % third submatrix from M (grandfather’s class is 3)

>> % N(i,j,k) = number respondents with grandfather in i, father in j, self in k

> NA = sum(N,3) % grandfathers by fathers

NA =
78 39 11
64 137 14
58 107 189

>> A = diag(1 ./ sum(NA’)) * NA % normalize rows

A =
0.6094 0.3047 0.0859
0.2977 0.6372 0.0651
0.1638 0.3023 0.5339

>> NB = squeeze(sum(N,1)) % fathers by respondents
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Table 2.2 Occupational mobility over three generations

Frequency counts of paternal grandfather’s occupation and father’s occupation
by respondent’s occupation

Grandfather’s Father’s Respondent’s occupation
Occupation Occupation White collar Blue collar Farm

White collar White collar 67 11 0
White collar Blue collar 19 19 1
White collar Farm 3 2 6
Blue collar White collar 45 18 1
Blue collar Blue collar 55 80 2
Blue collar Farm 5 8 1

Farm White collar 37 18 3
Farm Blue collar 56 47 4
Farm Farm 54 89 46

Transition probabilities

Grandfather’s Father’s Respondent’s occupation
Occupation Occupation White collar Blue collar Farm

White collar White collar 0.8590 0.1410 0
White collar Blue collar 0.4872 0.4872 0.0256
White collar Farm 0.2727 0.1818 0.5455
Blue collar White collar 0.7031 0.2813 0.0156
Blue collar Blue collar 0.4015 0.5839 0.0146
Blue collar Farm 0.3571 0.5714 0.0714

Farm White collar 0.6379 0.3103 0.0517
Farm Blue collar 0.5234 0.4393 0.0374
Farm Farm 0.2857 0.4709 0.2434

Source: John C. Goyder and James E. Curtis (1977) “Occupational mobility in Canada over four
generations,” Canadian Review of Sociology and Anthropology 14(3):303-319. See Table IV, p 312.
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NB =
149 47 4
130 146 7
62 99 53

>> B = diag(1 ./ sum(NB’)) * NB % normalize rows

B =
0.7450 0.2350 0.0200
0.4594 0.5159 0.0247
0.2897 0.4626 0.2477

>> NC = squeeze(sum(N,2)) % grandfathers by respondents

NC =
89 32 7
105 106 4
147 154 53

>> C = diag(1 ./ sum(NC’)) * NC % normalize rows

C =
0.6953 0.2500 0.0547
0.4884 0.4930 0.0186
0.4153 0.4350 0.1497

One key assumption made in Markov-chain models is that the transition matrix
does not change over time. Having constructed the grandfather-to-father matrix A
and the father-to-son matrix B, the question is whether A = B. It is possible to
reject this hypothesis using a formal statistical test.3 But even casual inspection
reveals that these matrices are quite different. To faciliate comparison, let’s divide
every element of the B matrix by the corresponding element of the A matrix.

>> B ./ A

ans =
1.2226 0.7713 0.2327
1.5432 0.8096 0.3799
1.7683 1.5305 0.4639

The elements in the first column of this matrix are all greater than 1, indicating
that transitions into white collar jobs have become more likely over time, regardless
of the class of origin. Conversely, the elements in the second column are all smaller
than 1, indicating that transitions into farm jobs have become less likely over time,
regardless of class of origin.

3See Goodman (1962) for details.
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Perhaps these changes in the transition matrix could have easily been predicted
given some background knowledge of the dramatic shifts which occurred in the oc-
cupational structure over the 20th century. Indeed, using this data, we can see how
white-collar employment has risen over time while farm employment has fallen.

>> sum(NA’)/697 % occupational distribution for grandfathers

ans =
0.1836 0.3085 0.5079

>> sum(NB’)/697 % occupational distribution for fathers

ans =
0.2869 0.4060 0.3070

>> sum(NB)/697 % occupational distribution for respondents

ans =
0.4892 0.4189 0.0918

Such changes in the occupational structure complicate the analysis of social mobility.
While further discussion is beyond our present scope, sociologists often address this
issue by decomposing total mobility into two components: “structural” mobility due
to shifts in the occupational structure, and “exchange” mobility that would occur
within a fixed occupational structure.

Even if the transition matrix is changing over time, there are other assumptions
of the Markov chain model that might still be tested. In particular, do the transition
probabilities for respondents depend only on father’s class? Or, conditioning on the
father’s class, does the grandfather’s class have some influence on the life chances of
the respondent? A Markov chain model assumes no “history dependence” beyond
the father. If so, the probability that a grandfather in class i has a grandson in class
k is given by ∑

j

A(i, j)B(j, k)

and hence the “expected” grandfather-to-respondent transition matrix is AB. Com-
paring this expected matrix AB to the actual two-generation transition matrix C
computed above, we can thus assess history (in)dependence by examining whether
AB = C.

>> A*B % "expected" two-generation transition matrix

ans =
0.6188 0.3401 0.0410
0.5333 0.4288 0.0378
0.4156 0.4414 0.1430
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>> C ./ (A*B) % comparing "actual" to "expected"

ans =
1.1236 0.7350 1.3336
0.9157 1.1497 0.4916
0.9992 0.9855 1.0471

To facilitate comparison, I’ve divided each element of C by the corresponding element
of AB. It is intriguing to note that the elements of this matrix are greater than 1
along the main diagonal, indicating more persistence in the grandfather’s class than
would have been expected if social mobility was history independent.

Returning to Table 2.2, we could also test the history-independence assumption
more directly by comparing some of the rows in the second panel. Suppose that the
respondent’s father held a white-collar job. In the absence of history dependence,
the probability vectors given in row 1 (grandfather held white-collar job) and row
4 (grandfather held blue-collar job) and row 7 (grandfather held farm job) should
be similar. Similarly, we should see similarity between rows 2 and 5 and 8 (for
fathers in blue-collar jobs) and between rows 3 and 6 and 9 (for fathers in farm
jobs). While a formal statistical test might be somewhat less conclusive (given the
small numbers of respondents in some cells of Table 2.2), some skepticism about the
history-independence assumption seems warranted.

Especially given the changes in occupational structure, any attempt to impose
a Markov model on this data seems rather perilous. Nevertheless, for conceptual
purposes, it may still be useful to see how some degree of history-dependence can
be built into Markov chain processes through a clever respecification of the states
of the system. To illustrate, suppose that an individual’s social class is given by
s ∈ {W, B, F}. Further suppose that an individual’s transition probabilities depend
on both his father’s and grandfather’s class. The states of the Markov chain process
might now be specified as

S = {WW,WB, WF, BW, BB,BF, FW,FB, FF}

where each element ij ∈ S denotes the grandfather’s class i and the father’s class
j. In this way, history dependence is captured by moving from a 3-state model to a
9-state model. Indeed, we could use the data from Table 2.2 to specify the transition
matrix shown in Table 2.3. Given this specification of the Markov chain, the father’s
class in period t becomes the grandfather’s class in period t+1. Thus, as illustrated,
a transition from state ij to state j′k is possible only if j = j′.4

4To incorporate history dependence in a slightly different way, we might retain the simpler
specification of the set of states, S = {W,B,F}, but move from a “first-order” Markov chain
process to a “second-order” process which assumes that

prob(st = k | st−1 = j, st−2 = i) = P (i, j, k)

where P (i, j, k) is a parameter fixed for every triple (i, j, k). In contrast, by elaborating the set of
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Table 2.3 Transition matrix for 9-state Markov chain process

WW WB WF BW BB BF FW FB FF

WW 0.8590 0.1410 0 0 0 0 0 0 0
WB 0 0 0 0.4872 0.4872 0.0256 0 0 0
WF 0 0 0 0 0 0 0.2727 0.1818 0.5455
BW 0.7031 0.2813 0.0156 0 0 0 0 0 0
BB 0 0 0 0.4015 0.5839 0.0146 0 0 0
BF 0 0 0 0 0 0 0.3571 0.5714 0.0714
FW 0.6379 0.3103 0.0517 0 0 0 0 0 0
FB 0 0 0 0.5234 0.4393 0.0374 0 0 0
FF 0 0 0 0 0 0 0.2857 0.4709 0.2434

2.3 The mover-stayer model

Having focused so far on intergenerational mobility, we now turn to a classic study
of intragenerational mobility conducted by Blumen, Kogan, and McCarthy (1955).
This study examined the transitions of male workers between 11 classes of jobs.5

These workers were observed at quarterly (i.e., three-month) intervals over the course
of 8 quarters (i.e., two years). The top panel of Table 2.3 reports transition probabil-
ities after one quarter. Denoting this matrix as P , element P (i, j) is the probability
that a worker initially in state i occupied state j at the end of quarter 1. The bottom
panel reports transition probabilities after 8 quarters. Denoting this matrix as A,
element A(i, j) is the probability that a worker initially in state i occupied state j
at the end of quarter 8.

If intragenerational mobility is a Markov chain process (so that the quarterly
transition matrix P remains constant over time), mobility at the end of quarter t
can be determined by raising the P matrix to the power t. In particular, at the end
of 8 quarters, the “expected” transition matrix P 8 should be approximately equal to
the “actual” transition matrix A. Thus, a test of the Markov chain assumption is
given by the Matlab computations below. As in the preceding section, I have divided
each element of the “actual” matrix by the corresponding element of the “expected”
matrix to facilitate comparison.

states, we retain a first-order model which assumes that

prob(st = jk | st−1 = ij) = P (ij, jk)

where P (ij, jk) is a parameter fixed for every pair (ij, jk), and P (ij, j′k) = 0 if j 6= j′.
5For our present purposes, the precise definition of these classes (labeled A through U in Table

2.4) is not important. They correspond to the worker’s industry (rather than occupation or income)
and are not necessarily rankable.
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Table 2.4 Intragenerational Mobility

Transitions after one quarter

A B C D E F G H J K U
A 0.8260 0.0280 0.0180 0.0090 0.0090 0.0180 0.0180 0.0090 0 0 0.0640
B 0.0010 0.8240 0.0110 0.0060 0.0080 0.0080 0.0230 0.0040 0.0100 0.0030 0.1040
C 0 0.0130 0.8850 0.0040 0.0060 0.0060 0.0160 0.0010 0.0050 0 0.0630
D 0 0.0070 0.0030 0.9210 0.0070 0.0040 0.0160 0.0020 0.0020 0 0.0380
E 0 0.0060 0.0050 0.0030 0.9280 0.0040 0.0100 0.0020 0.0050 0.0010 0.0360
F 0 0.0140 0.0060 0.0020 0.0070 0.9010 0.0090 0.0010 0.0060 0.0010 0.0530
G 0 0.0120 0.0100 0.0050 0.0080 0.0040 0.8790 0.0020 0.0100 0.0010 0.0690
H 0.0010 0.0140 0.0020 0.0030 0.0080 0.0010 0.0110 0.8960 0.0090 0.0020 0.0540
J 0 0.0200 0.0090 0.0040 0.0120 0.0090 0.0370 0.0030 0.8220 0 0.0850
K 0 0.1210 0.0400 0.0240 0.0640 0.0320 0.0400 0 0.0080 0.4840 0.1860
U 0.0010 0.0470 0.0320 0.0090 0.0210 0.0150 0.0560 0.0080 0.0260 0.0030 0.7820

Transitions after eight quarters

A B C D E F G H J K U
A 0.5000 0.0750 0 0 0.0250 0.0250 0.1250 0 0 0 0.2500
B 0.0010 0.6490 0.0220 0.0060 0.0310 0.0210 0.0410 0.0060 0.0090 0.0030 0.2100
C 0.0010 0.0260 0.6810 0.0300 0.0200 0.0250 0.0430 0.0050 0.0090 0.0010 0.1590
D 0 0.0170 0.0130 0.7490 0.0150 0.0200 0.0640 0.0070 0.0100 0.0010 0.1030
E 0 0.0190 0.0260 0.0130 0.7490 0.0210 0.0400 0.0050 0.0090 0.0040 0.1130
F 0 0.0250 0.0090 0.0040 0.0230 0.7560 0.0290 0.0020 0.0070 0.0020 0.1430
G 0 0.0290 0.0300 0.0140 0.0290 0.0130 0.6930 0.0060 0.0280 0.0020 0.1560
H 0 0.0280 0.0070 0 0.0140 0.0020 0.0420 0.7450 0.0350 0 0.1260
J 0.0010 0.0300 0.0230 0.0160 0.0500 0.0180 0.0690 0.0070 0.5730 0 0.2140
K 0 0.1430 0.1040 0.1170 0.1560 0.1690 0.0130 0.0130 0.1170 0.0130 0.1560
U 0.0020 0.0900 0.0630 0.0240 0.0470 0.0330 0.1420 0.0260 0.0430 0.0040 0.5260

Source: Isadore Blumen, Marvin Kogan, and Philip J. McCarthy (1955) The Industrial Mobility of
Labor as a Probability Process, Cornell University Press. See p 60 and p 63.
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>> P; % observed transitions after one quarter (top panel of Table 2.4)

>> A: % observed transitions after eight quarters (bottom panel of Table 2.4)

>> P^8 % expected transitions after eight quarters

ans =

0.2179 0.1083 0.0873 0.0445 0.0629 0.0742 0.1177 0.0362 0.0303 0.0022 0.2148

0.0033 0.2775 0.0778 0.0374 0.0665 0.0497 0.1448 0.0240 0.0554 0.0041 0.2689

0.0010 0.0790 0.4117 0.0290 0.0526 0.0407 0.1140 0.0130 0.0392 0.0019 0.2132

0.0007 0.0535 0.0366 0.5274 0.0521 0.0300 0.1028 0.0148 0.0250 0.0014 0.1563

0.0006 0.0505 0.0435 0.0229 0.5700 0.0301 0.0810 0.0146 0.0333 0.0025 0.1514

0.0009 0.0800 0.0530 0.0206 0.0555 0.4521 0.0883 0.0123 0.0400 0.0027 0.1953

0.0010 0.0791 0.0694 0.0331 0.0617 0.0350 0.4252 0.0169 0.0522 0.0028 0.2243

0.0037 0.0813 0.0402 0.0251 0.0606 0.0226 0.0969 0.4244 0.0486 0.0037 0.1992

0.0012 0.0973 0.0692 0.0304 0.0754 0.0502 0.1712 0.0205 0.2426 0.0024 0.2448

0.0019 0.1509 0.1018 0.0556 0.1330 0.0712 0.1535 0.0185 0.0524 0.0062 0.2551

0.0026 0.1237 0.1058 0.0409 0.0904 0.0585 0.1847 0.0287 0.0699 0.0034 0.2927

>> A ./ P^8 % ratio of actual to expected

ans =

2.2948 0.6924 0 0 0.3974 0.3371 1.0618 0 0 0 1.1639

0.3037 2.3391 0.2828 0.1606 0.4658 0.4228 0.2832 0.2499 0.1624 0.7282 0.7810

1.0295 0.3291 1.6540 1.0351 0.3801 0.6141 0.3772 0.3834 0.2296 0.5378 0.7457

0 0.3176 0.3556 1.4202 0.2877 0.6674 0.6228 0.4744 0.3999 0.7338 0.6591

0 0.3760 0.5978 0.5675 1.3141 0.6975 0.4938 0.3426 0.2702 1.6275 0.7466

0 0.3126 0.1697 0.1946 0.4146 1.6722 0.3286 0.1626 0.1748 0.7395 0.7321

0 0.3668 0.4325 0.4234 0.4696 0.3716 1.6296 0.3555 0.5367 0.7261 0.6954

0 0.3446 0.1740 0 0.2309 0.0887 0.4335 1.7555 0.7199 0 0.6324

0.8165 0.3083 0.3325 0.5263 0.6632 0.3584 0.4031 0.3416 2.3620 0 0.8740

0 0.9476 1.0213 2.1045 1.1728 2.3731 0.0847 0.7045 2.2328 2.0953 0.6115

0.7548 0.7275 0.5956 0.5862 0.5201 0.5642 0.7687 0.9071 0.6151 1.1732 1.7970

>> diag(ans)’

ans =

2.2948 2.3391 1.6540 1.4202 1.3141 1.6722 1.6296 1.7555 2.3620 2.0953 1.7970

Although it may be difficult to quickly make sense of these results (given the size of
the matrices), the key observation is that the elements along the main diagonal of
this last matrix are all greater than 1 (while most of the off-diagonal elements are
less than 1). Thus, there is more persistence within job classes (and less movement
between job classes) than would be expected if mobility was a Markov chain process.
(Recall that we saw a similar result in the last section with regard to intergenerational
mobility.)

What sort of process could be generating these results? Blumer, Kogan, and
McCarthy hypothesized that the population contains two different types of workers:
“movers” whose transitions between job classes follow a simple Markov chain process,
and “stayers” who never transition between classes. Intuitively, the stayers will “add
weight” to the main diagonal of the transition matrix, and could thus account for
the discrepancy between actual and expected outcomes.
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To formalize this “mover-stayer” model, let

s(i) =
number of stayers in class i in period 0

number of individuals in class i in period 0

and hence

1− s(i) =
number of movers in class i in period 0

number of individuals in class i in period 0
.

Let M denote the movers’ transition matrix. Finally, let At denote the transition ma-
trix for the combined population of movers and stayers after t periods have elapsed.
Thus, At(i, j) is the probability that an individual in class i in period 0 will occupy
class j in period t. Given this notation, the top panel of Table 2.4 becomes A1 while
the bottom panel becomes A8.

Given these assumptions, we can now determine the elements of the At matrix.
Intuitively, for individuals initially in class i, proportion s(i) are stayers who will
never leave class i, and proportion 1 − s(i) are movers who will occupy class i in
period t with probability M t(i, i). Thus,

At(i, i) = s(i) + (1− s(i))M t(i, i).

Because transitions between classes are made only by movers, we obtain

At(i, j) = (1− s(i))M t(i, j) for all j 6= i.

To adopt more elegant matrix notation, let

S =


s(1) 0 . . . 0
0 s(2) . . . 0
...

...
. . .

...
0 0 . . . s(n)

 .

The mover-stayer model can then be summarized by the equation

At = S + (I − S)M t

where I is the identity matrix.
To illustrate, consider a simple three-class example. If we näıvely supposed that

mobility follows a simple three-state Markov chain process, we would expect A8 to
be equal to (A1)

8. But as shown, the A8 matrix displays higher persistence within
classes.

>> S % proportion of stayers in each occupation in period 0

S =
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0.1000 0 0
0 0.2000 0
0 0 0.3000

>> M % transition matrix for movers

M =
0.7500 0.2000 0.0500
0.3000 0.5000 0.2000
0.1000 0.2000 0.7000

>> I = eye(3);

>> A1 = S + (I-S)*M

A1 =
0.7750 0.1800 0.0450
0.2400 0.6000 0.1600
0.0700 0.1400 0.7900

>> A8 = S + (I-S)*(M^8)

A8 =
0.5152 0.2571 0.2277
0.3581 0.4286 0.2133
0.3006 0.2000 0.4994

>> A1^8 % a naive prediction

ans =
0.4348 0.2933 0.2719
0.4066 0.2906 0.3029
0.3608 0.2825 0.3567

>> A8 ./ (A1^8) % ratio of actual to expected

ans =
1.1849 0.8768 0.8373
0.8808 1.4751 0.7042
0.8333 0.7079 1.4000

Given that it was originally developed as an alternative, it may be surprising to
learn that the mover-stayer model can itself be formulated as a Markov chain process.
Assuming n classes, this process has 2n states, which might be arranged as

1S, 2S, . . ., nS, 1M, 2M, . . ., nM

where iS denotes a stayer in class i, and iM denotes a mover in class i. The 2n× 2n
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transition matrix may be written as

P =

[
I 0
0 M

]
where I denotes an n × n identity matrix, 0 denotes an n × n matrix of zeros, and
M is the n × n transition matrix for movers. Thus, for our 3-class example, the
transition matrix is given by

>> P = [eye(3) zeros(3); zeros(3) M] % mover-stayer transition matrix

P =
1.0000 0 0 0 0 0

0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 0.7500 0.2000 0.0500
0 0 0 0.3000 0.5000 0.2000
0 0 0 0.1000 0.2000 0.7000

Unlike other examples we have encountered so far, the limiting distribution for
this Markov chain process does depend on the initial condition. To illustrate, consider
the limiting distribution for two different initial distributions of workers across states.

>> x = [1/3 1/3 1/3]*[S, I-S] % one initial distribution

x =
0.0333 0.0667 0.1000 0.3000 0.2667 0.2333

>> x*P^100 % limiting distribution

ans =
0.0333 0.0667 0.1000 0.3592 0.2286 0.2122

>> x = [1/4 1/4 1/2]*[S, I-S] % a different initial distribution

x =
0.0250 0.0500 0.1500 0.2250 0.2000 0.3500

>> x*P^100 % limiting distribution

ans =
0.0250 0.0500 0.1500 0.3480 0.2214 0.2056

According to the Theorem stated in Chapter 1, primitivity of the transition ma-
trix implies that a Markov chain process reaches a unique limiting distribution re-
gardless of the initial condition. Thus, from our computations, we know that the
transition matrix P must not be primitive. In fact, it is easy to see that

P t =

[
I 0
0 M t

]
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and hence some elements of this matrix will be 0 for all t. For our present example, the
primitivity of M ensures that every row of M t converges to its limiting distribution,
but this not true for every row of the full P matrix.

>> P^100 % long-run outcome

ans =
1.0000 0 0 0 0 0

0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 0.4490 0.2857 0.2653
0 0 0 0.4490 0.2857 0.2653
0 0 0 0.4490 0.2857 0.2653

The mover-stayer model is the first example we have encountered of a Markov
chain process with absorbing states. We will study this important class of Markov
chain models in Chapter 4.

2.4 Further reading

Sociologists have long been interested in intergenerational social mobility. The books
by Blau and Duncan (1967) and Featherman and Hauser (1978) are classics. Recent
surveys include Breen and Jonsson (Ann Rev Soc 2005), and Beller and Hout (The
Future of Children 2006). See Boudon (1973) for review and development of matrix
methods for mobility research.

While sociologists usually define social classes based on occupation, economists
tend to define classes by income. See Solon (J Econ Persp 2002) for a survey of
economic research on income mobility. Jäntti et al (2006) compare mobility across 6
countries using 4 different mobility indices. For a recent attempt to bridge economic
and sociological approaches to social mobility, see the volume edited by Morgan,
Grusky, and Fields (2006).

My analysis of mobility over three generations draws on Hodge (Demography
1966) and also Goodman’s (AJS 1962) discussion of statistical tests of Markov chain
assumptions. While Hodge (1966) and Goyder and Curtis (1977) find evidence of
history dependence beyond the father’s generation, a recent study by Warren and
Hauser (ASR 1997) reaches the opposite conclusion.

The mover-stayer model was originally developed by Blumen, et al (1955). My
presentation draws heavily on Leik and Meeker (1975, Chap 9). See also Bradley
and Meeks (1986, Chap 7).
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