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5 Evolution of Social Conventions

On Saturday mornings in Madison, many people buy produce at the farmers’ market
on the Capitol square. Given the placement of farm stands on the sidewalk around
the square, it is difficult for pedestrian traffic to move in both directions. Thus,
over the years, Madisonians have adopted the social convention of walking coun-
terclockwise around the square. This “rule” seems somewhat arbitrary. Why not
walk clockwise? However, it is obviously helpful to have some rule to coordinate
pedestrians. Further, now that the convention has become established, it is largely
self-enforcing (since walking clockwise would be difficult).

Once you begin looking for them, social conventions seem ubiquitous. To give
another example, consider the meaning of words within a language. I'm currently
sitting on an object called a “chair.” Again, this “rule” seems arbitrary. Why not use
the word “elephant” in place of “chair”? (We might then reserve the word “chair”
for those large gray animals with floppy ears.) Nevertheless, coordination of human
activity is facilitated by the adoption of some convention which ultimately becomes
self-enforcing. We'll consider some further examples below.

Economists view social conventions as the outcome of a coordination game. How-
ever, as discussed in the next section, standard game-theoretic analysis merely pre-
dicts coordination on some outcome (e.g., clockwise or counterclockwise) without
addressing the process by which the convention emerges. Recent work in evolu-
tionary game theory attempts to fill this gap. Section 5.2 sketches an evolutionary
approach to social conventions developed by Young (1998). This approach leads to
the Markov chain model considered in section 5.3. This chain can be either absorbing
or regular, depending whether individuals sometimes make “mistakes.” In section
5.4, we’ll then address a more complicated example using simulation methods.

5.1 Coordination games

Everyone drives on the right-hand side of the road in some countries (e.g., the US),
while everyone drives on the left-hand side in other countries (e.g., the UK). Ob-
viously, these social conventions became entrenched long ago (and were eventually
reenforced by law).! But consider a simple two-person society that has not yet
developed a convention. Adopting a game-theoretic perspective, each individual
(“player”) can choose L or R. If the players coordinate (both choosing R or both
choosing L), then they obtain good outcomes (say 1 point each). But if the players
fail to coordinate (making different choices), then they obtain bad outcomes (say 0

1See Young (1998) for a brief history of driving conventions.



points each). This simple game — economists would call it a coordination game — is
summarized by the payoff matrix below.?

L R
L 1,1 0,0
R 0,0 1,1

Our choice of payoff levels was somewhat arbitrary. In particular, we could multiply
all payoffs by a positive constant (or add a constant to all payoffs) without altering the
game in any essential way. Nevertheless, this payoff structure does reflect both the
incentives of the individuals to coordinate on some convention and their indifference
over which convention is adopted.

To try to predict the outcome of this game, we might first consider the standard
game-theoretic analysis. The first step is to determine each player’s best response to
each action that could be taken by the opponent. To begin, consider the row player.
If her opponent chooses L, then she can either obtain 1 point by choosing L or else
obtain 0 points by choosing R. Thus, L is her best response to L. Similarly, if her
opponent chooses R, then she can obtain 0 points by choosing L or else obtain 1
point by choosing R. Thus, R is her best response to R. The column player’s best
responses could be determined in a similar fashion. The second step is to identify
any Nash equilibria — any pair of actions such that (i) the row player’s action is a
best response to the column player’s action and (ii) the column player’s action is a
best response to the row player’s action. For our coordination game, we find that
both (L,L) and (R,R) are Nash equilibria.?

On one hand, this game-theoretic analysis is appealing because it clearly captures
the “self-enforcing” aspect of social conventions. Viewing a convention as a Nash
equilibrium of a coordination game, individuals clearly have no incentive to deviate
unilaterally from the convention (by definition of Nash equilibrium). On the other
hand, standard game-theoretic analysis offers no specification of the process by which
players reach a Nash equilibrium. Relatedly, given the existence of multiple Nash
equilibria, it offers no clear prediction about which equilibrium is reached.

2Some further explanation of the payoff matrix may be helpful for readers unfamiliar with game
theory. For each choice ¢ that could be made by the row player (player 1) and each choice j that
could be made by the column player (player 2), cell (4, j) of the payoff matrix reports the pair of
payoffs (u1,us) received by the players. Note that this indexing of the row and column players is
itself a social convention within game theory. Of course, given the symmetry of the payoff matrix
in the present example, the precise indexing of the players is irrelevant here.

3We will see in Chapter xx that there is also a third mized-strategy Nash equilibrium. But this
is irrelevant for our present purposes.



5.2 An evolutionary approach

Recent work in evolutionary game theory attempts to address these issues. We’ll
focus here on the approach developed by Young (1998).% Tt begins by assuming a
sequence of coordination games that continues indefinitely. In any period t, two
players are drawn randomly from a large population of potential players. These
players do not know the entire history of actions taken in the past, but merely know
what happened in some recent periods. More precisely, given the “social memory”
composed of the actions taken in the past m periods (i.e., periods t —m through t—1),
each player draws a random sample of s periods (hence 2s actions) from the social
memory. Each player then determines her best response based upon her sample. Let
p denote the proportion of Rs in the sample. Intuitively, R is a best response when
p > 1/2, Lis a best response when p < 1/2, and both actions are best responses when
p = 1/2.5 Most of the time, each player simply chooses her best response. However,
to capture the possibility that players sometimes make “mistakes,” we assume that
each player randomizes over available actions with probability e (where € is small).
After actions are chosen by the players, the social memory is updated (so that it
now contains the actions taken in periods t — m + 1 through t), two new players are
drawn for period t + 1, and the process continues.

From even this cursory description of the process, we can already foresee its long-
run dynamics. If the social memory initially contains enough Ls and Rs, each player
could potentially draw a sample containing more Ls than Rs (so that L is the best
response) or more Rs than Ls (so that R is the best response) or perhaps equal
numbers of Lss and Rs (so that both are best responses). But eventually, due simply
to “random drift” induced by sampling variation, the social memory will become
weighted more heavily toward one of the actions. If the number of Rs falls below
s, then L is the best response for any sample that could possibly be drawn. In the
absence of mistakes (i.e., ¢ = 0), the number of Rs would continue to fall until the
social memory holds no Rs. Conversely, if the number of Rs rises above 2m — s, then
R is the best response for any sample. In the absence of mistakes, the number of Rs
would continue to rise until the social memory holds all Rs. Thus, if mistakes never
occur, the society eventually adopts a social convention from which it never departs.

In contrast, if mistakes are possible (i.e., € > 0), social conventions are no longer
permanent. Even if the social memory currently contains no Rs, one could be added
if a player makes a mistake. Assuming s large and e small, L remains the best
response for any possible sample, and an isolated mistake will likely fade from the

“Young’s approach might be labeled “stochastic” for reasons that will soon become apparent.
In Chapter xx, we’ll discuss an alternative “deterministic” approach to evolutionary game theory.

5More formally, best responses are determined by comparing the expected values of the actions.
For the present game, the expected value of playing Lis EV(L) =1x (1—p)4+0xp=1—p, while
the expected value of playing R is EV(R) =1 xp+ 0 x (1 —p) = p. R is a best response when
EV(R) > EV(L) which implies p > 1/2. Conversely, L is a best response when EV (L) > EV(R)
which implies p < 1/2.



social memory (after m periods elapse). However, given a sufficiently long sequence of
mistakes, the number of Rs in the social memory could rise to s. Once this happens,
R becomes a best response for some samples, and (due to random drift) the number
of Rs in the social memory may continue to rise even if there are no further mistakes.
Potentially, the number of Rs may rise beyond m — 2s so that L is no longer a best
response. Of course, given large s and small ¢, it may take a long time before a
sequence of mistakes pushes the system away from one convention toward another.
But in finite stochastic processes (where sampling variation matters), anything that
is possible will happen eventually.

Before turning to the formalization, let me emphasize three implications of this
approach. First, the model predicts “local conformity” within societies. In most
periods, the social memory is predominated by a single action which is the unique
best response to all possible samples. Consequently, any mistakes are likely to fade
quickly from the social memory. Second, the model predicts “global diversity” across
societies. Even if two societies start from the same initial condition (i.e., the same
initial configuration of the social memory), they may eventually adopt different con-
ventions (as illustrated by the US and UK). Third, the model predicts “punctuated
equilibrium.” Within a society, a shift from one convention to another occurs only
rarely. But given a long enough time horizon, a series of mistakes will eventually
push the society toward an alternative convention.

5.3 A Markov chain model

Young’s model can be formalized as a Markov chain process. However, the states
of the process are more complicated than you might initially anticipate: each state
corresponds to a configuration of the social memory. For each period within the social
memory, the number of Rs is either 0 or 1 or 2, so there are 3 possible outcomes.
Given m periods in the social memory, the process thus has 3™ states. Because the
number of states rises rapidly in m, specification of a transition matrix is impractical
unless m is very small. Setting m = 2, we obtain the 9 states listed below.”

00, 01, 02, 10, 11, 12, 20, 21, 22

States are indexed so that, if the process is in state ij in period ¢, the social memory
contains i Rs for period ¢t — 2 and j Rs for period t — 1. (Recall that we used a similar
indexing scheme in Chapter 2 when we allowed the respondent’s social mobility to
depend upon both his grandfather’s and father’s social class.) Consequently, for state
ij, the proportion of Rs in the social memory is equal to (i + 7)/4.

SFor our present purposes, there is no need record which player (row or column) took which
action (L or R). Otherwise, there would be 4 possible outcomes: (L,L), (L,R), (R,L) and (R,R).

"Obviously, our choice of m is greatly limited by tractibility considerations. In the next section,
we consider another example using a more flexible simulation method which permits choice of any
m and any s < m.



Having enumerated the states of the process, we can now consider the transition
probabilities. To simplify our task, we’ll set s = m = 2 so that each player’s “sample”
is the entire social memory. Best response(s) are thus completely determined by the
proportion of Rs in the social memory of the current state ij, so that p = (i + j)/4.
Each player chooses her best response with probability 1 — ¢, and randomizes over
actions otherwise (choosing L with probability €/2 and R with probability €/2). Thus,
for states 00 or 01 or 10 in which p < 1/2, each player chooses L with probability
1 —€/2, and R with probability €/2. Conversely, for states 12 or 21 or 22 in which
p > 1/2, each player chooses L with probability €/2, and R with probability 1 — e/2.
Finally, for states 02 or 11 or 20 in which p = 1/2, we assume that each player
chooses L with probability 1/2, and R with probability 1/2. Further assuming that
any randomization is independent across players, and recognizing that a chain in state
17 must transition to some state jk, we thus obtain the transition matrix below.

00 01 02 10 11 12 20 21 22
00 (1-9)2 251 -5 (5)? 0 0 0 0 0 0

01 0 0 0 (1-5?% 205)A-5 (5 0 0 0

02 0 0 0 0 0 0 1/4 1/2 1/4
10 1-%)72% 2(5)(1-%5) (57 0 0 0 0 0 0

11 0 0 0 1/4 1/2 1/4 0 0 0
12 0 0 0 0 0 0 (52 2050-5 Q-9
20 1/4 1/2 1/4 0 0 0 0 0 0
21 0 0 0 (52 25)0-5 (1-5> 0 0 0

22 0 0 0 0 0 0 (52 2050-5 Q-9

5.3.1 Case 1: absorbing chain

We can see from this matrix that, if mistakes never occur (e = 0), states 00 and
22 are absorbing. From the transition diagram below, it is also apparent that the
process can transition (perhaps in multiple steps) from every non-absorbing state to
one (or both) of the absorbing states. Thus, the chain itself is absorbing.
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To facilitate numerical experiments, I've written a Matlab function m-file placed

in Appendix 5.6.1. Given the input € = 0, this function generates a transition matrix
which matches the diagram above. Raising this matrix to a very high power, we find

the long-run probability distribution for each initial state.

>> help convention

function P = convention(e)

based on Peyton Smith’s evolutionary analyses of conventions (JEP 1998)

assumes coordination game with actions (L,R) and payoffs [(1,1),(0,0); (0,0),(1,1)];

and size of social memory (m)

= size of individual’s sample (s) = 2

thus, state space is (00, 01, 02, 10, 11, 12, 20, 21, 22)
where state ij indicates that R was chosen i times in period t-2,
and R was chosen j times in period t-1

output P is the probability transition matrix

input e is the probability that each individual randomizes over actions

(instead of playing best response)

>> P = convention(0)
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0 0 0 0 0 0 0 0

>> P~10000 % long-run outcome for each initial state
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Obviously, the process is ultimately absorbed in either state 00 or 22. From some
initial conditions, the eventual outcome is predetermined. For instance, if the process
begins in state 01, it is eventually absorbed in state 00 with probability 1. For other
initial conditions, either social convention is possible. For instance, if the process
begins in state 02, there is a 20% chance it will eventually be absorbed in state 00
and an 80% chance it will be absorbed in state 22. From the transition diagram, it
is also clear that the expected time to absorption is low.®

5.3.2 Case 2: regular chain

Let’s now consider the more interesting case where mistakes are possible (i.e., € > 0).
In this case, the transition matrix P is primitive, and thus every row of P! will
converge to the limiting distribution as ¢ becomes large. To illustrate, we’ll suppose
that players randomize 10% of the time (so that e = 0.1).

>> P = convention(.1) % players sometimes randomize (epsilon = 0.1)

P =
0.9025 0.0950 0.0025 0 0 0 0 0

0 0 0 0.9025 0.0950 0.0025 0 0

0 0 0 0 0 0 0.2500 0.5000

0.9025 0.0950 0.0025 0 0 0 0 0

0 0 0 0.2500 0.5000 0.2500 0 0

0 0 0 0 0 0 0.0025 0.0950

0.2500 0.5000 0.2500 0 0 0 0 0

0 0 0 0.0025 0.0950 0.9025 0 0

0 0 0 0 0 0 0.0025 0.0950

>> P71000 % long-run outcome

8Because we have not specified the transition matrix in canonical form, the @ matrix is given
by rows and columns 2 through 8 of the P matrix. Once you've obtained the ) matrix, it is
straightforward to compute the fundamental matrix and expected time to absorption. I’ll leave this
as an exercise for the reader.
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0.4039 0.0432 0.0015 0.0432 0.0164 0.0432 0.0015 0.0432
0.4039 0.0432 0.0015 0.0432 0.0164 0.0432 0.0015 0.0432
0.4039 0.0432 0.0015 0.0432 0.0164 0.0432 0.0015 0.0432
0.4039 0.0432 0.0015 0.0432 0.0164 0.0432 0.0015 0.0432
0.4039 0.0432 0.0015 0.0432 0.0164 0.0432 0.0015 0.0432
0.4039 0.0432 0.0015 0.0432 0.0164 0.0432 0.0015 0.0432
0.4039 0.0432 0.0015 0.0432 0.0164 0.0432 0.0015 0.0432
0.4039 0.0432 0.0015 0.0432 0.0164 0.0432 0.0015 0.0432
0.4039 0.0432 0.0015 0.0432 0.0164 0.0432 0.0015 0.0432

In the long run, the chain thus spends 40.39% of its time in state 00, another 40.39%
of its time in state 22, and the remaining time distributed across the other states.

The existence of a limiting distribution might initially seem difficult to reconcile
with our earlier discussion of “punctuated equilibrium.” But upon reflection, there
is no contradiction. Recall from Chapter 1 that we can adopt both “micro” and
“macro” perspectives on Markov chain processes. In the context of social mobility,
the micro perspective focused on the history of a single family line (a single chain),
while the macro perspective focused on a large population of family lines (many
independent chains). From the macro perspective, the limiting distribution can be
interpreted as the proportion of family lines occupying each social class in the long
run. But while there is stability at the population level, any particular family line
will continue perpetually to move between classes in the manner dictated by the
transition matrix.

Returning now to the social convention model, it is crucial to recognize that we
have implicitly adopted a “micro” perspective by focusing on the history of single
society (a single chain). Thus, “punctuated equilibrium” is a description of the
pattern of transitions that would be observed within a single chain. At least in
principle, we could also adopt a “macro” perspective by assuming a large number of
societies (many independent chains). Given our computations above, we might then
interpret the limiting distribution as the proportion of societies in each state, with
40.39% of societies in state 00, another 40.39% of societies in state 22, and so on.
This is the formal basis for our claim that the model generates “global diversity”
across societies. On the other hand, because the actual number of societies is small
(at least relative to the number of individuals within societies), it seems specious to
assume a “large population” of societies. Thus, the “macro” perspective seems less
relevent for the present application.

To illustrate the (micro-level) dynamics of the model, we can use the markovchain
m-file function (— from Chapter 1 —). Given the transition matrix above (with ¢ =
0.1), we can generate a chain of length 1000, reflecting the history of our hypothetical
society for 1000 periods. We can then compute the number of Rs in the social memory
in each period, and plot the result.

>> ¢ = markovchain(P,1000,1);
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>> y = zeros(1,1000); y(c==2|c==4) = 1; y(c==3|c==5|c==7) = 2; y(c==6|c==8) = 3; y(c==9) = 4;

>> plot(y) % proportion of Rs in social memory in each period
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For this example, mistakes are not especially rare, occuring 5% of the time (since €/2
= 0.05). Nevertheless, we still observe “local conformity.” In almost every period, the
social memory is predominated by a single action (with at least 3 out of 4 actions the
same). At the same time, we also observe “punctuated equilibrium.” Occasionally,
pairs of mistakes enter the social memory, and this sometimes (though not always)
causes the society to “jump” to the alternative convention.

5.3.3 Stochastic stability

Let’s now return to our concerns with standard game-theoretic analysis stated at
the end of section 9.1. The evolutionary approach clearly addresses one concern,
providing a specification of the process by which societies reach (and sometimes de-
part from) social conventions. Perhaps we have also implicitly addressed the concern
about multiple equilibria. In the evolutionary approach, “accidents of history” play
an important role in determining which convention develops. Thus, when confronted
with multiple Nash equilibria, we might simply say that no precise prediction is
possible without some knowledge of past play. In a phrase: “history matters.”

Still, the evolutionary approach offers another way to address the problem of
equilibrium selection. Consider how the limiting distribution would change as the
probability of randomization becomes very small. Intuitively, because mistakes be-
come extremely rare, the process would spend very close to 0% of its time in most



states. But any states which retain a positive probability in the limiting distribution
might be regarded as especially “stable.” More formally, given the limiting distri-
bution x (which depends implicitly on €), we say that state i is stochastically stable
when x(i) remains positive (bounded away from 0) as € — 0.

To illustrate, let’s set € very small (say 0.0001). For this parameter value, the
rows of the P! matrix do not converge to the limiting distribution by period ¢ = 106,
but do converge by period ¢t = 10'2.

>> P = convention(.0001) % have chosen epsilon very small

P =
0.9999 0.0001 0.0000 0 0 0 0 0 0

0 0 0 0.9999 0.0001 0.0000 0 0 0

0 0 0 0 0 0 0.2500 0.5000 0.2500

0.9999 0.0001 0.0000 0 0 0 0 0 0

0 0 0 0.2500 0.5000 0.2500 0 0 0

0 0 0 0 0 0 0.0000 0.0001 0.9999

0.2500 0.5000 0.2500 0 0 0 0 0 0

0 0 0 0.0000 0.0001 0.9999 0 0 0

0 0 0 0 0 0 0.0000 0.0001 0.9999

>> P~1000000 % after a million periods

0.9929 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0069
0.9928 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0070
0.2041 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.7957
0.9929 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0069
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999
0.0069 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.9929
0.7957 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.2041
0.0070 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.9928
0.0069 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.9929
>> ans~1000000 % after a million million periods
ans =
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999
0.4999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4999

For this example, we thus find that both states 00 and 22 are stochastically stable.
However, in other coordination games where players would prefer to coordinate on
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one outcome rather than another, only the most preferred (“Pareto dominant”) Nash
equilibrium is stochastically stable. (—This claim will be explored further in Exercise
5.x.—)

5.4 Bargaining

Beyond the simple left-right coordination game, other sorts of social conventions
might also be addressed by the evolutionary approach. In particular, consider a
negotiation between a seller and a buyer. The seller has an incentive to “hold out”
for a high price, while the buyer might similarly hold out for a low price. However, if
neither side is willing to compromise, the negotiation may break down entirely, with
both sides losing potential gains from trade. Perhaps for this reason, many societies
develop social conventions about “fair” bargaining outcomes.

This situation is captured (in an admittedly stylized way) by the following two-
player game. To interpret this game, suppose the players are attempting to divide a
“pie” worth 100 points. Each player can request a “low” share of the pie (25 points)
or a “medium” share (50 points) or a “high” share (75 points). If the requests are
compatible — if the sum of the requests does not exceed the size of the pie — then
each player receives the amount requested. Otherwise, both players receive nothing.”

buyer

L M H

L | 2525 25,50 25,75

seller M 50,25 50,50 0,0

H 75,25 0,0 0,0

Standard game-theoretic analysis yields three Nash equilibria — (H,L), (M,M), and
(L,H) — and hence three potential social conventions. Sellers receive most of the gains
from trade in the first convention, while buyers receive most of the gains from trade
in the third. In the second convention, gains from trade are split equally between
the seller and buyer.

9We could modify the payoff structure so that nothing is “left over” if the players reach agree-
ment. But our present specification of this game (called the Nash bargaining game) is standard in
economics.
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To specify the process by which some convention is reached, and perhaps say
more about which convention is reached, we again adopt the evolutionary approach.
In contrast to our previous example, we now assume two populations of players. In
each period, the current seller is drawn randomly from a large population of potential
sellers. After she draws a sample from the social memory, this seller uses actions of
past buyers to determine her best response. Similarly, the current buyer is drawn
randomly from a large population of potential buyers, and uses actions of past sellers
to determine her best response. This two-population assumption is necessary to give
either of the asymmetric conventions (H,L) or (L,H) a chance to evolve. However,
it further increases the number of states of the chain. Because there are now 9
possible outcomes within each period, there are 9™ states of the chain. In place of
the analytic strategy taken in the preceding section (setting m small and constructing
a transition matrix), we will thus proceed via simulation analysis. Although this has
some drawbacks (e.g., we can no longer compute the precise limiting distribution),
it also has some obvious benefits (e.g., we are now free to set any m and any s < m
without worrying about tractibility).

Simulation analysis of the model can undertaken using the following Matlab func-
tion m-file.

>> help bargaining

function [C,M] = bargaining(m,s,e,T,M)
bargaining between sellers and buyers (Nash bargaining game)
based on Young, JEP, 1998
input m = length of social memory
s = sample size (where s <= m)
= probability that players randomize (instead of choosing best response)
length of chain
initial social memory
if M = [] then initial social memory is generated randomly
output C is one realization of Markov chain (2xT matrix)
C(1,t) gives action taken by player 1 (seller) in period t
C(2,t) gives action taken by player 2 (buyer) in period t
actions are indexed so that low (L) is 1, medium (M) is 2, high (H) is 3
M is the final social memory (2xm matrix)

e
T
M

Readers interested in the details of the program are encouraged to study the code
placed in the Appendix 5.6.2. But to proceed here, you need simply to understand
the inputs and outputs of this function. In particular, note that the output C' is a
2 x T matrix reporting the entire history of play (including the initial social memory).
For convenience, the actions of players are denoted by numerical index rather than
alphabetical label (so that L is 1, M is 2, and H is 3). To illustrate, consider the two
trials below.

>> C = bargaining(5,3,.1,15,[ 1) %m=5, s =3, epsilon = .1, T = 15, initial social memory random

C =
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Given the input parameters, the first 5 periods reflect the initial (randomly chosen)
social memory, while the next 10 periods report the actions taken by the seller (top
row) and buyer (bottom row) in each period.

5.4.1 Case 1: absorbing chain

Following our analytical strategy from the preceding section, we’ll first explore the
case where players never make mistakes (i.e., ¢ = 0). Although we have not attempted
to specify a transition matrix (nor drawn the associated transition diagram), it is
apparent that the chain is absorbing. The three absorbing states correspond to the
three Nash equilibria discussed above (although each absorbing state is an entire
configuration of the social memory rather than a pair of actions). Thus, any chain
will eventually be absorbed into one of those 3 states.

To see which social convention is more likely to emerge, we can run many trials
(many independent chains) and then compute the proportion of chains reaching each
absorbing state. The chains need to be long enough that every chain is absorbed by
the final period. Given the large number of initial conditions (there are 9° = 59,049
states), we will not choose a particular initial state, but instead randomly draw a
new initial state for each trial.!® Note my use of the Matlab unique command to
verify that every chain was absorbed, and to count the number of chains absorbed
in each state.

>> [C,M] = bargaining(5,3,0,100,[ 1); % single trial with T = 100
>> M Y final social memory for this trial

M =

>> reshape(M,1,10) % reshape memory as a 1 x 10 vector

ans =
1 3 1 3 1 3 1 3 1 3

>> % now run 1000 trials, save final state of each chain as a row of the X matrix

10T undertake a more thorough analysis, we could conduct a grid search over initial conditions,
obtaining a probability distribution over absorbing states for each initial condition.
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>> X = []; for i = 1:1000; [C,M] = bargaining(5,3,0,100,[]); X = [X; reshape(M,1,10)]; end

>> [a,b,c] = unique(X,’rows’); a % unique rows of X matrix

a=
1 3 1 3 1 3 1 3 1 3
2 2 2 2 2 2
3 1 3 1 3 1 3 1 3 1

>> % thus, all 1000 trials have reached one of the 3 absorbing states
>> sum([c==1 ¢==2 ¢==3])/1000 % probability distribution over absorbing states

ans =
0.1920 0.6350 0.1730

We thus find that 63.50% of chains were absorbed in the state where the players
choose (M,M). Of course, we might run even more trials to obtain a more precise
estimate, and we have not considered the effect of the parameters m, s, and e on
this distribution. Nevertheless, this result does begin to suggest that the social
convention in which both parties choose M is more likely to emerge than the other
two conventions.

5.4.2 Case 2: regular chain

We now consider the case where mistakes are possible (i.e., € > 0). Because the
chain is now regular, we know there is a unique limiting distribution across states.
However, given the number of states, it becomes impractical even to estimate this
limiting distribution. Nevertheless, simulation analysis can provide some insight into
this case. To start, we can again illustrate the concept of punctuated equilibrium by
looking at the sequence of play within one trial (with m = 5,s = 3, and € = 0.1). To
illustrate, I've plotted the seller’s actions in the upper panel and the buyer’s actions
in the lower panel.

>> C = bargaining(5,3,.1,500,[1); % one trial with T = 500 periods

>> plot(C(1,:)) % seller’s actions (L is 1, M is 2, H is 3)
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seller's action
M

. . . . . . . . .
o 50 100 150 200 250 300 350 400 450 500
period

>> plot(C(2,:)) % buyer’s actions (L is 1, M is 2, H is 3)

buyer's action
M
—

. . . . . . . . .
50 100 150 200 250 300 350 400 450 500
period

o

For this particular trial (with the initial condition chosen randomly), we see that
the actions initially “hover around” the Nash equilibrium (H,L) for most of the first
200 periods, but then hover around the Nash equilibrium (M,M) for most of the
remaining periods.

Obviously, we should not place much weight on the outcome of any single trial.
To get a better sense of the long-run dynamics of the system, we can again run many
trials (many independent chains). Focusing on the last period of each trial, we can
then estimate the probability distribution over the possible pairs of actions.!! Some
(unreported) preliminary analysis indicates that the chains need to be quite long in
order to achieve independence from initial conditions.!? For the trials below, each
chain is thus 7" = 1000 periods long.

>> C = bargaining(5,3,.1,1000,[]); C(:,end)’ % final pair of actions for one trial

I Again, given the number of states, it is impractical to estimate the probability distribution over
the (59,049) states of the chain, and we instead focus simply on the probability distribution over
the (9) pairs of actions.

12Simulation analysts refer more colloquially to the “burn-in time” necessary for observed chains
to reflect long-run dynamics.
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>> % now conduct 1000 trials, save last pair of actions as a row of the X matrix
>> X = []; for i = 1:1000; C = bargaining(5,3,.1,1000,[]1); X = [X; C(:,end)’]; end
>> [a,b,c] = unique(X,’rows’); a % unique rows of the X matrix

a =

W W WNDNNNE =
WNEFE, WNEFE, WN -

>> sum([c==1 c==2 c==3 c==4 c==5 c==6 c==7 c==8 ¢==9])/1000 I, prob distn over pairs of actions

ans =
0.0040 0.0410 0.0470 0.0340 0.7630 0.0340 0.0380 0.0290 0.0100

Thus, we find that 76.30% of trials ended with the pair of actions (M,M), while very
few trials ended with players choosing the other Nash equilibria (H,L) or (L,H). This
preliminary analysis is far from exhaustive. A more complete analysis might involve
many more trials, consider the effect of the parameters m and s and €, and also
include a grid search over initial conditions. Nevertheless, our results again suggest
that the “fair” bargaining convention is more likely to emerge than either of the
asymmetric conventions.

5.4.3 Further analysis of best responses

Some further analysis helps explain our simulation results. Given the player’s sam-
ple of the social memory, let p denote the proportion of Hs, and let ¢ denote the
proportion of Ls. The proportion of Ms is thus 1 —p— ¢. The expected value of each
action is given below.

EV(L) = ¢gx25+(1—=p—q)x25+px25 = 25

EVIM) = gx50+(1—p—¢q)x50+px0 = 50(1 —p)

EVH) = ¢gxmB4+(1—-p—q)x0+px0 = 75q

Consequently, M is a better response than L. when

EV(M) > EV(L) which implies p < 1/2,

16



H is a better response than L. when
EV(H) > EV(L) which implies ¢ < 1/3,
and H is a better response than M when
EV(H) > EV(M) which implies ¢ > (2/3)(1 — p).

The best response for each sample can thus be summarized by the following
diagram, called a simplexr. On this diagram, any sample that might be drawn from
the social memory is associated with some point {p, ¢}, and the best response for
each region is indicated by the large letters.

all Ls
(a=1)

EV(M) = EV(L)

EV(H) = EV(L)

all Ms all Hs
(p=q=0) =1

It is apparent that the M region is larger than the other regions, indicating that
M is a best response for a larger range of samples. In particular, M is the best
response for “well-mixed” samples (p = ¢ = 1/3) corresponding to the large dot in
the center of the simplex. Thus, in the absence of mistakes, the (M,M) convention
emerges for a larger range of initial conditions.

Graphically, each vertex of the simplex corresponds to one of the (mistake-free)
conventions. For instance, if the society was in the (M,M) convention, all actions
in the social memory would be Ms, and thus every sample would contain all Ms.
Thus, the distance from one vertex (say the all-M vertex) to the other regions of the
simplex (the L and H regions) reflects the number of mistakes that would need to
enter the social memory in order for a new convention to emerge. From the simplex
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diagram, we see that the distance from the all-M vertex to the other regions is greater
than the distance from the other vertices to the relevant regions.!> Consequently,
the (M,M) convention is more robust to mistakes.

5.5 Further reading

This chapter draws heavily on Young (J Econ Persp 1998). That paper provides
another review of the evolutionary approach, along with further references to rele-
vant economics literature. Gintis (Game Theory Evolving, Ch 10) provides a similar
treatment of the Markov chain model in section 5.3.

If you're ever in Madison, you should visit the Dane Country Farmers’ Market.
See www.dcfm.org for more information. But please respect our local convention.

5.6 Appendix

5.6.1 convention m-file

function P = convention(e)

% function P = convention(e)

% based on Peyton Smith’s evolutionary analyses of conventions (JEP 1998)
% assumes coordination game with actions (L,R) and payoffs [(1,1),(0,0); (0,0),(1,1)];
% and size of social memory (m) = size of individual’s sample (s) = 2

% thus, state space is (00, 01, 02, 10, 11, 12, 20, 21, 22)

%  where state ij indicates that R was chosen i times in period t-2,

% and R was chosen j times in period t-1

% output P is the probability transition matrix

% input e is the probability that each individual randomizes over actions
%  (instead of playing best response)

a = (1-e/2)°2;

b = 2x(e/2)*x(1-e/2);

c = (e/2)°2;

P = [a b c 0 0 0 0 0 0;
0 0 0 a b c 0 0 0;
0 0 0 0 0 0 .26 .5 .25;
a b c 0 0 0 0 0 0;
0 0 0O .26 .5 .25 O 0 0;
0 0 0 0 0 0 [ b a;
.25 .56 .25 0 0 0 0 0 0;
0 0 0 c b a 0 0 0;
0 0 0 0 0 0 c b al;

13In particular, the distance from the all-M vertex to the L region is 1/2, the distance from the
all-L vertex to the H region is 1/3, and the distance from the all-H vertex to the M region is 1/3.
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5.6.2 bargaining m-file

function [C,M] = bargaining(m,s,e,T,M)

% function [C,M] = bargaining(m,s,e,T,M)

% bargaining between sellers and buyers (Nash bargaining game)
% based on Young, JEP, 1998

% input m = length of social memory

% s = sample size (where s <= m)

% e = probability that players randomize (instead of choosing best response)
% T = length of chain

yA M = initial social memory

% if M = [] then initial social memory is generated randomly

% output C is one realization of Markov chain (2xT matrix)

% C(1,t) gives action taken by player 1 (seller) in period t

% C(2,t) gives action taken by player 2 (buyer) in period t

% actions are indexed so that low (L) is 1, medium (M) is 2, high (H) is 3
% M is the final social memory (2xm matrix)

V = [25 25 25; 50 50 0; 75 0 0]; % payoff matrix for Nash bargaining game

if isempty (M)
M = ceil(rand(2,m)*3);

C=MNM; % chain starts with social memory
for t = 1:T-m

% determine seller’s action

r = randperm(m); S = M(2, r(1:s)); % draw seller’s sample

p = [sum(S==1) sum(S==2) sum(S==3)]’/s; % probabilities of buyers’ actions from sample
br = (V¥p == max(V*p)); br = br/sum(br); % seller’s best response

q = (1-e)*br + exones(3,1)/3; % seller’s probabilities over actions

al = sum(cumsum(q) < rand) + 1; % seller’s action

% determine buyer’s action

r = randperm(m); S = M(1, r(1:s)); % draw buyer’s sample

p = [sum(S==1) sum(S==2) sum(S==3)]’/s; % probabilities of sellers’ actions from sample
br = (V¥p == max(V*p)); br = br/sum(br); % buyer’s best response

q = (1-e)*br + e*ones(3,1)/3; % buyer’s probabilities over actions

a2 = sum(cumsum(q) < rand) + 1; % buyer’s action

% update chain and social memory

Cc = [C, [al;a2]];
M(:,1) = [1; M = [M, [al;a2]];

end
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