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Sociology 376  Exam 1  Spring 2009  Prof Montgomery 
 
Answer all questions.  220 points possible. 
 
[HINT: Somewhere on this exam, it may be useful to know that   
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1) [70 points]  Consider a one-sex model of intergenerational social mobility.  Each 
individual has either high income (H) or low income (L), and the individual’s income 
depends probabilistically on his parent’s income and potentially his grandparent’s 
income.  (Note that, because this is a one-sex model, each individual has only one 
grandparent.)  To be more precise, if your father was an H, then, regardless of your 
grandfather’s income, you become an H with probability p (and thus become an L with 
probability 1-p).  If your father was an L and your grandfather was an H, you become an 
H with probability q (and thus become an L with probability 1-q).  If your father was an 
L and your grandfather was an L, you become an H with probability r (and thus become 
an L with probability 1-r). 
 
a) This intergenerational social mobility process can be specified as a Markov chain 
process.  Give the possible states of the Markov chain, and then give the transition 
matrix.  [HINT: Is it possible to “lump” any states together?] 
 
b) Suppose that the probabilities p, q, and r are all strictly greater than 0 and strictly less 
than 1 (i.e., 0 < p, q, r < 1).  Use high-school algebra (i.e. solve a system of simultaneous 
equations) to find the limiting (long-run) probability distribution over states.  [HINT: 
Your answers will be functions of the parameters p, q, and r.  These equations do not 
simplify very well, so don’t waste a lot of time attempting to simplify.]   
 
c) Did the limiting distribution in part (b) depend on the initial probability distribution 
over states?  What property of the transition matrix guarantees this result?  Draw the 
zero-pattern transition diagram (under the assumption that  p, q, and r are positive).  
Briefly explain how, simply from this diagram (without any matrix computation), you 
can tell that the transition matrix satisfies the relevant property.   
 
d) Now suppose that r = 0 while p and q remain strictly greater than 0 and strictly less 
than 1.  In the long-run, what proportion of the population are H’s?  Use the zero-pattern 
of the transition matrix to determine the communication classes of this Markov chain, and 
then draw the reduced transition diagram on the set of communication classes.  Briefly 
discuss how  the long-run outcome is revealed by the reduced graph. 
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2) [65 pts]  Every morning, two dormitory students pass each other in the hallway.  Each 
student chooses whether or not to say “hello” to the other student based upon their 
interaction the previous day.  If student 2 said hello yesterday, then student 1 says hello 
today with probability 4/5.  Similarly, if student 1 said hello yesterday, then student 2 
says hello today with probability 4/5.  [Assume that these probabilities are independent.  
Thus, if both said hello yesterday, the probability that both say hello today is (4/5)2.]   If 
student 2 did not say hello yesterday, then student 1 will not say hello today (i.e., says 
hello with probability 0).  Similarly, if student 1 did not say hello yesterday, then student 
2 will not say hello today. 
 
a) Conceptualizing this process as a Markov chain, list the possible states of the chain, 
and then give the transition matrix.  Which state(s) are absorbing?   [HINT: If you ignore 
the identities of the students, the chain has three possible states.  If you get stuck on the 
transition matrix, it might be helpful to draw probability trees.]     
   
b) Assuming that both students initially say hello to each other, use the transition matrix 
to compute the expected number of days that the chain will spend in each non-absorbing 
state before absorption.  What is the total expected number of days before absorption? 
 
c) Suppose now that student 1 is somewhat friendlier than student 2.  In particular, 
suppose that, if student 2 said hello yesterday, then student 1 says hello today with 
probability 9/10.  In contrast, if student 1 said hello yesterday, then student 2 says hello 
today with probability 6/10.  (As before, these probabilities are independent, and each  
student would not say hello today if the other did not say hello yesterday.)   
 Given these new assumptions, list the possible states of the chain, and give the 
transition matrix.  [HINT: Can you now ignore the identities of students?]  Then draw the 
zero-pattern transition diagram.  Identify the communication classes of the Markov chain, 
then draw the reduced transition diagram. Based on this reduced diagram, what can you 
say about the long-run outcome of this process? 
 
 
3) [25 pts]  Consider the two-player game below. 
 

 L                  M                      R 
2,2 4,3 6,4 T 

B 5,3 8,1 2,2 
 
 
a) Find the Nash equilibrium (or Nash equilibria) of this game.  Is M ever a best response 
for the column player? 
 
b) What are some potential problems with the standard game-theoretic analysis, and how 
are these problems addressed by Young’s evolutionary approach?  In particular, how 
might Young’s approach address the issue of multiple equilibria?  Would this approach 
make a clear prediction for the game above?
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4) [30 points]  Consider a population with the following Leslie matrix (using 20-year age 
categories) and initial population (in millions): 
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a) Compute the probability of survival (from birth) to each age category.  Then compute 
life expectancy (from birth). 
 
b) Project this population forward for the next two periods, giving the number of people 
in each age category and the total population size in each period. 
 
c) In the long run, will population size be growing or shrinking or constant?  Explain how 
you can determine this directly from the Leslie matrix (without population projection).  
Be sure to give the relevant computation. 
 
 
5) [30 points]  Consider a social process with dynamics given by 
 
 xt  =  x0 (RP)t 
 
where xt is a frequency distribution at time t, x0 is the initial distribution at time 0,  
 

 R = 



















0.1000

02.100

003.10

0001.1

 and P = 



















91.06.03.0

03.91.05.01.

01.03.92.04.

02.03.05.90.

 

 
a) Will this process reach a “stable-growth” equilibrium for any initial condition x0?  
How do you know? 
 
b) Use the Matlab handout (next page) to determine the  

i) long-run growth rate   
ii) limiting (long-run) probability distribution x  
 

 [HINT: Not all of the computations are relevant.] 
 
c) Restate the dynamics of the process to show how these dynamics depend on 
eigenvectors and eigenvalues of the relevant matrix.  [HINT:  You don’t need to solve 
numerically for anything. I’m merely looking for an equation linking xt to the initial 
condition.] 
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Matlab computations for problem 5 
 
>> R 
 
R = 
    1.1000         0         0         0 
         0    1.3000         0         0 
         0         0    1.2000         0 
         0         0         0    1.0000 
 
>> P 
 
P = 
    0.9000    0.0500    0.0300    0.0200 
    0.0400    0.9200    0.0300    0.0100 
    0.0100    0.0500    0.9100    0.0300 
         0    0.0300    0.0600    0.9100 
 
>> [a,b] = eig(P') 
 
a = 
    0.3288    0.7024    0.7796   -0.4819 
    0.6818    0.2425   -0.3669    0.6244 
    0.5607   -0.5000   -0.5000   -0.5000 
    0.3357   -0.4448    0.0873    0.3575 
 
b = 
    1.0000         0         0         0 
         0    0.9067         0         0 
         0         0    0.8748         0 
         0         0         0    0.8585 
 
>> sum(a) 
 
ans = 
    1.9070   -0.0000   -0.0000    0.0000 
 
>> [c,d] = eig((R*P)') 
 
c = 
   -0.2113    0.0674    0.9367    0.1303 
   -0.9130   -0.0484   -0.1773    0.4245 
   -0.3377   -0.2983   -0.2739   -0.8850 
   -0.0885    0.9509    0.1267   -0.1398 
 
d = 
    1.2338         0         0         0 
         0    0.8996         0         0 
         0         0    0.9767         0 
         0         0         0    1.0779 
 
>> sum(c) 
 
ans = 
   -1.5505    0.6716    0.6122   -0.4700 
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Soc 376 Exam 1 Spring 2009  Solutions 
 
1a) [15 pts]  This process could be specified as a Markov chain with four states {HH, LH, 
HL, LL} where the first H or L gives grandfather’s income and the second H or L gives  
father’s income.  However, because rows HH and LH of the transition matrix will be the 
same (because grandfather’s income doesn’t affect transition probabilities if father was 
an H), you really need only three states {xH, HL, LL}.  For the 3-state model (with xH as 
state 1, HL as state 2, LL as state 3), the transition matrix is given by 
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

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b) [20 pts]  The long-run equilibrium is determined by the condition x = xP, which yields 
the 3-equation system 
 

(1) x(1)  =  x(1) p + x(2) q + x(3) r 
 (2) x(2)  =  x(1)(1-p) 
 (3) x(3)  =  x(2)(1-q) + x(3)(1-r) 
 
Using any two of these equations along with the requirement that x is a probability vector  
 
 (4)  x(1) + x(2) + x(3) = 1,  
 
we obtain the limiting (long-run) distribution over states.  For instance, using equations 
(2) and (3), we obtain 
 

 x(3)  =  x(2)(1-q)/r  =  x(1)(1-p)(1-q)/r 
 
Substitution into equation (4) yields 
 
  x(1) + x(1)(1-p) + x(1)(1-p)(1-q)/r  =  1 
 
and hence the limiting distribution is 
 
    x(1)  =  1/[1 + 1-p + (1-p)(1-q)/r]  =  r/[r(2-p) + (1-p)(1-q)] 
 
  x(2)  =  x(1)(1-p)  =  r(1-p)/[r(2-p) + (1-p)(1-q)] 
 
  x(3) = x(1)(1-p)(1-q)/r  =  (1-p)(1-q)/[r(2-p) + (1-p)(1-q)] 
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c) [15 pts]  The limiting probability distribution does not depend on the initial state 
because the transition matrix P is primitive.  The zero-pattern transition diagram is 
 
 
  xH  HL 
 
 
   
    LL 
 
 
 
From this diagram, we see that every state can reach (directly or indirectly) every other 
state.  Thus, the matrix is irreducible.  Further, because the diagram has loops (cycles of 
length 1), the matrix is primitive. 
 
d)  [20 pts]  Given r = 0, equation (3) implies that x(2) = 0.  Hence, equation (2) implies 
that x(1) = 0.  And because x is a probability vector, we obtain x(3) = 1.  Thus, in the 
long-run everyone is an L.  Intuitively, given r = 0, the transition matrix is no longer 
regular, and state LL is now absorbing.  More formally, to determine communication 
classes of the Markov chain, let Z denote the zero-pattern of the transition matrix.  Given 
r = 0, the zero-pattern is given by  
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and hence the can-reach-and-be-reached-by matrix  R & R  =  




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. 

 
The equivalence classes of the can-reach-and-be-reached-by relation are the 
communication classes of the Markov chain.  Thus, there are two communication classes: 
{xH, HL} and {LL}.  The reduced graph is   
 
 
  {xH, HL}  {LL} 
 
 
Intuitively, once a family line enters state LL, it can never leave this state.  In the long 
run, every family line will be in state LL. 
 



 3

2a) [18 pts]  The three states are: neither said hello (0), one said hello (1), or two said 
hello (2).  Given that each student says hello with probability p = .8 (and that the 
probabilities are independent), the transition matrix is given by 
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
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State 0 (neither said hello) is absorbing. 
 
b) [17 pts]  The submatrix from non-absorbing to non-absorbing states is given by 
 

 Q = 







64.32.

08.
 so that  I-Q = 
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Using the hint at the beginning of the exam, the fundamental matrix is thus 
 

 N = (I-Q)-1 = 







77.244.4

05
 

 
Thus, starting from state 2, we would expect to spend 4.44 days in state 1 and 2.77 days 
in state 2.  Overall, we would expect to spend 7.22 days before absorption into state 0. 
 
c) [30 pts]  Given that each student could either not say hello (N) or say hello (H), there 
are now 4 states: (N,N), (N,H), (H,N), (H,H).  Given that student 1 says hello with 
probability p = .9 and student 2 says hello with probability q = .6, the transition matrix is 
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(H,H)  (N,H)  (H,H)  {(N,H), (H,N)} 
 
 
 
 (H,N)  (N,N)    (N,N) 
 
 
Thus, the long-run outcome is the same as before: the chain is eventually absorbed in 
state (N,N). 
 



 4

3a) [10 pts]  There are 2 (pure-strategy) Nash equilibria:  (T,R) and (B,L).  The action M 
is never a best response for the column player.   
 
b) [15 pts]  Standard game-theoretic analysis does not specify the process by which 
players reach Nash equilibrium.  Relatedly, when there are multiple Nash equilibria, it 
does not indicate which equilibrium is more likely to occur.   
 To explain how players reach equilibrium, Young specifies a Markov chain 
process.  Given no randomization ( = 0), the chain is absorbing, and the absorbing states 
correspond to the Nash equilibria.  (Note, however, that the states of the chain are 
configurations of the social memory, not merely pairs of actions.) 
 Implicitly, Young addresses multiple equilibria by focusing on “accidents of 
history” (i.e., mistakes in the social memory).  More explicitly, he addresses multiple 
equilibria using the concept of stochastic stability.  If randomization does sometimes 
occur ( > 0), the chain is regular.  Thus, as t becomes large, the probability distribution 
xt will converge to the limiting distribution x (which depends implicitly on ).  State i is 
stochastically stable when x(i) remains positive as  becomes very small.   
 For coordination games in which one of the Nash equilibria is preferred by both 
players, there is a unique stochastically stable state.  The game in part (a) satisfies this 
condition because players would prefer to coordinate on (T,R) rather than (B,L).  Thus, 
the evolutionary approach would predict (T,R).  (In its current form, the game in part (a) 
may not look like a coordination game.  But because M is never a best response for the 
row player, it essentially “reduces” to the 2×2 coordination game with actions {T,B} for 
the row player and {L,R} for the column player.)    
  

4a) [10 pts]    survival probability vector = 





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and thus life expectancy (from birth) is 1 + .8 + .72 + .432 = 2.952 ( 20 years) 
 

b) [10 pts]  n1 = 


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

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


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,  pop1 = sum(n1) = 87.5,   pop2 = sum(n2) = 81.5 

 
c) [10 pts]  Population size will be constant because NRR = (.2)(1) + (1)(.8) = 1. 
 
5a) [6 pts]  Yes, it will reach a stable-growth equilibrium because P is primitive. 
 
b) [18 pts]   = 1.2338, v = [.1363  .5888  .2178  .0571]  (= normalized eigenvector) 
 
c) [6 pts]  xt = VLtc  where V is matrix of eigenvectors of (RP), L is diagonal matrix of 
eigenvalues of (RP), and initial condition x0 = Vc where c is a vector of constants. 
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Soc 376 Spring 2009   Final Exam  Prof Montgomery 
 
Answer all questions.  220 points possible. 
 
1) [50 pts]  Suppose that you are managing a fishery.  When undisturbed by humans, the 
fish population grows according to the logistic growth model,  
 
 ΔP  =  r P (1 – P/K) 
 
where P is the size of the fish population, ΔP is the change in population size per period, r 
is the intrinsic growth rate, and K is the carrying capacity of the environment.  Of course, 
to make a profit, the fishery must harvest some of the fish.  Thus, the dynamics of the fish 
population is given by  
 
 ΔP  =  r P (1 – P/K) – H 
 
where H denotes the number of fish harvested each period. 
 
a) Restate the dynamics in the form Pt+1 = f(Pt) where f is the generator function. 
 
b) Using a cobweb diagram, discuss how the equilibria (and the stability of these 
equilibria) change as H is increased from 0 to higher values.   [NOTE: You merely need 
to give a qualitative discussion and graphical analysis.  Analytical solutions are possible 
(using the formula for roots of a quadratic equation) but ugly.  Make sure that your graph 
is well-labeled and qualitatively correct.] 
 
c) Again using a diagram, illustrate the case where H is set at the highest sustainable 
level.  What concern might you (in your role as fishery manager) have with setting H at 
this level?  Briefly discuss. 
 
d) In the absence of harvesting, it is possible that the fish population has no stable fixed 
point.  In this case, can imposing harvesting lead to stability?  Briefly discuss, again using 
a cobweb diagram. 
 
e) Suppose the model had been specified in continuous time, so that 
 
 dP/dt   =   r P (1 – P/K) – H 
 
Assuming parameter values (r, K, H) so that this equation has two fixed points P*, is it 
possible for both fixed points to be unstable?  Briefly discuss the graphical analysis of the 
continuous-time model, using a phase diagram.   
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2) [60 points]  Each individual in a large community can choose either to recycle or not 
recycle.  Suppose that individual i’s utility for recycling is given by 
 
 UR(i)   =  v(i) + 6x2 

 
where x denotes the proportion of the community that is expected to recycle.  For all 
individuals, the utility of not recycling is given by 
 
 UNR  =  2. 
 
The value v(i) differs across individuals.  Specifically, assume that v is distributed 
uniformly between –3 and 3.  The probability density function for v is thus 
 
 f(v)  =  1/6    if –3  v  3 
  0       otherwise 
 
a) Given that proportion x of the community is expected to recycle, find the critical value 
v* at which someone would be indifferent between recycling and not recycling.  [HINT: 
v* is a function of x.  Individuals with v > v*(x) will strictly prefer to recycle, while those 
with v < v*(x) will strictly prefer not to recycle.] 
 
b) Given the probability density function f(v), what is the associated cumulative 
distribution function F(v)?  [HINT: Make sure your answer is correct for v < –3 or v > 3 
as well as v  [–3,3].]  
 
c) Suppose that people have adaptive expectations, so that actual participation in period t 
(= xt) becomes expected participation in period t+1.  Write the equation (generator 
function) that determines the dynamics of participation.  Use your answers to parts (a) 
and (b) to simplify your answer as much as possible.  [HINT: Make sure your answer is 
correct for all xt between 0 and 1.] 
 
d) Plot the generator function from part (c).  On your diagram, indicate the fixed point(s) 
and the stability (or instability) of each fixed point.  [HINT: Your graph doesn’t need to 
be perfect, but should be well-labeled and qualitatively correct.] 
 
e) Solve numerically for each fixed point.  [HINT: Recall that the zeros of the function  
ax2 + bx + c  are given by  x = [–b  sqrt(b2 – 4ac)]/2a.] 
 
f) Formally assess stability at each fixed point.  [HINT: You’ve already assessed stability 
informally in part (d) based on your plot of the generator function.  But here I’m looking 
for the precise (numerical) test.  You can use calculus or the non-calculus approach.] 
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3) [110 pts]  Consider a society in which each individual is assigned to one of three racial 
classes: white (W), mulatto (M), or black (B).  Further suppose that the population 
distribution in generation t is given by 
 
 xt  =  [Wt   1–Wt–Bt    Bt] 
 
where  Wt                   = proportion of the population that is white in generation t 
            1–Wt–Bt   = proportion of the population that is mulatto in generation t 
 Bt       = proportion of the population that is black in generation t 
 
Following our lectures on two-sex models, suppose that population dynamics are 
determined by the equation 
 
 xt+1  =  xt Nt R P 
 
where Nt is the matching matrix in generation t, R is the reproduction matrix, and P is the 
intergenerational transition matrix.  To simplify, we’ll assume random matching so that 
 
 
 Nt =  
 
 
 
where the rows of this matrix correspond to the 3 types of individuals (W, M, B) and the 
columns of this matrix correspond to the 9 types of couples, listed as 
 
 WW, WM, WB, MW, MM, MB, BW, BM, BB 
 
where the first element is the female’s class and the second element is the male’s class.  
To further simplify, we will ignore differential reproduction, so that R is the 99 identity 
matrix.  Finally, we’ll assume that intergenerational transitions occur according to  
 
 
 
 
  
 

P =  
 
 
 
 
 

 
where the rows correspond to the 9 types of couples (listed in the order given above) and 
the columns correspond to the 3 types of individuals (W, M, B).   
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







dc

ba

3a) Give the NtP matrix for generation t.  Then give the xtNtP vector. 
 
b) Using your answer to part (a), write the two-equation system in the form 
 
 Wt+1 =  f(Wt, Bt) 
 Bt+1  =  g(Wt, Bt) 
 
Briefly explain why don’t we need a third equation for mulattos. 
 
c) Solve for the nullcline(s) for W and the nullcline(s) for B.  Then plot these nullclines 
on a two-dimensional phase diagram.  [NOTE: Make sure your graph is properly labeled.  
You’ll use this diagram again for parts (d) and (e) and (i), so please make it large and 
legible.] 
 
d) For this model, the (relevant part of the) phase diagram is a “simplex.”  Indicate this 
simplex on your phase diagram.  Is the simplex the unit square?  Why or why not? 
 
e) State the inequalities which determine whether W and B are rising or falling.  Then use 
the inequalities to draw the appropriate vectors (arrows) on your phase diagram to 
indicate dynamics in each region. 
 
f) Solve for all of the equilibria of the model.  [HINT: You should be able to give 
numerical coordinates for every equilibrium.] 
 
g) Provide a formal stability analysis for each equilibrium in part (f).  [HINT: You should 
already have a good guess about stability based on your phase diagram, but here I’m 
looking for the precise (numerical) test.  You can use calculus or the non-calculus 
approach.  It may be useful to know that  
 
 the matrix          has eigenvalues  1 = (1/2)(a + d + sqrt(a2 + 4bc – 2ad + d2)) 
                            2 = (1/2)(a + d – sqrt(a2 + 4bc – 2ad + d2))] 
 
h) Suppose that the initial population distribution is given by x0 = [0.1  0.8  0.1].  
Compute the distributions for the next 4 periods (x1, …, x4).   
 
i) Using the answer to part (h), plot the corresponding trajectory on your phase diagram.  
To which equilibrium is this trajectory converging?  Does this trajectory provide a good 
indication of the stability of this fixed point?  Briefly discuss. 
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Soc 376 Exam 2 Spring 2009  Solutions 
 
1a) [5 pts]   Pt+1  =  f(P)  =  Pt + r Pt (1  Pt/K)  H 
              =  (1 + r) Pt  (r/K) Pt

2  H 
 
b) [15 pts]  Note that the generator function is quadratic (initially rising, then falling).  
Given H = 0, there is a fixed point at P* = 0 (which is unstable if r > 0) and another fixed 
point at positive P* (which is stable if |f(P*)| < 1).  Graphically, an increase in H causes 
the generator function to shift downwards.  This causes the lower (unstable) equilibrium 
to rise and the upper (stable) equilibrium to fall.  If the fishery manager sets H too high, 
she induces a catastrophe  there is no equilibrium with positive P*.   
 

 
 
c) [10 pts]  At this level of H, the generator function is shifted downwards until it is just 
tangent to the 45-degree line.  The positive fixed point is “marginally” or “borderline” 
stable.  Any small negative shock would cause the fish population to fall to zero. 
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d) [10 pts]  When r is very high, the upper fixed point P* may be unstable (because 
|f(P*)| > 1).   As the curve shifts downward, P* falls, and f(P*) becomes smaller in 
absolute value.  Thus, harvesting can lead to stability. 
 

    
 
e) [10 pts]   In the continuous-time version of the model, there is no possibility of 
“overshooting” an equilibrium, and thus the upper fixed point is always stable.  Plotting 
dP/dt, we see that P is falling at very low or very high values, but P is rising between the 
two fixed points. 
 

 
 
For a one-dimensional model, the phase diagram is simply the horizontal axis of this 
diagram, along with the indicated fixed points and the arrows indicating dynamics. 
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2a) [4 pts]  An individual is indifferent between recycling and not recycling if  
 

UR = UNR  v + 6x2 = 2    v*(x) = 2 – 6x2 
 

As indicated, individuals with v > v*(x) will recycle; those with v < v*(x) will not. 
 
b) [8 pts] F(v) =  0   for v < 3 
   (1/6)v – 1/2 for v  [3, 3] 
   1  for v > 3 
 
c) [15 pts]  Given adaptive expectations, everyone with v > v*(xt) will recycle in period 
t+1.  Thus, 
 
 xt+1  =  1 – F(v*(xt))  =  1 – F(2 – 6xt

2) 
 
Substituting for F(v),  
 
  xt+1  =  1 – 0    for 26xt

2 < 3    
  1 – [(1/6)(26xt

2) – 1/2]       for 26xt
2  [3,3] 

  1 – 1    for 26xt > 3 
 
which (restricting attention to xt between 0 and 1) can be rewritten as 
 
 xt+1  =  1  for xt > sqrt(5/6) 
                        1/6 + xt

2 for xt  [0, sqrt(5/6)] 
 
d) [12 pts]    
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2e) [6 pts]  The upper fixed point is obviously at x* = 1.  The lower and intermediate 
fixed points are solutions to the equation  
 

x*  =  1/6 + (x*)2 
 
Equivalently, these fixed points are the solutions to the equation 
 
 (x*)2 – x* + 1/6  =  0 
 
Using the quadratic equation, 
 
 x*  =  [1  sqrt(1 – 4(1)(1/6))]/2    =  1/2    sqrt(1/3)/2  =  .7887 or .2113 
 
f) [15 pts]  Suppose the system is initially at the lower or intermediate fixed point x*, so 
that 
 x*  =  1/6 + (x*)2  
 
Further suppose there is a small shock in period t, so that  
 
 xt  =  x* + t  and xt+1  =  x* + t+1 
 
where the ’s reflect the (small) departure from equilibrium in each period.  Substituting 
into the equation 
 
 xt+1  =  1/6 + xt

2 
 
yields    x* + t+1  =  1/6 + (x* + t)

2   
 
 x* + t+1  =  1/6 + (x*)2 + 2x*t  + t

2   
 
Recall that x* is a fixed point, so that x* = 1/6 + (x*)2.  Further, because t is small, t

2 is 
extremely small and can be ignored.  Thus, the preceding equation simplifies to 
 

t+1  =  2x*t    t+1/t  =  2x* 
 
Thus, the fixed point is stable if and only if |2x*| < 1 
 
In particular, the lower fixed point is stable because |2 × .2113| < 1, while the 
intermediate fixed point is unstable because |2 × .7887| > 1 
 
[Equivalently, given the generator function f(x) = 1/6 + x2  (for x < sqrt(5/6)), the slope of 
the generator function is given by f(x) = 2x, and each fixed point is stable if and only if 
this slope has an absolute value less than 1.] 
 
Because the generator function has slope of 0 at x = 1, the upper equilibrium is stable. 
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3a) [10 pts]   























tt

tttt

tt

t

WW

BBWW

BB

PN

10

1

01

 

 
  )22()1(2)22( 2

tttttttttttt BWBBWBWWBWPNx   

 
b) [9 pts] Wt+1  =  f(Wt, Bt)  =   Wt(22BtWt) 

Bt+1   =  g(Wt, Bt)  =   Bt(22WtBt) 
 
We don’t need a third equation because Mt = 1–Wt–Bt for all t 
 
c) [12 pts]    W = 0   W(12BW) = 0  W = 0   or   W = 12B 
  B = 0   B(1−2W−B) = 0  B = 0   or   B = 1−2W 
 

See nullclines on phase diagram below. 
 
d) [6 pts]  The simplex is the triangle defined by the inequalities W  0, B  0, and  
W+B ≤ 1.  Any distribution x = [W  1WB  B] corresponds to a point in this triangle.  
The remainder of the unit square is not part of the simplex, because W + B > 1 implies  
M = 1–W–B would need to be negative. 
 
e) [12 pts]    W > 0     W < 12B  W < 0     W >12B 
  B > 0      B < 1−2W  B < 0      B < 1−2W 
 
See arrows on phase diagram below. 
 
f) [12 pts]  From the phase diagram, we find 4 equilibria: 
 
 (W = 0, B = 0), (W = 1, B = 0), (W = 0, B = 1), (W = 1/3, B = 1/3)   
 
g) [31 pts]   Here we generalize the analysis from question (2f) for a two-dimensional 
model.  Suppose that the system is initially in an equilibrium (W*, B*), and that there is a 
small shock in period t, so that 
 
 Wt = W* + wt  Bt = B* + bt 
 Wt+1 = W* + wt+1 Bt+1 = B* + bt+1 
 
where the small w’s and b’s reflect (small) departures from equilibrium.  Substitution into 
the first function from part (b) yields 
 
 W* + wt+1 = (W* + wt)[2  (W*+wt) 2(B*+bt)] 
 
        =  W*[2  (W*+wt) 2(B*+bt)] + wt[2  (W*+wt) 2(B*+bt)] 
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3g cont’d)  Because W* = W*[2W*−2B*], this simplifies to 
 

wt+1  =  W*[  wt 2bt] + wt[2  (W*+wt) 2(B*+bt)] 
 
The interaction terms wt

2 and wtbt are very small, and can thus be ignored.  This leaves 
 

wt+1  =  W*[  wt 2bt] + wt[2  W* 2B*]   =   [2  2W* − 2B*] wt + [−2W*] bt 
 
We’ve thus obtained wt+1 as a linear function of wt and bt.  Going through the same steps 
using the second equation from part (b), we obtain the analogous equation 
 
 bt+1  =  [2 − 2W* − 2B*] bt + [−2B*] wt 
 
We’ve thus obtained a linear two-equation system, with wt+1 and bt+1 as functions of wt 
and bt.  Writing this two-equation system in matrix form, 
 
 
  
 
[You could have also found the elements of the Jacobian matrix using calculus: 
 
 f(W,B)/W = 2–2W–2B f(W,B)/B = –2W 
 g(W,B)/W = –2B  g(W,B)/B = 2–2W–2B    ] 
 
To evaluate stability of an equilibrium (W*,B*), we evaluate the Jacobian matrix at this 
equilibrium, and then determine whether the dominant eigenvalue has an absolute value 
less than 1 (indicating stability) or greater than 1 (indicating instability). 
 
(W*,B*) = (0,0)  J =      1 = 2 = 2     (unstable) 
 
 
(W*,B*) = (1,0)  J =      1 = 2 = 0      (stable) 
 
 
(W*,B*) = (0,1)  J =      1 = 2 = 0      (stable) 
 
 
(W*,B*) = (1/3,1/3)  J =      1 = 4/3, 2 = 0      (unstable) 
 
 
Thus, the all-white and all-black equilibria are stable; the all-mulatto and interior 
equilibria are unstable. 
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h) [8 pts] x1 = [.17 .66 .17]  
  x2 = [.2533 .4934 .2533]  
  x3 = [.3141 .3717 .3141] 
  x4 = [.3322 .3356 .3322] 
 
i) [10 pts]  See trajectory on phase diagram below.  The trajectory is heading toward the 
unstable interior equilibrium.  It does not provide a good indication of the stability of this 
equilibrium, since any other nearby trajectory would eventually “veer off” toward one of 
the stable equilibria.  Rather, the trajectory lies on the “separatrix” which constitutes the 
boundary between two basins of attraction. 
 
 
 
Phase diagram (for parts c, d, e, and i) 
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