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16 Residential Segregation

The racial and ethnic composition of a neighborhood may change over time. The
same “ethnic ghetto” might be occupied by a succession of different groups over
several generations. Alternatively, a neighborhood may experience more rapid tran-
sition from predominantly white to predominantly minority (a process sometimes
colloquially called “white flight”) or the reverse (as in the “gentrification” of urban
neighborhoods). In this chapter, we examine a classic model of residential choice
originally developed by Thomas Schelling (1971, 1978). In the model, there are two
groups, each characterized by the distribution of “tolerance levels” among its mem-
bers. Given the numbers of each group living in the neighborhood in the current
period, the tolerance distributions determine the numbers of each group for the next
period. A key question is whether both groups will be present in the neighborhood
in the long run. Formally, the model is a two-dimensional generalization of the
one-dimensional threshold models we have already studied in Chapters 12 and 13.

16.1 The model

The model assumes two different racial or ethnic groups. For concreteness, we label
the groups “black” and “white.” Focusing attention on a single neighborhood, let
B; and W, denote the number of blacks and whites living in this neighborhood in
period t.! Because the numbers of each group in period t will determine the numbers
of each group in period ¢ + 1, the model is a two-equation system

Wipn = (W, By)
B = 92(WtaBt)

where the functional forms of ¢g; and ¢go will be developed below. To develop the
precise specification of the model, we begin with the first equation (governing the
number of whites in the neighborhood). The second equation (governing the number
of blacks) can then be formulated in an analogous way.

Each white individual ¢ is characterized by a tolerance level (i) indicating the
highest black-to-white ratio that she is willing to accept. Following our earlier spec-
ification of one-dimensional threshold models, we assume that individuals respond
myopically to the current state of the system. Thus, white individual ¢ chooses to
live in the neighborhood in period ¢ + 1 when

0(i) > By/W,

For simplicity, we treat B; and W; as continuous variables (that need not take integer values).
It would thus be more precise (but less conventional) to refer to these variables as population
“masses” rather than “numbers.”



and chooses to live outside the neighborhood when this inequality is reversed.? Given
variation in tolerance levels across individuals, let Fy (x) denote the proportion of
whites with tolerance levels less than or equal to x. The whites living in the neigh-
borhood in period ¢ + 1 are those with tolerance levels above B;/W;. Thus, the
proportion of whites choosing to live in the neighborhood in period ¢ + 1 is

1 — Fy (B;/Wy)

To obtain the number of whites living in the neighborhood, we multiply this propor-
tion by the total number of whites who could potentially in the neighborhood. We
thus obtain the first equation of our two-equation system,

W1 = Nw [1 — Fw(B/W,)]

where Ny, is a scalar denoting the total number of whites.

The second equation is developed in similar fashion. Black tolerance levels are
specified relative to the white-to-black ratio. Letting Fp(z) denote the proportion
of blacks with tolerance levels less than or equal to x, the number of blacks living in
the neighbhorhood in period ¢ 4 1 is

Biy1 = Np [1 - Fg(W/By)]

where Np is the total number of blacks who could potentially live in the neigh-
borhood. The two-equation system is thus parameterized by the total numbers of
whites and blacks (Ny and Np) and the distribution of tolerance levels for each
group (Fy (z) and Fg(z)).

This specification of the system presumes that everyone can move immediately
in response to current conditions. However, it may be more realistic to assume that
changes in population levels are proportional to period length. Incorporating this
idea, our two-equation system can be respecified as

AW = (Nw [1— Fy(B/W)] = W) h
AB = (Ny[1— Fy(W/B)] - B) h

where the parameter h reflects period length. Given this specification, the term
Nw|l — Fyw(B/W)] reflects the number of whites who would prefer to live in the
neighborhood. The difference (Ny [1 — Fy (B/W)] — W) can thus be interpreted as
“excess demand” among whites for living in the neighborhood. The second equation
can be given an analogous interpretation. While period length obviously affects
the (per-period) speed of the dynamics, note that h has no effect on the nullclines
AW =0 and AB = 0, and hence no effect on the steady states of the system.

2Note that an individual chooses to live in the neighborhood when she has a high tolerance level.
This contrasts with our specification of one-dimensional threshold models, in which an individual
participated in the collective action when she had a low threshold level.



16.2 A numerical example

To develop a numerical example, we need to fix the tolerance distribution for each
group, along with the number of blacks and whites that could potentially live in
the neighborhood.®> We’ll initially suppose that white tolerance levels are distributed
uniformly between 0 and 2. This implies that the least tolerant white would prefer to
move if any blacks entered the neighborhood, the most tolerant white would prefer
to stay unless there were more than 2 blacks per white, and the remaining whites are
“spread evenly” between these extremes. More formally, the distribution of white
tolerance levels is characterized by the probability density function

[ 1/2 for§€0,2]
fw(0) = {O otherwise

and the associated cumulative distribution function is given by

Fue) = [ eoyan = { (12 Pro el

We will further assume that there are Ny, = 100 whites who could potentially live
in the neighborhood. The first equation thus becomes

AW — { (100 [1 = (1/2)(B/W)] = W) h for B/W <2
T 1 (100 [1 1] W) h for B/W > 2
B { (100 — 50(B/W) — W) h for B/W < 2
n —Wh for B/W > 2

We assume that blacks have the same distribution of tolerance levels as whites (so
that Fp(z) = Fw(z)), but that there are only Np = 50 blacks who could potentially
live in the neighborhood. The second equation thus becomes

AR — {(50 [1—(1/2)(W/B)]— B) h for W/B <2
N (50[1—1]—B) h for W/B > 2
B { (50 — 25(W/B) — B) h for W/B < 2
N —Bh for W/B > 2

Using these equations, we can begin to analyze the model graphically by deriving
the nullclines. From the first equation, we find that AW = 0 implies W = 0 or

B = W(100 — W)/50

Thus, there two W-nullclines. One W-nullcline (at W = 0) follows the B axis.
Intuitively, if there are no whites in the neighborhood, then the black-to-white ratio

3Throughout the remainder of this chapter, our numerical examples closely follow those presented
(in a less formal manner) in Schelling, Micromotives and Macrobehavior, Chapter 4.
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is infinite, and no whites wish to enter. The other W-nullcline is given by the
preceding (quadratic) equation. Similarly, we see from the second equation that
AB =0 implies B =0 or

W = B(50— B)/25
Thus, there are also two B-nullclines. One follows the W axis, indicating that, if
there are no blacks in the neighborhood, then none wish to enter. The other B-

nullcline is again given by a quadratic equation. Plotting the quadratic nullclines,
we obtain the phase diagram below.

>> W = 0:100; nullW = W.*x(100-W)./50; B = 0:50; nullB = B.*(50-B)./25;
plot(W,nullW,nullB,B) % plotting the nullclines
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Recognizing that the vertical axis is also a W-nullcline, and that the horizontal axis
is also a B-nullcline, this diagram reveals four steady states. Three lie along the edge
of the diagram at (W* = 100, B* = 0), (W* = 0, B* = 50), and (W* =0, B* = 0).
The final steady is determined by the intersection of the quadratic nullclines at
(W* =21.74, B* = 34.03).

Having identified two “segregated” equilibria (one all-white and the other all-
black) and one “integrated” equilibrium (with both whites and blacks), the interest-
ing question is which of these equilibria are stable. Following the procedure discussed
in Chapter 15, we could assess stability graphically by determining the sign of AW
and AB for each region of the phase diagram. (This was the approach originally

“We have been skirting some technical issues that arise because the ratios B/W and W/B are
undefined at the origin. In a more rigorous treatment of this model, Dokumaci and Sandholm (2009)
address this issue by assuming that small masses of blacks and whites have infinite tolerances and
are thus always present in the neighborhood. However, because the steady state at the origin is
unstable (see below) and perhaps less relevant empirically, we will (following Schelling’s original
presentation) continue simply to gloss over the technicalities.
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taken by Schelling (1971, 1978) and remains an excellent exercise for readers.) But
here, we’ll simply use Matlab to plot the vectorfield. To do so, it will be helpful to
write our two-equation system in another form. Note that the cdfs can be written as

Fw(x) = Fg(x) =min{(1/2)z, 1}

where min{a, b} denotes the minimum of the scalars a and b. Thus, the two equations
can be written as

AW = (100 [ — min{(1/2)(B/W),1}] — W) h
AB = (50 [L — min{(1/2)(W/B),1}] — B) h

Using this specification, we first compute the vectorfield, and then superimpose it
on the phase diagram.

>> [W,B] = meshgrid(0:5:100,0:5:50);

dw = (100*(1-min((1/2)*(B./W),1))-W); dB = (50*(1-min((1/2)*(W./B),1))-B);
hold on; quiver(W,B,dW,dB);

W = 0:100; nullW = W.*x(100-W)./50; B = 0:50; nullB = B.*(50-B)./25;
plot(W,nullW,nullB,B); % phase diagram with vectorfield
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This diagram shows that the two segregated equilibria are stable. Trajectories in the
upper left corner of the phase diagram (where B/W is relatively large) will flow to-
ward the all-black equilibrium, while trajectories in the remainder of the diagram will

flow toward the all-white equilibrium. In contrast, the interior integrated equilibrium
is unstable.



From the phase diagram, we can also see that small differences in initial conditions
can potentially lead to very different long-run outcomes. To illustrate further, we
plot below the trajectories for several initial conditions.

> W =[5523035]; B=1[875050]; h=.1; yW=W; yB = B;
for t = 1:50;
dw = (100*(1-min((1/2)*(B./W),1))-W)*h; dB = (50*%(1-min((1/2)*(W./B),1))-B)*h;
W = W+dW; B = B+dB; yW = [yW; W]; yB = [yB; B];
end
>> plot(yW(:,1),yB(:,1),yW(:,2),yB(:,2),yW(:,3),yB(:,3),yW(:,4),yB(:,4),
0:100,nullW,nullB,0:50) %  phase diagram with trajectories
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Note that the initial condition (W, = 5, By = 8) lies on a trajectory that “veers
upwards” toward the all-black equilibrium, with the nearby point (W, = 5, By =
7) lies on a trajectory that “veers rightwards” toward the all-white equilibrium.
Similarly, while the initial conditions (W, = 30, By = 50) and (W, = 35, By = 50)
are close, they lie on trajectories leading to very different long-run outcomes.

16.3 Connection to one-dimensional threshold models

We have already indicated that Schelling’s model can be viewed as a two-dimensional
generalization of the one-dimensional threshold models we encounted in previous
chapters. To better understand this connection, suppose that the number of blacks
in the neighborhood is fixed at B while the number of whites follows the dynamics
specified previously. Our two-dimensional model is thus reduced to the one-equation
system given by

AW = (N [1 — Fyw(B/W)] — W) h
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where B is now viewed as a (fixed) parameter. Setting h = 1, and given the parameter
values from our preceding example, this equation can be rewritten as

Wipr = 100 [1 —min{(1/2)(B/Wy), 1}]
We plot this function for several values of B to obtain the threshold diagram below.

>> W = 0:.5:100; plot(W, 100*(1-min((1/2)*(25./W),1)), W, 100*(1-min((1/2)*(35./W),1)),
W, 100*(1-min((1/2)*(50./W),1)),W,W) %  threshold curves
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Adopting the terminology used in Chapter 12, this diagram depicts three threshold
curves. Each curve shows the relationship between the expected number of whites
(W) and the actual number of whites (W;;;) for some (fixed) value of B. Recall
that steady states are determined by intersections of the threshold curve and the
45-degree line, and are stable when the threshold curve is rising and crosses the 45-
degree line from above. For instance, focusing on the threshold curve for B = 25,
we see that there are two stable equilibria (at W* = 0 and W* = 84.36), and an
intermediate unstable equilibrium (at W* = 14.64). Further recall that that the
number of whites is rising when the threshold curve is above the 45-degree line (and
falling when the threshold curve is below this line). Thus, given B = 25, the number
of whites is rising for intermediate values (i.e., for W, € (14.64,85.36)) but falling
for lower or higher values (i.e., W; € (0,14.64) or (84.36, 100)).

Comparing the threshold curves, we see that the threshold curve shifts downwards
as B rises. Consequently, as B rises from 25 to 35, the stable upper equilibrium falls
(from 84.36 to 77.39) while the intermediate unstable equilibrium rises (from 14.64
to 22.61). We can further see that a catastrophe occurs at B = 50. For B > 50, the
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threshold curve lies everywhere below the 45-degree line. Consequently, the number
of whites is falling (for any positive W;), and there is a unique, stable equilibrium at
W* = 0.

How can we reconcile the threshold curves above with the phase diagrams in the
preceding section? Loosely, each threshold curve corresponds to a one-dimensional
“slice” through the W-nullcline. These “slices” are indicated by the horizontal dotted
lines in the diagram below.
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Following along the dotted line at B = 25, the intersections with the W-nullcline
indicate the steady states at W* = 14.64 and W* = 84.36. The third steady state
at W* = 0 becomes apparent when we recall that the B axis is also a W-nullcline.
Similarly, following along the dotted line at B = 35, we find the steady states at
W= =0, W* = 22.61, and W* = 77.39. Note that our threshold diagram analysis
also helps motivate the sign of AW in the regions above and below the W-nullcline.
Again fixing B = 25, we know from the threshold diagram that the number of
whites is rising for W; € (14.64,85.36), corresponding to points below the nullcline.
Conversely, fixing B = 25, we know that the number of whites is falling for W, € (0,
14.64) or (84.36, 100), corresponding to points above the nullcline.

Having considered the AW equation when B is fixed, readers might undertake a
similar analysis of the AB equation when W is fixed. The threshold curves (indicat-
ing the relationship between B, and B, 1) would again correspond to one-dimensional
“slices” through the phase diagram, though they would now be represented by ver-
tical lines (for fixed values of W) rather than horizontal lines (for fixed values of B).
Combining the results of these analyses, you can obtain the sign of AW and AB for
each region of the phase diagram (and can check your results against the vectorfield
plotted above).



16.4 Additional examples

For the example we have just considered, the integrated equilibrium is unstable, and
the neighborhood is always occupied by a single group in the long run. Empirically,
this result is quite relevant. Many Americans do, in fact, live in neighborhoods
that are highly segregated by race (see, e.g., Massey and Denton 1998). However,
as a theoretical matter, the existence and stability of integrated equilibria depend
crucially on the parameters of the model. In this section, we develop some additional
examples to illustrate the variety of equilibrium outcomes.

Intuition might suggest that long-run integration becomes possible when members
of both groups are more tolerant. To explore this possibility, we now suppose that
tolerance levels in both groups are now distributed uniformly between 0 and 5. Thus,
for each group, the most tolerant member stays in the neighborhood unless her group
is outnumbered by a 5-to-1 ratio. More formally, we assume that the cdfs are

(1/5)x for x € [0, 5]

Fw(z) = Fp(x) = { 1 for 7 > 5 = min{(1/5)z, 1}

Further assuming the same number of whites and blacks who could potentially live
in the neighborhood (with Ny, = Np = 100), our two equations become

A f (00 —20(B/W) = W) b for B/W <5
N —~Wh for B/W >5

N _ [ (00=20(W/B)~B)h for W/B <5
N —Bh for W/B > 5

To obtain the nullclines, note that AW =0if W =0 or
B = (100 — W)W /20
Similarly, AB=0if B =0 or
W = (100 — B)B/20
To compute the vectorfield, note that the two equations can be rewritten as

AW = (100 [1 — min{(1/5)(B/W),1}] — W) h
AB = (100 [1 — min{(1/5)(W/B),1}] — B) h

Plotting the nullclines and vectorfield, we obtain the phase diagram below.



>> [W,B] = meshgrid(0:7:134,0:7:134);
dW = (100*(1-min((1/5)*(B./W),1))-W); dB = (100*(1-min((1/5)*(W./B),1))-B);
hold on; quiver(W,B,dW,dB);

W = 0:100; nullW = W.*(100-W)/20; B = 0:100; nullB = B.*(100-B)/20;
plot(W,nullW,nullB,B) %  phase diagram
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This diagram indicates stable steady states at

(W* =0, B* = 100), (W* = 100, B* = 0), and (W* = 80, B* = 80)

and unstable steady states at
(W* =25.36, B* =94.64), (W* = 94.64, B* = 25.36),and (W* =0, B* = 0)

We thus find that increased tolerance does make possible a stable, integrated equi-
librium. However, the long-run outcome depends on initial conditions. If the initial
B/W ratio is very low or very high, the neighborhood will eventually be occupied
by a single group.

Moreover, further examples reveal that increased tolerance is not sufficient for
the existence of a stable, integrated equilibrium. To illustrate, we retain the same
tolerance distributions (so that tolerance is again distributed uniformly between 0
and 5 for both groups) but now assume twice as many whites as blacks (with Ny, =

100 and Np = 50). Revising the equations for the nullclines and dynamics given
above, we again plot the nullclines and vectorfield.

10



>> [W,B] = meshgrid(0:7:134,0:7:134);

dw = (100*(1-min((1/5)*(B./W),1))-W); dB = (50*(1-min((1/5)*(W./B),1))-B);
hold on; quiver(W,B,dW,dB);

W = 0:100; nullW = W.*(100-W)/20; B = 0:100; nullB = B.*(50-B)/10;
plot(W,nullW,nullB,B) %  phase diagram
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Qualitatively, this example more closely resembles our first example from section 16.2.
The segregated equilibria at (W* = 0, B* = 50) and (W* = 100, B* = 0) are stable,
while the integrated equilibrium at (W* = 10.70, B* = 47.76) is unstable. Perhaps
ironically, the possibility of a stable intergrated equilibrium is undermined by the
presence of “too many” tolerant whites. If the neighborhood is initially occupied
by a small number of whites and blacks (say Wy = By = 10), then the numbers of
both groups will initially rise. However, as the number of white continues to rise,
the number of blacks will eventually begin to fall. (Graphically, this is the point at
which the trajectory crosses the B-nullcline.) Following the suggestion by Schelling

(1978, pp 162-4), we might attempt to promote integration by limiting the number
of whites living in the neighborhood.

16.5 Further reading

Schelling’s 1971 article in the Journal of Mathematical Sociology presented both the
“bounded neighborhood” model discussed in this chapter along with a second “self-
forming neighborhood” model in which individuals occupy positions on a “checker-
board” and move to new positions if there are too many neighbors of the other racial
type. Both of these classic models were also discussed in Chapter 4 of Schelling’s
1978 book Micromotives and Macrobehavior. Further exposition of the bounded
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neighborhood model is provided by Granovetter and Soong, Sociological Method-
ology, 1988. For a more rigorous treatment, see Emin Dokumaci and William H.
Sandholm, “Schelling Redux: An Evolutionary Dynamic Model of Residential Seg-
regation,” University of Wisconsin, Department of Economics, unpublished working
paper. Becker and Murphy (Social Economics, 2000, Chap 5) extend the model to
include housing prices. For empirical work on residential segregation, see Massey
and Denton, American Apartheid, 1998.

Schelling’s model could potentially be applied to many topics beyond residential
segregation. In one interesting (informal) application, Lieberson (Am J Soc 2000)
discussed the process by which first names (the analog to neighborhoods) which
are initially used primarily by boys (the analog to one racial group) can eventually
become used primarily by girls (the analog to the other racial group).
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