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10 Population Momentum

10.1 Further analysis of the stable growth equilibrium

We saw in the preceding chapter that age-structured populations will generally reach
the stable growth equilibrium, which is characterized by the condition

Ax = Lx

where A is the dominant eigenvalue of the Leslie matrix and x is the associated
eigenvector. To gain some further insight into this equilibrium, it will be useful
to write out this simultaneous equation system. For simplicitly, we’ll continue to
assume 4 age classes (though results again extend easily to the general case with n
age classes). We can thus write these equations as

Ax(1) = f()x(1) + f(2)x(2) + F(3)x(3) + [(4)x(4)
Ax(2) = s(1)x(1)
Ax(3) = s(2)x(2)
Ax(4) = s(3)x(3)

Using the last three equations, we obtain

x(2) = s()x(1)A!
x(3) = s(2)x(2)A7" = 5(1)s(2)x(1)A 2
x(4) = s(3)x(3)A' = s(1)s(2)s(3)x(1)A~?

and thus

s(1)s(2)s(3)A73

Intuitively, if population size is stable (so that A = 1), the limiting distribution
simply reflects the survival probabilities reported in the first row of the life table.
In contrast, if the population is growing (so that A > 1), the limiting distribution
becomes skewed towards younger age classes.

To begin to see the relationship between the long-run growth rate (A) and the net
reproduction rate (NRR), we can substitute the results from the last three equations
back into the first equation. Simplifying, we obtain

1 = fOAN 5N 2+ s(1)s(2) f(3)A3 + s(1)s(2)s(3) f(4) A



If we assume that A = 1, this becomes

L= f(1) +s(1)f(2) +s(1)s(2)f(3) + s(1)s(2)s(3) S (4)

and it is apparent that NRR = 1. Unfortunately, for other values of A, there is no
simple equation relating A to NRR. However, if X is close to 1, then we can write

A= 1+c¢
where € is close to 0, and adopt the approximation
A a1 —te
Substitution into our previous equation (along with some simplification) yields

NRR — 1
F(1) +2s(1)£(2) + 3s(1)s(2) £(3) + 4s(1)s(2)s(3) f(4)
While this approximation is not very accurate when \ is not close to 1, it does reveal

that NRR > 1 if and only if A > 1, and that NRR < 1 if and only if A < 1. The
denominator of the final term also has a demographic interpretation, as

f() +25(1)f(2) +3s(1)s(2) £ (3) + 4s(1)s(2)s(3) f(4)
NRR

represents mean age at fertility (i.e., the average age of mothers weighted by births),
which is related to the demographic concept of “generation length.”

e = A—1~=

10.2 The momentum of population growth

Although world population growth has been a concern for many years, policymak-
ers in some countries did not always view the problem as urgent, especially when
regions of their countries were not yet thickly inhabited. But their focus on current
population size is short-sighted because it neglects the “momentum” of population
growth. Consider a country in a stable growth equilibrium with a high NRR. Even
if policymakers were able to instantly reduce fertility levels to replacement level (so
that NRR = 1), population size would continue to increase for generations. As we
saw in the previous section, the current age distribution would be skewed towards
younger age classes. Even if fertility levels fall, the survival of those already born
will increase (perhaps dramatically) the number of individuals in older age classes.
Eventually, the country will reach a new zero-growth equilibrium with a somewhat
smaller birth cohort but a larger (perhaps much larger) population size overall. To
employ the “momentum” metaphor: even if the country “slams on the brakes” by
instantly cutting NNR to 1, population growth will not “stop on a dime.”

To illustrate, we’ll consider population growth in China. The first step is to make
some population projections using the initial distribution and Leslie matrix from the

2



early 1980’s (reported in Bradley and Meeks, 1986, p 166). For this data, age classes
(and hence periods) are 10-year intervals. Thus, to project the population forward
for 100 years, we consider the next 10 periods.

>> L % Leslie matrix for China, 1981

L =
0 0.4500 0.6900 0.1300 0 0 0 0 0
0.9700 0 0 0 0 0 0 0 0
0 0.9930 0 0 0 0 0 0 0
0 0 0.9870 0 0 0 0 0 0
0 0 0 0.9810 0 0 0 0 0
0 0 0 0 0.9620 0 0 0 0
0 0 0 0 0 0.9070 0 0 0
0 0 0 0 0 0 0.7610 0 0
0 0 0 0 0 0 0 0.5100 0
>> S = [zeros(1,9); L(2:9,:)]; N = inv(eye(9)-S); NRR = L(1,:)*N(:,1)
NRR =
1.2247
>> x0’ 7 population (in millions) by 10-year age classes for China, 1982
ans =
205 258 169 127 99 74 48 23 5

>> popfreq = []; for t = 0:10; popfreq = [popfreq; (L"t * x0)’]; end; popfreq

popfreq =

205.0000 258.0000 169.0000 127.0000 99.0000 74.0000 48.0000 23.0000 5.0000
249.2200 198.8500 256.1940 166.8030 124.5870 95.2380 67.1180 36.5280 11.7300
287.9407 241.7434 197.4581 252.8635 163.6337 119.8527 86.3809 51.0768 18.6293
277.9028 279.3025 240.0512 194.8911 248.0591 157.4157 108.7064 65.7358 26.0492
316.6573 269.5658 277.3474 236.9305 191.1882 238.6328 142.7760 82.7256  33.5253
343.4753 307.1576 267.6788 273.7419 232.4289 183.9230 216.4400 108.6525 42.1900
358.5057 333.1710 305.0075 264.1990 268.5408 223.5966 166.8182 164.7108 55.4128
394.7280 347.7506 330.8388 301.0424 259.1792 258.3362 202.8021 126.9486 84.0025
423.9020 382.8861 345.3163 326.5379 295.3226 249.3304 234.3110 154.3324 64.7438
453.0169 411.1850 380.2059 340.8272 320.3337 284.1003 226.1427 178.3107 78.7095
491.6829 439.4264 408.3067 375.2633 334.3515 308.1610 257.6790 172.0946  90.9384

>> popsize = sum(popfreq,2)

popsize =
1.0e+003 *

1.0080
1.2063
1.4196



.5981
. 7893
.9757
.1400
.3056
L4767
.6728
.8779
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Thus, if the Leslie matrix remains unchanged, these projections indicate that the
population size will grow from 1 billion to 2.87 billion. To help visualize this change,
we adopt another demography convention, plotting the initial (period 0) and final
(period 10) age distributions as horizontal bar charts.

>> barh(popfreq(l,:)) % age distribution in 1982

age class
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>> barh(popfreq(11,:)) 7% projected age distribution in 2082

age class
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Next, we’ll consider what would happen if the NRR fell instantly to 1. Of course,
this change could happen in various ways, through decreases in any combination of
the fertility levels in the first row of the Leslie matrix. For the sake of this numerical
example, we’ll suppose that each fertility level falls by the same percentage.

>> L(1,:) = L(1,:)/NRR

L =
0 0.3674 0.5634 0.1061 0 0 0 0 0
0.9700 0 0 0 0 0 0 0 0
0 0.9930 0 0 0 0 0 0 0
0 0 0.9870 0 0 0 0 0 0
0 0 0 0.9810 0 0 0 0 0
0 0 0 0 0.9620 0 0 0 0
0 0 0 0 0 0.9070 0 0 0
0 0 0 0 0 0 0.7610 0 0
0 0 0 0 0 0 0 0.5100 0

>> popfreq = []; for t = 0:20; popfreq = [popfreq; (L"t * x0)’]; end; popfreq

popfreq =
205.0000 258.0000 169.0000 127.0000 99.0000 74.0000 48.0000 23.0000 5.0000
203.4940 198.8500 256.1940 166.8030 124.5870 95.2380 67.1180 36.5280 11.7300
235.1104 197.3892 197.4581 252.8635 163.6337 119.8527 86.3809 51.0768 18.6293
210.6169 228.0571 196.0075 194.8911 248.0591 157.4157 108.7064 65.7358 26.0492
214.9145 204.2984 226.4607 193.4594 191.1882 238.6328 142.7760 82.7256  33.5253
223.1901 208.4670 202.8683 223.5167 189.7836 183.9230 216.4400 108.6525 42.1900
214.6203 216.4944 207.0078 200.2310 219.2699 182.5719 166.8182 164.7108 55.4128
217.4303 208.1817 214.9789 204.3167 196.4266 210.9376 165.5927 126.9486  84.0025
219.3006 210.9074 206.7245 212.1842 200.4346 188.9624 191.3204 126.0160 64.7438
216.4867 212.7216 209.4311 204.0370 208.1527 192.8181 171.3889 145.5949  64.2682
217.8133 209.9921 211.2325 206.7085 200.1603 200.2429 174.8860 130.4270 74.2534
218.1089 211.2789 208.5221 208.4865 202.7810 192.5542 181.6203 133.0883 66.5178
217.2435 211.5657 209.8000 205.8113 204.5253 195.0753 174.6467 138.2131 67.8750
217.7848 210.7262 210.0847 207.0726 201.9009 196.7533 176.9333 132.9061  70.4887
217.7706 211.2513 209.2511 207.3536 203.1382 194.2287 178.4552 134.6462 67.7821
217.5237 211.2375 209.7725 206.5308 203.4139 195.4190 176.1654 135.8044 68.6696
217.7251 210.9980 209.7589 207.0455 202.6067 195.6842 177.2450 134.0619 69.2603
217.6841 211.1934 209.5211 207.0320 203.1116 194.9077 177.4855 134.8834 68.3716
217.6204 211.1536 209.7150 206.7973 203.0984 195.3934 176.7813 135.0665 68.7906
217.6902 211.0918 209.6755 206.9887 202.8681 195.3807 177.2218 134.5305 68.8839
217.6655 211.1595 209.6142 206.9497 203.0559 195.15691 177.2102 134.8658 68.6106

>> popsize = sum(popfreq,2)

popsize =
1.0e+003 *

1.0080
1.1605



.3224
.4355
.5280
.5990
.6271
.6288
.6206
.6249
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.6230
.6248
.6247
.6239
.6245
.6244
.6242
.6244
.6243
.6243
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>> barh([popfreq(l,:)’ popfreq(21,:)°],’group’)

>> % initial (1982) and projected (long-run) age distributions
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Thus, the momentum of population growth causes population size to rise by more
than 60% even after fertility has been reduced to replacement level. Moreover, while
the age distribution was initially skewed toward younger age classes, the long-run
age distribution is now “fatter” because it reflects survival probabilties.

10.3 A formal result

Our projections in the preceding section started from the actual age distribution in
China in 1982. Clearly, this population had not yet reached a stable growth equi-



librium.!

However, if we assume a hypothetical population which has reached this
equilibrium, it is possible to state a precise result concerning population momentum
(due to Keyfitz 1971). Namely, if the NRR falls suddenly to 1 in period 0, population

momentum will cause population size to increase by factor

where P; denotes population size in period ¢, B; denote the size of the birth cohort in
period ¢, b, = B;/P; denote the birth rate in period ¢, and e denotes life expectancy
at birth.

To see why this result holds, let’s move from this (standard demography) notation
to our own notation from section 6.1. Given 4 age classes, and normalizing population
size so that By = x¢(1) = 1, we can write

Py = 1T+s(DA !+ 5(1)s(2)A 2+ 5(1)s(2)s(3)A
e = 1+4+s(1)+s(1)s(2) + s(1)s(2)s(3)

and hence
1+ s(1) +s(1)s(2) + s(1)s(2)s(3)

T+ s()A T4+ s(1)s(2)A2 + s(1)s(2)s(3)A 3

where A is the initial growth factor. Intuitively, this expression reflects the “fatten-
ing” of the age distribution already illustrated by the bar graph above. If the size of
the birth cohort remained unchanged as the population reached the new zero-growth
equilibrium (i.e., if By, /Bg = 1), then the ratio P, /Py would be determined entirely
by this effect. However, somewhat more subtlely, the size of the birth cohort falls as
the population reaches its new equilibrium (so that B.,/Bg < 1). Given the initial
skew of the age distribution, the age classes with positive fertility are smaller (in
period 0) than they will be eventually (in period oo). Thus, the decrease in NNR
initially causes a fall in the size of the birth cohort. But then, as girls who were al-
ready born in period 0 survive into child-bearing age classes, the birth cohort begins
to rise again. Eventually, after some further oscillations, the size of the birth cohort
stabilizes, converging to B, < By.

To illustrate, we’ll again use the Chinese data from the preceding section. But
now our first step is to determine the stable growth equilibrium associated with
the original Leslie matrix. While we could obtain the limiting distribution and
growth factor through population projection, we’ll simply compute the eigenvalues
and eigenvectors of this matrix.

boe:

>> [eigvec, eigvall = eig(L); % L is Leslie matrix for China, 1981

IPerhaps the most obvious indication is that there were fewer individuals in age class 1 than age
class 2 even though NRR was greater than 1. This presumably reflects social upheavals in China
during the preceding decades.



>> abs(diag(eigval))’

ans =

0

0

% absolute values of the eigenvalues

1.0771

0.7347

0.7347

0.2126

>> % thus, the dominant eigenvalue (= 1.0771) and associated eigenvector are in 6th column

>> vl

ans =

0.

Given this new initial condition, our second step is the same as before. Using the
empirical Leslie matrix, each of the fertility levels in the first row is divided by NRR.
We then project population growth for the next 20 periods to obtain the eventual
zero-growth equilibrium.

>> L(1,:) = L(1,:)/NRR;

>> popfreq = []; for t

1704

popfreq =

0.
.1499
.1614
.1619
.1561
.1604
.1598
.1582
.1598
.1593
.1589
.1594
.1592
.1591
.1593
.1592
.1592
.1592
.1592
.1592
.1592

[eleolNeolNolNolNeolNolNolNolNolNolNolNolNolNolNoNeoNeolNoNel

1704

>> popsize

popsize =
1.0000
1.0434

ool eolNolNolNeolNolNolNolNolNolNolNeolNolNolNoNeoNeoNeoNeo el

eigvec(:,6); x0

0.1535

.1535
.1653
.1454
.1566
.1570
.1514
.1556
.1550
.1535
.1550
.1545
.1542
.1546
.1544
.1544
.1545
.1544
.1544
.1545
.1544
.1544

O OO OO OO OO ODOODODOOOO OO oo

0.1415

.1415
.1524
.1642
.1444
.1555
.1559
.1503
.1545
.1539
.1524
.1539
.1534
.1531
.1536
.1533
.1533
.1534
.1533
.1533
.1534
.1534

sum(popfreq,2)

O OO OO OO OO OOOOOOOOOOOoO oo

v1/sum(vl); x0’°

0.1297

.1297
.1397
.1504
.1620
.1425
.1535
.1539
.1484
.1525
.1519
.1504
.1519
.1514
.1511
.1516
.1513
.1513
.1514
.1513
.1513
.1514

O OO O OO OO ODODODODOOOO OO OO o

0.1181

% modified Leslie matrix with

0:20; popfreq = [popfreq; (L°t

.1181
L1272
.1370
.1476
.1589
.1398
.1506
.1510
.1456
.1496
.1490
.1476
.1490
.1485
.1482
.1487
.1485
.1484
. 1486
.1485
.1485

O OO O OO OO ODODODODOOOOOOOoOoOOo

0.1055

NRR =

% limiting distribution

0.0888

0.0628

* x0)’]; end; popfreq

.1055
.1136
.1224
.1318
.1420
.1529
.1345
.1448
. 1452
.1400
.1439
.1433
.1419
.1433
.1429
.1426
.1430
.1428
. 1428
.1429
.1428

O OO O OO OO ODODODODOOOOOOOoOoOo

.0888
.0957
.1031
.1110
.1195
.1288
.1387
.1220
.1314
L1317
.1270
.1305
.1300
.1287
.1300
.1296
.1293
.1297
.1295
.1295
.1296

O OO OO O OO ODODODOOOOOOOOOoOoOOo

.0628
.0676
.0728
.0784
.0845
.0910
.0980
.1055
.0928
.1000
.1002
.0967
.0993
.0989
.0980
.0989
.0986
.0984
.0987
.0986
.0985

O OO O OO OO ODODOOOOOOOOOOoOoOOo

0.0297

.0297
.0320
.0345
.0371
.0400
.0431
.0464
.0500
.0638
.0473
.0510
.0511
.0493
.0607
.0605
.0500
.0505
.0503
.0602
.0504
.0503



.0911
.1308
.1560
.1767
.1877
.1894
.1884
.1872
.1889
.1881
.1879
.1884
.1881
.1881
.1883
.1881
.1882
.1882
.1882
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>> barh([popfreq(l,:)’ popfreq(21,:)’], ’group’)

>> % equilibrium age distributions before and after fall in NRR

age group
(9]
L

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
number of people

Note that the size of the birth cohort falls slightly as the population moves from the
initial stable-growth equilibrium to the new zero-growth equilibrium.

To illustrate the short-run oscillations in the size of this cohort, we can normalize
and plot the first column of the popfreq matrix.

>> plot(0:20, popfreq(:,1)/popfreq(l,1)) % relative size of birth cohort



relative size of birth cohort

0.86 I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

number of periods since decrease in NRR

Thus, we see that the size of the birth cohort eventually stabilizes at about 93% of
the size of the initial birth cohort.

Finally, to verify the analytical result from Keyfitz (1971), consider the following
computations.

>> b0 = x0(1)/sum(x0) % x0 is the initial age distribution

b0 =
0.1704

>> e = sum(N(:,1)) % N is the fundamental matrix

e:
7.4625

>> b0 * e

ans =
1.2718

>> Bratio = popfreq(21,1)/popfreq(1,1)

Bratio =
0.9343

>> Pratio = b0 * e *x Bratio

Pratio =
1.1882

If there was no change in the size of the birth cohort, the momentum of population
growth would have generated a 27.18% increase in population size. However, because
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the birth cohort will eventually stabilize at 93.43% of its initial size, the momentum
effect increases population size by only 18.82%. Note that this corresponds to the
result obtained from the population projections above.

10.4 Further reading

This chapter is based on Keyfitz’s (Demography 1971) original paper on the momen-
tum of population growth. The approximation argument connecting the equilibrium
growth factor to the NRR is found in Farina and Rinaldi (2000, p xx). The empirical
data on China was taken from Bradley and Meeks (1986, Ch xx, p xx), who provide
another discussion of population projection methods.
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