
last revised: 8 March 2011

11 One-Dimensional Nonlinear Models

11.1 From linear to nonlinear models

The first half of this book focused on linear models, which can be written as

xt+1 = Axt

where xt is a (n× 1) vector and A is an (n× n) matrix of (fixed) parameters. Such
systems are “linear” in the sense that each element i of the xt+1 vector is a linear
combination of the elements of the xt vector. More precisely, unpacking the preceding
matrix equation, we obtain the n-equation system

xt+1(1) = A(1, 1) xt(1) + A(1, 2) xt(2) + . . . + A(1, n) xt(n)

xt+1(2) = A(2, 1) xt(1) + A(2, 2) xt(2) + . . . + A(2, n) xt(n)
...

xt+1(n) = A(n, 1) xt(1) + A(n, 2) xt(2) + . . . + A(n, n) xt(n)

By this point, you’ve hopefully been impressed by the wide range of social science
applications of linear models. However, many other topics require the use of nonlinear
models. The remainder of the book is thus devoted to this class of models.

Generically, nonlinear models can be written as

xt+1 = f(xt)

where f is called a generator function. The simplicity of this equation may be
deceiving because the generator function maps n inputs (the elements of the xt

vector) into n outputs (the elements of the xt+1 vector). An alternative specification
given by the system of equations

xt+1(1) = f1(xt(1),xt(2), . . . ,xt(n))

xt+1(2) = f2(xt(1),xt(2), . . . ,xt(n))
...

xt+1(n) = fn(xt(1),xt(2), . . . ,xt(n))

reveals that the generator function f is actually a set of functions {f1, . . . , fn}, with
each function fi mapping n inputs into the output xt+1(i). Comparing the systems of
equations for linear and nonlinear systems, we see that linear models are a special case
of nonlinear models; the latter permit much more freedom in specifying functional
forms within the generator system. For example, the fi’s might include “interaction

1

terms” (say the product xt(1)xt(2)) and nonlinear transformations (e.g., we could
assume f1 = (αxt(1)xt(2) + βxt(3))

2 where α and β are parameters).
While linear models have many useful applications, nonlinear models clearly per-

mit much greater flexibility in modeling social processes. However, this flexibility
comes at a price. Analysis of linear models is trivial when n = 1. For instance, let-
ting the scalar xt denote a population level (or bank balance) at time t, and letting
r denote the population growth rate (or interest rate), we could simply note that

xt+1 = (1 + r) xt

and obtain
xt = (1 + r)t x0

by induction. In order to make things more interesting, we thus assumed n ≥ 2
throughout the examples in the first half of the book. In contrast, “one-dimensional”
nonlinear models (with n = 1) can be more interesting and consequently harder
to analyze. Indeed, the next several chapters are devoted entirely to these one-
dimensional models and some social science applications. Once we have developed
some appreciation for the one-dimensional case, subsequent chapters will address
higher dimensional nonlinear models (with n ≥ 2) and their applications.

11.2 The discrete logistic model

Our first example of a one-dimensional nonlinear system is the (discrete-time) logistic
model – a model of population growth that is simple yet mathematically interesting.
Letting the scalar pt denote population size in period t, this model assumes that
population dynamics are given by the equation

pt+1 =
[
1 + r

(
1− pt

k

)]
pt

where r and k are parameters. To help motivate this equation, we can rewrite it as

pt+1 − pt = r
(
1− pt

k

)
pt

and hence
∆p = r

(
1− p

k

)
p

where ∆p denotes the change in p over one period, and the time subscript on p is
now implicit.1 Dividing both sides of this equation by p, we obtain

∆p

p
= r

(
1− p

k

)
1You should become comfortable with this “delta” notation, which we’ll use frequently to simply

the specification of nonlinear models.

2

and the left-hand side can be interpreted as the population growth rate. Thus, when
the population is small relative to the “carrying capacity” of the environment (given
by the parameter k), the population grows at approximately rate r. However, as the
population becomes large relative to the carrying capacity (so that p/k approaches
1), the growth rate slows to zero.

We can begin to understand the behavior of this system through some numerical
examples. Setting r = 0.25 and k = 10, we first use Matlab to compute the time
path (p0, p1, . . . , p50) given the initial population sizes p0 = 1 and p0 = 15.

>> r = .25; k = 10; % set parameter values
>> p = 1; % initial condition p = 1
>> y1 = p;
for t = 1:50;

p = (1+r*(1-p/k))*p;
y1 = [y1; p];

end
>> p = 15; % initial condition p = 15
>> y2 = p;
for t = 1:50;

p = (1+r*(1-p/k))*p;
y2 = [y2; p];

end

Note our use of the for loop. For each time period t (from 1 to 50), we use the old
value pt−1 to obtain the new value pt; these values are then collected in the time-path
vector y1 (for our first example where p0 = 1) and y2 (for our second example where
p0 = 15). To see the results, we plot both time paths together.

>> plot(0:50,y1,0:50,y2)
>> % time paths in logistic model with r = .25 and k = 10

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

period

po
pu

la
tio

n
si

ze

3

As already discussed above, the population begins to grow geometrically (at rate
r = 0.25) when it is initially small relative to its carrying capacity (k = 10). But
as p rises toward k, the growth rate decreases. Graphically, the time-path curve is
initially convex but becomes concave as t rises. In contrast, if the population initially
exceeds its carrying capacity, the population size begins to fall rapidly. In both cases,
the population size converges to the carrying capacity in the long run.

11.3 Equilibrium

Based on these numerical examples, we might suspect – but have not demonstrated –
that population size p will converge to the carrying capacity k for any initial condition
p0. Generically, the dynamics for a one-dimensional nonlinear system is given by the
equation

xt+1 = f(xt)

where f is a generator function mapping the (scalar) input xt into the (scalar) output
xt+1. The system is in equilibrium when xt+1 = xt = x∗ where

x∗ = f(x∗)

Equivalently, the equilibrium condition may be written as

f(x∗)− x∗ = ∆x∗ = 0

Researchers describe this outcome using a variety of terms (which, for our purposes,
may be used interchangeably). We may say that x∗ is an equilibrium or steady state
of the system. Alternatively, x∗ is a fixed point of the generator function.

For the discrete logistic model, the equilibria are determined by the condition

∆p∗ = r

(
1− p∗

k

)
p∗ = 0

which implies p∗ = k or p∗ = 0. Thus, while our population projections suggested a
unique equilibrium, we find there are actually two. Intuitively, if population size is
initially zero, the population size will remain zero forever.

11.4 The cobweb diagram

To better understand the dynamics of one-dimensional models, it is helpful analyze
them graphically using a cobweb diagram. On this diagram, we plot both the gen-
erator function f(x) and x itself. Of course, plotting x as a function of itself, we
simply obtain a 45-degree line. Thus, the cobweb diagram is essentially a graph of
the generator function superimposed on a 45-degree line. Any intersection of these
curves indicates an equilibrium, since the intersection corresponds to some x∗ such
that x∗ = f(x∗).

4

To illustrate, we first solve numerically for the generator function in our preceding
examples (maintaining the parameter values r = 0.25 and k = 10).2 We then plot
this function (thicker curve) against the 45-degree line (thinner curve). Inspection
of this diagram confirms the existence of two equilibria: p∗ = 0 and p∗ = 10.

>> p = 0:.1:15; f = (1+r*(1-p/k)).*p;
>> plot(p,f,p,p) % cobweb diagram for logistic model with r = .25 and k = 10

0 5 10 15
0

5

10

15

old population size (in period t)

ne
w

 p
op

ul
at

io
n

si
ze

 (i
n

pe
rio

d
t+

1)

Having shown how the cobweb diagram can be used to determine the existence of
an equilibrium (or equilibria), we can also use this diagram to depict the time path
from an initial condition to an equilibrium. Choosing a particular initial condition
(say p0 = 1), the population size in period 1 is given by

p1 = f(p0) = f(1) = 1.225,

the population size in period 2 is given by

p2 = f(p1) = f(1.225) = 1.4937,

the population size in period 3 is given by

p3 = f(p2) = f(1.4937) = 1.8114,

2Here, we make use of one of Matlab’s strengths by “vectorizing” the computation. The step size
(of 0.1) is arbitrary, but small enough to ensure that the generator function appears smooth when
plotted. Note that the same result could be obtained in a less elegant fashion using a for loop (iter-
ating p from 0 to 15 by steps of 0.1). Alternatively, the generator function could have been plotted
directly using the ezplot command. Readers are encouraged to study Matlab documentation for
more information.

5

and so on. To depict this sequence graphically, we might start by plotting a line from
point (p0, p0) to point (p0, f(p0)) to indicate the change in the population over the
first period. To indicate that the old population size (for period 0) becomes the new
population size (for period 1), we then plot a line from (p0, f(p0)) to (f(p0), f(p0)).
Of course, this latter point is simply (p1, p1). Repeating this procedure, we then plot
a line from (p1, p1) to (p1, f(p1)) to indicate change in population size over the second
period, and then another line from (p1, f(p1)) to (f(p1), f(p1)) to indicate that the
old population size (for period 1) becomes the new population size (for period 2).
Continuing in a similar manner for subsequent periods, we obtain a stairstep curve
that looks something like a “cobweb” (hence the name of the diagram).

In the code below, we first compute the cobweb (using the y1 vector computed
earlier) and then superimpose the cobweb on the other curves shown earlier.

>> cobweb = [];
for t = 1:50;

cobweb = [cobweb; y1(t) y1(t); y1(t) y1(t+1)];
end
>> plot(p,f,p,p,cobweb(:,1),cobweb(:,2))
>> % cobweb diagram for initial condition p = 1

0 2 4 6 8 10 12
0

2

4

6

8

10

12

old population size (period t)

ne
w

 p
op

ul
at

io
n

si
ze

 (p
er

io
d

t+
1)

In a similar way, you could plot the cobweb for the second time path (from the initial
condition p0 = 15) to show how this sequence converges to the equilibrium p∗ = 10
from above. (We’ll leave this task for the reader, since it merely involves substituting
the y2 vector for the y1 vector in the computations above.)

6

11.5 Stability

Having identified the equilibria of the model (by finding fixed points of the generator
function), we can now assess the stability of each equilibrium. Conceptually, an
equilibrium is stable when the system returns to this outcome after a small shock
(often referred to as a “perturbation”). For our present example, it is easy to see
from the cobweb diagram that the upper equilibrium p∗ = 10 is stable while the lower
equilibrium p∗ = 0 is unstable. Starting from the upper equilibrium, a small drop in
the population level (below 10) would cause the population to grow, while a small
increase in the population level (above 10) would cause the population to shrink. In
contrast, starting from the lower equilibrium, a small increase in the population level
(above 0) would cause the population to grow. Thus, following a small shock, the
system would return to the upper equilibrium but diverge from the lower equilibrium.

More formally, stability depends on the slope of the generator function. Consider
a generic one-dimensional nonlinear system where

xt+1 = f(xt)

Borrowing notation from calculus, let f ′(x) denote the slope of the generator function
f evaluated at x. An equilibrium x∗ is stable if

|f ′(x∗)| < 1

and is unstable if
|f ′(x∗)| > 1

where the vertical bars denote absolute value.3 While the need for the absolute
value signs may not be immediately apparent, examples in section xx below will help
demonstrate their relevance.

Returning to our present example, we can easily assess stability from the cobweb
diagram even without computing the precise slopes f ′(10) and f ′(0). Recognizing
that 45-degree line has slope equal to 1, the generator function must have a slope less
than 1 when it is rising and crosses the 45-degree line from above. Hence f ′(10) < 1.
Conversely, the generator function must have a slope greater than 1 when it is rising
and crosses the 45-degree line from below. Hence f ′(0) > 1. Thus, consistent with
our informal argument above, we find that the upper equilibrium is stable while the
lower equilibrium is unstable.

11.6 Further analysis of stability

For some applications, qualitative analysis of stability may be sufficient – we can learn
everything we wish to know from the cobweb diagram. But for other applications,

3In the borderline case where |f ′(x∗)| = 1, assessment of stability requires additional information
about the curvature (i.e., higher order derivatives) of the generator function.

7

we may wish to assess stability numerically. For readers who know calculus, the task
is straightforward: differentiate the generator function and evaluate this derivative
at each equilibrium. For our present example, the generator function is

f(p) =
[
1 + r

(
1− p

k

)]
p = (1 + r) p−

(r

k

)
p2

and thus differentiation yields

f ′(p) = 1 + r − 2
(r

k

)
p

Evaluating this derivative at each equilibrium, we obtain

|f ′(k)| =
∣∣∣1 + r − 2

(r

k

)
k
∣∣∣ = |1− r|

|f ′(0)| =
∣∣∣1 + r − 2

(r

k

)
0
∣∣∣ = |1 + r|

Thus, given the parameter value r = 0.25, we verify that the equilibrium at k is
stable while the equilibrium at 0 is unstable.

For readers who do not know calculus, we can tackle this problem in a different
way. (Even readers who know calculus might benefit from working through this
approach, which will be generalized for two-dimensional models in chapter xx.) To
begin, we suppose that the system was in equilibrium at p∗ but becomes disturbed
by a small shock in period t. We may thus write

pt = p∗ + εt

where εt reflects the (small) perturbation. Even with no further shocks in subsequent
periods, the system will not return immediately to equilibrium.4 For period t + 1,
we may thus write

pt+1 = p∗ + εt+1

where εt+1 reflects the deviation from the initial equilibrium. Conceptually, the
equilibrium p∗ is stable if the deviation from equilibrium falls over time, so that

|εt+1| < |εt|

To determine whether this condition holds, note first that

pt+1 = f(pt)

p∗ + εt+1 = f(p∗ + εt)

= (1 + r)(p∗ + εt)−
(r

k

)
(p∗ + εt)

2

= (1 + r)(p∗ + εt)−
(r

k

)
(p∗2 + 2p∗εt + εt

2)

4In contrast to Young’s evolutionary framework (which we studied in Chapter 5), we assume a
one-time disturbance to the system, not a new shock in every period.

8

Recognizing that p∗ is a fixed point of f(p), we know that

p∗ = (1 + r)p∗ −
(r

k

)
p∗2

and thus the preceding equation simplifies to

εt+1 = (1 + r)εt −
(r

k

)
(2p∗εt + εt

2)

Further, because we have assumed that the shock εt is small, the term εt
2 is very

small and can be ignored. Thus, the preceding equation simplifies further to

εt+1 ≈
[
(1 + r)−

(r

k

)
2p∗

]
εt

From this equation, it is apparent that the equilibrium p∗ is stable if∣∣∣(1 + r)−
(r

k

)
2p∗

∣∣∣ < 1

In particular, the equilibrium p∗ = k is stable if

|1− r| < 1

and the equilibrium p∗ = 0 is stable if

|1 + r| < 1

Thus, given the parameter value r = 0.25, we verify (yet again) that the equilibrium
at k is stable while the equilibrium at 0 is unstable.

Of course, there is a close connection between these two approaches to assessing
stability. Thinking graphically about the second approach, the slope of the generator
function at p∗ is well approximated by the slope of a chord from point (p∗, p∗) to
point (p∗ + εt, p

∗ + εt+1). Because the slope of the chord is determined by its rise
(εt+1) over its run (εt), we obtain

f ′(p∗) ≈ εt+1

εt

Alternatively, using the formal definition of a derivative from calculus, we may write

f ′(p∗) = lim
ε→0

f(p∗ + ε)− f(p∗)

ε

and it becomes apparent that our “non-calculus” approach essentially uses this def-
inition to compute the slope of the generator function. While we will attempt to
minimize the use of calculus throughout the remainder of the book, utilizing graphi-
cal methods whenever possible, this example shows how (even a little) knowledge of
calculus can greatly simplify the analysis of nonlinear systems. For more complicated
problems (in which the generator function incorporates less “convenient” functional
forms), calculus becomes an indispensible tool.

9

11.7 Oscillations, cycles, and chaos in the logistic model

Throughout the analysis of our present example, we have fixed the parameters r =
0.25 and k = 10. Perhaps you’ve wondered what happens for other parameter values.
It turns out that a change in the capacity constraint k is not very interesting, as this
change merely rescales the size of the population. In contrast, a change in the
parameter r may result in a qualitative change in the dynamics of the model.

To illustrate, we first consider the case where r = 1.5. From the stability condi-
tions derived in the preceding section, we already know that the upper equilibrium
(p∗ = k) will be stable (because |1 − r| < 1), while the lower equilibrium (p∗ = 0)
will be unstable (because |1 + r| > 1). However, as we can see from the diagrams in
Figure 1, the dynamics now differ qualitatively from those shown in Section 11.3. In
particular, the population “overshoots” the long-run population size, oscillating as it
converges to this equilibrium. This example helps explain the need for the absolute
value signs in the stability definition. Given an initial equilibrium at p∗ = k, a small
positive shock to population size in period t would actually cause the population
level to fall below p∗ in period t + 1. That is, a positive deviation εt induces a neg-
ative deviation εt+1. However, as long as the absolute value of these deviations are
decreasing, the oscillations dampen over time and the system returns to p∗.

Now consider the case where r = 2.2. From the stability conditions, we know that
both equilibria are unstable (because both |1−r| and |1+r| exceed 1). The dynamics
are depicted in the diagrams in Figure 2. Starting from an initial condition close
to the (unstable) upper equilibrium, we see that system converges not to a steady
state but rather to a cycle in which population size alternates every other period
between 7.4625 and 11.6284. The reader may verify that this same cycle is reached
from other initial conditions (at least for p0 ∈ (0, 14.5454)). Despite the obvious
qualitative differences between this outcome and the (steady state) equilibria we
have already encountered, it may also be called a (cyclical) equilibrium. To help
motivate this terminology, note that history repeats itself every two periods in this
equilibrium. Thus, the (2-cycle) equilibrium condition can be written as

p = f(f(p))

and the existence of a 2-cycle may be verified by noting that

f(f(7.4625)) = f(11.6284) = 7.4625

f(f(11.6284)) = f(7.4625) = 11.6284

Of course, either of the steady states (p = k or p = 0) would also statisfy this 2-cycle
equilibrium condition. But stability analysis (using the iterated generator function
f(f(p)) in place of the original function f(p)) would demonstrate that the 2-cycle
depicted in Figure 2 is the only stable equilibrium.

Finally, consider the case where r = 2.8. Both equilibria are unstable, and the
dynamics are depicted in the diagrams in Figure 3. Unlike all of the previous cases,

10

Figure 1: Oscillations in the logistic model (r = 1.5)

>> r = 1.5; k = 10;
>> p = 1; y = p; for t = 1:20; p = (1+r*(1-p/k))*p; y = [y p]; end
>> plot(0:20,y) % time path for logistic model with r = 1.5

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

9

10

11

period

po
pu

la
tio

n
si

ze

>> cobweb = []; for t = 1:20; cobweb = [cobweb; y(t) y(t); y(t) y(t+1)]; end
>> p = 0:.1:12; f = (1+r*(1-p/k)).*p;
>> plot(p,p,p,f,cobweb(:,1),cobweb(:,2)) % cobweb diagram

0 2 4 6 8 10 12
0

2

4

6

8

10

12

old population size (period t)

ne
w

 p
op

ul
at

io
n

si
ze

 (p
er

io
d

t+
1)

11

Figure 2: A 2-cycle in the logistic model (r = 2.2)

>> r = 2.2; k = 10;
>> p = 9.9; y = p; for t = 1:50; p = (1+r*(1-p/k))*p; y = [y p]; end
>> plot(0:50,y) % time path for logistic model with r = 2.2

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

period

po
pu

la
tio

n
si

ze

>> cobweb = []; for t = 1:50; cobweb = [cobweb; y(t) y(t); y(t) y(t+1)]; end
>> p = 0:.1:15; f = (1+r*(1-p/k)).*p;
>> plot(p,p,p,f,cobweb(:,1),cobweb(:,2)) % cobweb diagram

0 5 10 15
0

5

10

15

old population size (period t)

ne
w

 p
op

ul
at

io
n

si
ze

 (p
er

io
d

t+
1)

12

Figure 3: Chaos in the logistic model (r = 2.8)

>> r = 2.8; k = 10;
>> p = 9.9; y = p; for t = 1:50; p = (1+r*(1-p/k))*p; y = [y p]; end
>> plot(0:50,y) % time path for logistic model with r = 2.8

0 5 10 15 20 25 30 35 40 45 50
2

4

6

8

10

12

14
po

pu
la

tio
n

si
ze

period

>> cobweb = []; for t = 1:50; cobweb = [cobweb; y(t) y(t); y(t) y(t+1)]; end
>> p = 0:.1:15; f = (1+r*(1-p/k)).*p;
>> plot(p,p,p,f,cobweb(:,1),cobweb(:,2)) % cobweb diagram

0 5 10 15
0

5

10

15

old population size (period t)

ne
w

 p
op

ul
at

io
n

si
ze

 (p
er

io
d

t+
1)

13

we see that the dynamics never converge to an equilibrium.5 Rather, adopting ter-
minology from the dynamical systems literature, we are observing chaotic dynamics.
It is intriguing that a model as simple as the discrete logistic model can produce such
complicated dynamics. This model has consequently received much attention from
mathematicians, who have learned much about its behavior. For instance, increas-
ing the parameter r more slowly from 2.2 to 2.8, we would find that the equilibrium
changes from a 2-cycle to a 4-cycle to an 8-cycle (and so on) before becoming chaotic
(illustrating the “period-doubling” route to chaos). Readers interested in more de-
tails are encouraged to consult the further readings at the end of this chapter.

11.8 Approximating continuous-time models

From a mathematical perspective, the examples reported in the previous section are
fascinating, and certainly warrant further discussion. But given the applications we
will be considering, it is appropriate to question their relevance. In particular, we
might worry that these sorts of behaviors – oscillations, cycles, chaos – are artifacts
of the discrete-time specification of the logistic growth model. To see this, con-
sider again the case where r = 2.2. In the 2-cycle equilibrium, the population level
of 7.46 induces a large positive growth rate (of 56%) which pushes the population
well over capacity (to a level of 11.63); this new population level then induces a
large negative growth rate (of −35%) which pushes the population well below ca-
pacity (to 7.46). However, these discontinuous jumps in the growth rate depend
crucially on the discrete-time specification of the model. In reality, population size
changes through continuous flows of births and deaths. As the population begins
to approach its capacity constraint from below, the growth rate would not remain
constant, but would begin to fall toward zero, thereby inhibiting the “overshooting”
observed above. Conversely, as the population approaches the capacity constraint
from above, the growth rate would become less negative, falling to zero as population
size falls. Thus, in reality, we might expect not to observe oscillations (much less
cycles or chaos).

More formally, we are describing the behavior of the continous-time version of
the logistic growth model, given by the differential equation

dp

dt
= r

(
1− p

k

)
p

where time (t) is a continous variable and dp/dt denotes the derivative of p with
respect to t. For the benefit of readers who do not know calculus, we remain within
the discrete-time framework, rewriting this equation as

∆p

∆t
= r

(
1− p

k

)
p

5This conclusion is somewhat premature based on merely on the first 50 periods shown in Figure
3. But the reader can verify (by altering the number of periods in the for loop) that the model
never converges to an equilibrium even after thousands of periods.

14

which implies

∆p = r
(
1− p

k

)
p ∆t = r

(
1− p

k

)
p h

where h is a new parameter that denotes period length. To this point, we have
implicitly set h = 1. Note that period length h does not affect the steady states
of the system – the equation ∆p∗ = 0 continues to have the solutions p∗ = k and
p∗ = 0 for any choice of h – but merely the disequilibrium dynamics. By setting
h sufficiently small, we can approximate the behavior of the continuous-time model
while remaining within the discrete-time framework (and avoiding the mathematics
of differential equations).

To illustrate, consider the time path of the logistic model given r = 1.5 and
h = 0.1.

>> r = 1.5; k = 10; h = .1;
>> p = 1; y = p; for t = 1:200; dp = r*(1-p/k)*p*h; p = p+dp; y = [y p]; end
>> plot(0:200,y) % time path given r = 1.5 and h = 0.1

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

9

10

11

period

po
pu

la
tio

n
si

ze

In contrast to the time-path diagram shown in Figure 1 (which assumed r = 1.5
but h = 1), we see that the population size does not oscillate, but instead rises
monotonically as it converges to equilibrium. It is also important to note the change
in the horizontal scale. In decreasing h from 1 to 0.1, the number of periods has
increased by a factor of 10. More concretely, if period length had been conceptualized
as a year (given h = 1), we now interpret each period as 1/10 of a year (given h = 0.1).
Thus, while the two time-path diagrams illustrate dynamics over the same time frame
(20 years), the diagram above subdivides each year into 10 periods.

Partly to address the concerns we have just raised, researchers often use continuous-
time (differential equation) models rather than discrete-time (difference equation)
models for empirical applications. However, for the remainder of this book, we will

15

continue to recast continous-time as discrete-time models, setting period length as
small as necessary to approximate the continuous-time dynamics. Moreover, even for
models originally specified in discrete time, we will sometimes incorporate a period-
length parameter when it appears that the dynamics are an artifact of the discrete-
time specification. On the other hand, it is important to realize that discrete-time
specifications may actually be more realistic for some types of empirical applications,
and that the potential for cycles or chaos may be genuine rather than artifactual.
Mathematical modelers must inevitably exercise judgement about the most appropri-
ate model for a given application. Further, in moving to higher dimensional models,
even continuous-time models admit cycles (for n ≥ 2) and chaos (for n ≥ 3). We’ll
return to the topic of cycles when we address predator-prey models in Chapter xx.

11.9 Further reading

More advanced treatments of nonlinear dynamical systems include P G Drazin, Non-
linear Systems (Cambridge 1992) and Steven H Strogatz, Nonlinear Dynamics and
Chaos (Perseus 1994). A graphical introduction to nonlinear systems is provided by
Ralph H Abraham and Christopher D Shaw, Dynamics: The Geometry of Behav-
ior (Addison-Wesley 1992). Our treatment of the discrete logistic model draws on
the presentation by Elizabeth S Allman and John A Rhodes, Mathematical Models
in Biology (Cambridge 2004). This model began to receive much attention from
mathematicians following the classic article by R M May (1978) “Simple Mathe-
matical Models with Very Complicated Dynamics,” Nature 261:459-567. For more
extensive treatment of this class of models, see Robert L Devaney, A First Course in
Chaotic Dynamical Systems (Addison-Wesley 1992). For students interested in learn-
ing about differential equations, there are many textbooks including Paul Blanchard,
Robert L Devaney, Glen R Hall, Differential Equations (Thompson Brooks/Cole
2006).

16

