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8 Influence Networks

Social psychologists have long been interested in social influence processes, and
whether these processes will lead over time to the convergence (or divergence) of
attitudes or opinions. Adopting a “structural” perspective on social influence, this
chapter develops a simple model of influence networks. Given the (fixed) structure
of the influence network, we assume that each individual gradually revises her opin-
ion toward those of her contacts, depending on the relative strength of the social
tie to each contact. Our analysis focuses on the conditions under which opinions
converge in the long run. While this model is not a Markov chain process, the un-
derlying mathematics will be familiar from previous chapters, and we will see another
application of communication classes.

In the second section, which is based upon Friedkin and Johnsen (1997), we
generalize the model so that each individual’s initial opinion continues to exert some
influence on the individual’s later opinions even in the long run. In this version of the
model, differences of opinion may persist even when every individual is influenced
by every other. However, we will see that the opinions of individuals who hold very
similar (formally, structurally equivalent) positions within the influence network do
become more similar over time.

8.1 The basic model

We consider an influence network with n individuals. Each individual ¢ holds an
initial opinion x((z) which is a scalar (say between 0 and 10), and we arrange these
initial opinions as an (nx1) column vector xg. Interpersonal influence is characterized
by a square (n xn) matrix W called the influence matriz. By convention, each row of
W is a probability vector, and W (i, j) > 0 indicates that individual 7 is influenced by
individual j. (We permit individuals to influence themselves, with i’s “own” influence
reflected by W (i,i) > 0.) Letting x; denote the vector of opinions in period ¢, the
dynamics of the opinion-formation process are given by the equation

X1 = Wxy

and hence
x; = W'xy.

While these equations may seem quite familiar from previous chapters, and every
row of W is a probability vector, it is important to recognize that this model is not
a Markov chain process. Individuals do not transition between a finite set of states
— there are n individuals rather than n states of a chain — and W should not be



interpreted as a transition matrix. Rather, given that the W matrix is postmultiplied
by a column vector, individual ¢’s opinion in period t + 1 is a weighted average of
the opinions held by i’s contacts in period t. Nevertheless, as we’ll see shortly, our
experience with Markov chains will prove helpful in the analysis of influence networks.

8.1.1 An example

To illustrate, consider the following example with 9 individuals (adapted from Bonacich
manscript, Chapter 10).

>> W % influence matrix

W=
0.8000 0.2000 0 0 0 0 0 0
0.4000 0.6000 0 0 0 0 0 0
0 0 0.3000 0.3500 0.3500 0 0 0
0 0 0.5000 0.5000 0 0 0 0
0 0 0 0.8000 0.2000 0 0 0
0 0 0 0 0 1.0000 0 0
0 0 0.7000 0 0 0 0.3000 0
0 0 0 0 0.3000 0 0.3000 0.1000
0.2000 0 0 0 0 0.4000 0.1000 0.1000

Further given a vector of initial opinions, we can compute the opinions held in the
next period.

> x0 =[84629 107 5 1]’ % initial opinions in period O
x0 =

[
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It is straightforward to verify that each individual’s new (period t + 1) opinions are
a weighted average of the prior (period t) opinions held by the individual’s contacts.
For instance, for individual 1, we see that

x1(1) = W(1,1) x1(0) + W(1,2) x2(0) = (.8)(8) + (:2)(4) = 7.2

In this example, individual 1 is influenced by herself (reflected by the “weight” of
0.8 on her own prior opinion) and individual 2 (reflected by the weight of 0.2 on his
prior opinion). Thus, individual 1’s new opinion is a weighted average of these two
prior opinions.

To determine the long-run outcome of this opinion-formation process, we continue
to iterate for the next 15 periods.

>> for t = 1:15; disp((W"t * x0)’); end

7.2000 5.6000 5.6500 4.0000 3.4000 10.0000 6.3000 5.6000
6.8800 6.2400 4.2850 4.8250 3.8800 10.0000 5.8450 5.5700
6.7520 6.4960 4.3323 4.5550 4.6360 10.0000 4.7530 5.8835
6.7008 6.5984 4.5165 4.4436 4.5712 10.0000 4.4585 5.8421
6.6803 6.6394 4.5101 4.4801 4.4691 10.0000 4.4991 5.7047
6.6721 6.6557 4.4853 4.4951 4.4779 10.0000 4.5068 5.6543
6.6689 6.6623 4.4861 4.4902 4.4917 10.0000 4.4917 5.6465
6.6675 6.6649 4.4895 4.4882 4.4905 10.0000 4.4878 5.6420
6.6670 6.6660 4.4894 4.4888 4.4886 10.0000 4.4890 5.6384
6.6668 6.6664 4.4889 4.4891 4.4888 10.0000 4.4893 5.6372
6.6667 6.6666 4.4889 4.4890 4.4890 10.0000 4.4890 5.6370
6.6667 6.6666 4.4890 4.4890 4.4890 10.0000 4.4890 5.6369
6.6667 6.6666 4.4890 4.4890 4.4890 10.0000 4.4890 5.6368
6.6667 6.6667 4.4890 4.4890 4.4890 10.0000 4.4890 5.6368
6.6667 6.6667 4.4890 4.4890 4.4890 10.0000 4.4890 5.6368

Note that the column vectors of opinions have been transposed so that the rows of
this table correspond to time periods while the 9 columns correspond to the 9 indi-
viduals. For the present example, we see that opinions have reached an equilibrium
by period 15. Further, we see that some individuals eventually share common opin-
ions: x35(7) = 6.6667 for i € {1,2} and x;5(7) = 4.4890 for i € {3,4,5,7}. However,
at least for this example, not everyone holds the same opinion even in the long run.

8.1.2 Direct influence vs. total influence

Following Friedkin and Johnsen (1997), it is useful to distinguish direct influence
from total influence. Direct influence is reflected by the equation

Xt+1 = WXt

Thus, the direct influence matrix (W itself) maps old (period t) opinions into new
(period t + 1) opinions. In contrast, total influence is reflected by the equation

Xoo — WOOXO
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Thus, the total influence matrix (W) maps initial (period 0) opinions into long-run
(period oo) opinions. For the present example (where equilibrium is reached within
15 periods), the total influence matrix is given below.

>> W~15
ans =
0.6667 0.3333 0 0 0 0 0 0
0.6667 0.3333 0 0 0 0 0 0
0 0 0.3524 0.4934 0.1542 0 0 0
0 0 0.3524 0.4934 0.1542 0 0 0
0 0 0.3524 0.4934 0.1542 0 0 0
0 0 0 0 0 1.0000 0 0
0 0 0.3524 0.4934 0.1542 0 0.0000 0

0.0580 0.0290 0.2605 0.3647 0.1140 0.1739 0.0000 0.0000
0.1739 0.0870 0.0766 0.1073 0.0335 0.5217 0.0000 0.0000

To help interpret this matrix, consider individual 9. As we have already seen, indi-
vidual 9’s new (period ¢ + 1) opinion can be determined by computing a weighted
average of the previous (period t) opinions using weights given in row 9 of the direct
influence (W) matrix. The positive weights in this row indicate that individual 9 is
directly influenced by individuals 1, 6, 7, 8, and 9. In contrast, we can determine
this individual’s long-run (period oo) opinion by computing a weighted average of
the initial (period 0) opinions using the weights given in row 9 of the total influence
(W) matrix. Intuitively, these weights do not reflect the proximate (“direct”) in-
fluences on individual 9, but rather the ultimate (“total”) influences. The positive
weights in row 9 of this matrix reveal that 9’s long-run opinion can be derived from
the initial opinions held by individuals 1, 2, 3, 4, 5, and 6.

We have emphasized that an influence matrix should not be interpreted as a
transition matrix for a Markov chain. Nevertheless, because each row of W is a
probability vector, we can now make use of Theorem 1 from Chapter 1. Namely, if
W is primitive, then every row of the total influence matrix W equals v, the unique
probability vector determined by the equation v = vI¥. Consequently, all opinions
converge in the long run: x, (i) = vxo for all . That is, every individual’s long-run
opinion is determined by the same weighted average of the initial opinions, where
v(i) is the weight placed on ¢’s initial opinion. Of course, in our example, given
variation in the long-run opinions, it is evident that the W matrix is not primitive.

8.1.3 Communication classes in the influence network

In our example, we saw that opinions eventally converge for some subsets of individ-
uals but not others. To understand why, it is useful to determine the communication
classes of the influence network. Following the recipe presented in Chapter 7, we
obtain the communication classes and image matrix below.

>> Z = double(W > 0); % zero pattern of W
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>> R = (eye(9) + Z)°8 > 0; % reachability

> C =R & R’; % can reach and be reached by

>> U = unique(C, ’rows’) I communication classes

U =
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0

>M=Ux*xZx*x U’ > 0;

> M =M & “eye(5) ¥ image matrix
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On the directed graph below, an edge from communication class [i] to class [j] indi-
cates that class [i] is influenced by class [j].! Note that the classes {1, 2}, {3, 4, 5},
and {6} are closed, while the classes {7} and {8, 9} are open.

{6y {12t {3,4, 5}

NI

{8, 9}— {7}

The convention adopted in this diagram — arrows denote influenced by rather than
influence — might initially seem counterintuitive. However, this convention helps
rationalize our terminology because the closed classes are indeed “closed” to outside
influence, while the open classes are “open” to outside influence. Moreover, because
the arrows reflect mathematical dependence between opinions, this diagram shows
how we could have “reduced” the problem of finding the equilibrium opinion vector
to a series of simpler subproblems. More specifically, we could begin by finding the
equilibrium opinion within each of the closed classes, and then use those results to
solve for equilibrium opinions within the open classes.

1Using the terminology developed in Chapter 7, this graph is a reduced influence diagram. We
do not need to reverse the edges of this diagram because this reversal is already implicit in our
postmultiplication of the W matrix by the column vector x;.



8.1.4 Solving sequentially for the long-run opinions

To implement this sequential solution procedure, we begin with class {1, 2}. Because
this class is closed to outside influence, the long-run opinions of this class can be
determined entirely from the corresponding (2 x 2) submatrix of W and (2 x 1)
subvector of xg.

>> W(1:2, 1:2) % submatrix for closed class {1,2}
ans =

0.8000 0.2000

0.4000 0.6000

>> W(1:2, 1:2)°15 % total influence
ans =

0.6667 0.3333

0.6667 0.3333

>> x0(1:2) % initial opinions
ans =

8

4

>> W(1:2, 1:2)715 * y0(1:2) % long-run opinions
ans =

6.6667

6.6667

Note that the convergence of the opinions within a closed class follows from the
primitivity of the corresponding submatrix. It is also interesting to note that, while
the opinions of individuals 1 and 2 are mutually determined, individual 1 exerts more
“total” influence than individual 2, with the long-run opinions of both individuals
determined by the weights v(1) = 2/3 and v(2) = 1/3. Intuitively, the greater
relative weight on 1’s initial opinion is due to the relative strength of 1’s “own”
influence parameter, which causes individual 2 to move toward 1’s opinion faster
than individual 1 moves toward 2’s opinion.?
Similar analysis reveals the long-run opinions for closed class {3, 4, 5}.

>> W(3:5,3:5) % submatrix for closed class {3, 4, 5}
ans =
0.3000 0.3500 0.3500

2More generally, suppose that the influence matrix is given by

g 1-p
Given the condition v = vIWW and the requirement that v is a probability vector, we obtain the

weights v(1) = 8/(a+ () and v(2) = o/(a+ (). Increasing both o and § by the same factor would
have thus have no effect on the long-run equilibrium, but merely slow the speed of convergence.

o]



0.5000 0.5000 0
0 0.8000 0.2000

>> W(3:5,3:5)"15 % total influence
ans =
0.3524 0.4934 0.1542
0.3524 0.4934 0.1542
0.3524 0.4934 0.1542

>> y0(3:5) % initial opinions
ans =

6

2

9

>> W(3:5,3:5)"15 * y0(3:5) % long-run opinions
ans =

4.4890

4.4890

4.4890

Again, convergence of opinions within this (closed) class follows from the primitivity
of the submatrix.

While we could follow this same procedure again for the final closed class {6}, the
problem is trivial because there is only one individual in this class. Because individual
6 is not influenced by any other individual (W (6,6) = 1), her opinion never changes
over time, and her initial opinion remains her long-run opinion (X, (6) = x¢(6) = 10).

Having solved for the long-run opinions within each closed class, we may now
turn to the open classes. For the sole individual in class {7}, the long-run opinion
Xoo(7) is determined by the equation

oo (T) = W(7,3) %0 (3) + W(T,7) x0(7)

We have already solved for individual 3’s long-run opinion, and could further substi-
tute for the values of W(7,3) and W (7,7) to obtain individual 7’s long-run opinion.
But it may be more instructive to note that, because row 7 of W is a probability
vector, the preceding equation may be rewritten as

Xoo(7) = (1 = W(7,7)) X0(3) + W(7,7) Xo0(7)

and hence we would obtain
X00(7) = XOO(S)

regardless of the strength of individual 7’s own influence effect (assuming W (7,7) <
1). Intuitively, because individual 3 is the sole “outside” influence on individual 7,
individual 7’s opinion must converge to 3’s opinion in the long run, and the strength
of 7’s own effect merely determines the speed of convergence.



We turn finally to the open class {8, 9}. The long-run opinions for individuals 8
and 9 are jointly determined by the equations

Xoo(8) = W(8,5) Xoo(5) + W(8,7) Xoo(7) + W (8,8) X0o(8) + W (8,9) x0(9)
Xoo(9) = W(9,1) Xoo(1) + W(9,6) Xoo(6) + W (9,7) Xoo(7) + W (9,8) x00(8)
+W(9,9) x5(9)
After substitution and simplification, we obtain

X5o(8) = 2.9927 4 0.3333 x.0(9)
Xso(9) = 7.2278 + 0.125 xo0(8)

and thus

Xoo(8) = 5.6386

X0(9) = 7.9324
While opinions converge within closed classes (given primitive submatrices), it is
interesting to note that opinions do not generally converge within open classes. In-
tuitively, while the opinions of 8 and 9 are mutually determined, these individuals

place different weights on “outsiders” who themselves hold different long-run opinions
and are uninfluenced by 8 or 9.

8.2 The persistence of initial opinions

Having presented the basic model, we now generalize the model so that each indi-
vidual’s initial opinion may have a permanent effect on their long-run opinion. More
precisely, the dynamics of opinion formation are now given by

X1 = aWx, + (1 — a)xg

where a € [0, 1] is a coefficient of social influence. Implicitly, the basic model fixed
a equal to 1.3 To obtain a non-recursive version of this formula, we may substitute
the equation for period-1 opinions,
x; = aWxg + (1 — a)xg
into the formula for period-2 opinions to obtain
xy = aWx;+ (1 —a)x
= aWl[aWxy + (1 — a)xo] + (1 — a)xg
= [@®W?+a(l—a)W +(1-a)lxg

3To generalize even further, we might specify the model as x;.1 = AWx; + (I — A)xo where A
is a diagonal matrix with (diagonal) elements a, ..., ;. In this way, we would permit individuals
to be differentially susceptible to social influence. Note the similarity to the mover-stayer model
discussed in Chapter 2.



Further substitution yields
x3 = aWxs+ (1 —a)xg

AW [e?W? + a(l — )W + (1 — a)]xo + (1 — a)xg
(W3 + (1 —a)W? +a(l —a)W + (1 — a)]x

By induction, we thus obtain the general formula

t—1
X, = (atWt +(1—a) Zo/Wi> Xo
i=0

This equation is more complicated than we might have anticipated.* Nevertheless, it
is straightforward to solve for the long-run opinion vector given that the equilibrium
condition

Xoo = WX + (1 — a)xg

can be rewritten as
Xoo = (1 — a)(I — aW) 'xq

Thus, (1 — «a)(I —aW)~! is the total influence matrix for the generalized model.

8.2.1 An example

In the basic model (with a = 1), we saw that all opinions converge if the influence
matrix is primitive. This is no longer true in the generalized model (with o < 1). To
illustrate, consider the following example (drawn from Friedkin and Johnsen 1997).

>> W % influence matrix

W =
0.7000 0.1000 0.1000 0.1000 0 0 0 0
0.5500 0.1500 0.1500 0.1500 0 0 0 0
0.5500 0.1500 0.1500 0.1500 0 0 0 0
0.4000 0.1500 0.1500 0.1500 0.1500 0 0 0
0 0 0 0.1500 0.1500 0.1500 0.1500 0.4000
0 0 0 0 0.1500 0.1500 0.1500 0.5500
0 0 0 0 0.1500 0.1500 0.1500 0.5500
0 0 0 0 0.1000 0.1000 0.1000 0.7000

Using the zero pattern of this matrix to obtain the influence diagram, it is evident
that there is a single communication class due to the “bridge” between individuals
4 and 5.°

4In particular, note that this formula cannot be written as x, = aW?xy + (1 — a)xo.
5We have omitted loops to simplify the influence diagram.



However, we also observe two “influence cliques” given by the sets {1, 2, 3, 4} and
{5, 6, 7, 8}.5 Further setting the vector of initial opinions and the social influence
parameter we can obtain the long-run opinions through iteration.

>> x0 % initial opinions
x0 =
0
25
45
50
50
55
75
100

>> alpha = .5; % social influence parameter
>> x = x0; for t = 1:20; x = alpha * W * x + (1-alpha) * x0; disp(x’); end

.0000 21.5000 31.5000 37.7500 62.2500 68.5000 78.5000 94.0000
.6375 20.9563 30.9563 37.6750 62.3250 69.0438 79.0438 93.3625
.8025  21.0444  31.0444 37.7209 62.2791 68.9566  78.9556  93.1975
.8714  21.1064 31.1064 37.7672 62.2328 68.8936 78.8936 93.1286
.9040 21.1381 31.1381 37.7902 62.2098 68.8619 78.8619  93.0960
.9197 21.1536 31.1536 37.8015 62.1985 68.8464 78.8464 93.0803
.9273 21.1611 31.1611 37.8070 62.1930 68.8389 78.8389 93.0727
.9310 21.1647 31.1647 37.8096 62.1904 68.8353 78.8353 93.0690
.9328 21.1665 31.1665 37.8109 62.1891 68.8335 78.8335 93.0672
.9337 21.1673 31.1673 37.8115 62.1885 68.8327 78.8327 93.0663
.9341 21.1677  31.1677 37.8118 62.1882 68.8323 78.8323 93.0659
.9343 21.1679 31.1679 37.8120 62.1880 68.8321 78.8321 93.0657
.9344 21.1680 31.1680 37.8120 62.1880 68.8320 78.8320 93.0656
.9344  21.1681 31.1681  37.8121 62.1879 68.8319 78.8319 93.0656
.9345  21.1681 31.1681  37.8121 62.1879 68.8319 78.8319 93.0655
.9345 21.1681 31.1681  37.8121 62.1879 68.8319 78.8319 93.0655
.9345  21.1681 31.1681 37.8121 62.1879 68.8319 78.8319 93.0655
.9345  21.1681 31.1681  37.8121 62.1879 68.8319 78.8319 93.0655

[ o> INe) eI e)NNe)NNe) Mo N e)INe) Mo M) N o) B o) Nie) NN o) NN e) IN6)}

In graph theory, a clique is a set of nodes such that (i) every node within this set is directly
linked to every other node within this set, and (ii) this set is not strictly contained within any larger
clique. More tersely, a clique is a maximal complete subgraph. Thus, even in the present example
where all individuals belong to the same communication class (because all individuals exert indirect
influence on all others), we may still identify two “influence cliques” based on direct influence.
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6.9345 21.1681 31.1681  37.8121 62.1879 68.8319 78.8319 93.0655
6.9345 21.1681 31.1681 37.8121 62.1879 68.8319 78.8319 93.0655

The column vectors of opinions have again been transposed so that the rows on
this table correspond to time periods while the columns correspond to individuals.
In this example, we see that opinions have reached an equilibrium by period 20. Of
course, we could also have obtained this equilibrium outcome using the total influence
matrix.

>> inv(eye(8) - alpha * W) * (1-alpha) 7% total influence matrix
ans

0.8313 0.0537 0.0537 0.0540 0.0046 0.0005 0.0005 0.0018
0.2891 0.5671 0.0671 0.0675 0.0057 0.0006 0.0006 0.0023
0.2891 0.0671 0.5671 0.0675 0.0057 0.0006 0.0006 0.0023
0.2282 0.0635 0.0635 0.5670 0.0479 0.0054 0.0054 0.0193
0.0193 0.0054 0.0054 0.0479 0.5670 0.0635 0.0635 0.2282
0.0023 0.0006 0.0006 0.0057 0.0675 0.5671 0.0671 0.2891
0.0023 0.0006 0.0006 0.0057 0.0675 0.0671 0.5671 0.2891
0.0018 0.0005 0.0005 0.0046 0.0540 0.0537 0.0537 0.8313

>> ans * x0 % long-run opinions
ans =

6.9345

21.1681

31.1681

37.8121

62.1879

68.8319

78.8319

93.0655

It is interesting to note that, while individuals 4 and 5 hold the same initial opin-
ion, their opinions diverge over time. Intuitively, 4 and 5 are “pulled” toward the
other members of their respective cliques. At the same time, we also observe some
convergence of opinions within cliques.

8.2.2 Structural equivalence in influence networks

Social network analysts have proposed a variety of methods for identifying “roles” or
“positions” within networks. For instance, the set of individuals may be partitioned
into structural equivalence classes, with individuals ¢ and j assigned to the same class
if and only if they hold precisely the same pattern of social ties (to and from every
individual k). In the context of influence networks, this definition may be modified
slightly so that individual ¢ and j are regarded as structurally equivalent in W when

W (i, k) = W(j, k) for all k # 4, .

11



Thus, in our example, individuals 2 and 3 are structurally equivalent in W (as are
individuals 6 and 7). Given this definition, Friedkin and Johnsen (1997) prove the
following result. If ¢ and j are structurally equivalent in W, then the difference
between their long-run opinions is proportional to the difference between their initial
opinions. More precisely,

l—«

oeli) = ) = (1 ) i)~ ()

1—ay
where, by definition,
v =W i) = W(j,i) = W(j,j) = W(i,J)

Because the rows of W are probability vectors, we see that v € [—1,1] and thus
((1—a)/(1—ay)) < 1. Substantively, if individuals i and j are structurally equivalent
in W, their difference of opinion shrinks over time.”

To illustrate, consider the long-run opinions for different values of a.

>> for alpha = 0:.1:.9; x = inv(eye(8)-alpha * W)*(l-alpha)*x0; disp([alpha x’]); e
0 0 25 45 50 50 55 75
0.1000 1.2269 24.2791 42.2791 47.5474 52.4526 57.7209 75.7209
0.2000 2.5147 23.5206 39.5206 45.0924 54.9076 60.4794 76.4794
0.3000 3.8776 22.7348 36.7348 42.6414 57.3586 63.2652 77.2652
0.4000 5.3381 21.9395 33.9395 40.2068 59.7932 66.0605 78.0605
0.5000 6.9345 21.1681 31.1681 37.8121 62.1879 68.8319 78.8319
0.6000 8.7392 20.4871 28.4871 35.5051 64.4949 71.5129 79.5129
0.7000 10.9101 20.0466 26.0466 33.3946 66.6054 73.9534 79.9534
0.8000 13.8733 20.2607 24 .2607 31.7820 68.2180 75.7393 79.7393
0.9000 19.3366 22.8035 24.8035 31.8881 68.1119 75.1965 77.1965

This table is arranged so that each row corresponds to a different value of o (given
in the first column) while the remaining columns correspond to the individuals.®
Focusing on (structurally equivalent) individuals 2 and 3, note that the preceding
formula reduces to

Xo0(3) = Xoo(2) = (1 = @)(x0(3) = x0(2)) = (1 — )(20)

and we may verify from the table that their long-run opinions differ by 20 when
a =0, by 12 when o = 0.4, and by 4 when a = 0.8.

"To be more precise, their opinions will grow closer for any v € (—1,1). When v = 1, both i and
j are uninfluenced by others, and retain their initial opinions forever. When v = —1, individuals 4
and j exchange opinions every period, alternating between x¢(7) and x¢ (7).

8Compare to Friedkin and Johnsen (1997), Table 1, p 214.
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8.3 Further reading

Most social psychology textbooks contain extensive discussion of social influence.
See, for example, Chapters 7-9 in Aronson, Wilson, and Akert, Social Psychology:
The Heart and the Mind, HarperCollins, 1994. The “structural” approach featured
in this chapter has a long history, with contributions by authors including French
(1956), Harary (1959), and DeGroot (1974). But within contemporary sociology,
this approach is probably most closely associated with Noah Friedkin. For a book-
length treatment, see Friedkin’s Structural Theory of Social Influence, Cambridge,
1998. The first section of the present chapter draws on the presentation of influence
networks in Bonacich, manuscript, Chapter 10. The second section is based on
Friedkin and Johnsen, Social Networks, 1997. See Wasserman and Faust, Social
Network Analysis, Cambridge, 1994, Chapters 9-12, for a more general discussion of
structural equivalence and related concepts in social network analysis.
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