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9 Demography

We have already considered population dynamics and growth using the differential
reproduction model in Chapter 3. For simplicity, that model assumed that the entire
population “turns over” each period. In other words, it is a discrete generations
model. In contrast, demographers are concerned with age-structured populations.

9.1 Survival

From a demographic perspective, life is essentially an absorbing Markov chain. Each
individual begins life in the 1st age class (e.g., age 0), from which she may transition
to the 2nd age class (e.g., age 1) or else death (the sole absorbing state). More
generally, from any age class 7, the individual either transitions (“survives”) to age
class i + 1 with probability s(i) or else dies with probability 1 — s(i). If no ever
survives beyond age class n, so that s(n) = 0, we thus obtain an absorbing chain
with n + 1 states.

To illustrate, we’ll adopt a coarser partition of the population into 4 age classes
(although our results extend easily to the general case with n age classes). For
concreteness, consider a society where no one lives beyond age 79, so that these
classes can be interpreted as ages 0-19, 20-39, 40-59, and 60-79. Relatedly, each
“period” should be interpreted a 20-year interval. The transition diagram is shown
below.
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Alternatively, specifying the probability transition matrix in canonical form (with
the absorbing state listed first), we can write
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For our present purposes, we could employ this transition matrix directly. How-
ever, following the convention in demography, we will use the closely related survival
matrix. We can get from the transition matrix to the survival matrix in two steps.
First, as we saw in Chapter 4, much can be learned about an absorbing chain with
transition matrix P simply from its lower right submatrix () characterizing transi-
tions from non-absorbing states to non-absorbing states. For the P matrix above,
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Second, when demographers specify transition matrices, they adopt the convention
that element (7, j) denotes the probability of transition to age class i from age class
j. Consequently, demographers specify the survival matrix as

0 0 0 0
g_ |s® 0o 0 0
“ 10 s2 0 0
0 0 s@3) 0

which is the transpose of the ) matrix. While it is tempting to say that demogra-
phers specify transition matrices “backwards,” we have already seen one rationale
for this convention in Chapter 3. Recall that Theorem 2 involved the eigenvalues and
eigenvectors of the transpose of the RP matrix. Implicitly adopting the demography
convention, we restated the population dynamics as x; = Axy where A = (RP)’ and
X; is a column vector. Had we adopted the demography convention from the outset,
there would have been no need to transpose A before computing its eigenvalues and
eigenvectors. So perhaps it is our original convention that is “backwards.”?

We saw in Chapter 4 that Q'(4,j) can be interpreted as the probability that a
process initially in state ¢ will occupy state j after ¢ periods. Taking care to note
the transposition of ¢ and j, we can thus interpret S*(7,7) as the probability that an
individual initially in age class ¢ will survive to age class j after ¢t periods. Given the
S matrix above, iterated multiplication yields

0 0 0 0

@ _ 0 0 0 0
| s(1)s(2) 0 0 0o |’

0 s2)s(3) 0 0

1On the other hand, this convention is well-entrenched in literatures on Markov chains (e.g.,
Kemeny and Snell 1960) and social network analysis (e.g., Wasserman and Faust 1994). Given the
existence of dual conventions, we’ll continue to alternate between them.
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and it is easy to see that every element of S? is equal to 0 for all ¢ > 4. Intuitively,
after 2 periods, an individual initially in age class 1 survives to age class 3 with
probability s(1)s(2), while an individual initially in class 2 survives to class 4 with
probability s(2)s(3). Similarly, after 3 periods, an individual initially in age class 1
survives to class 4 with probability s(1)s(2)s(3). All elements of S* are 0 for any
t > 4 because there is no chance of surviving beyond the 4th period.

Further recall from Chapter 4 that the fundamental matrix

N =1+Q+Q*+... = I-Q)!

can be used to determine the expected number of periods until absorption from each
non-absorbing state. Relatedly, the matrix

N =I1+S8S+8+...=1I-9"

is useful for survival analysis because N'(j,4) can be interpreted as the probability
of survival from age class ¢ to age class j. Given 4 age classes, this matrix can be
written generically as
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The first column of this matrix is of special interest because it reports survival
probabilities from birth (i.e., computed for someone who initially occupies the first
age class). For our present demographic application, the sole absorbing state is
death, and hence the “expected number of periods to absorption” becomes simply
“life expectancy.” The sum of the ith column of the N’ matrix thus reports the
expected number of periods remaining for an individual currently in age class 1.
Using the first column and the column sums of the N’ matrix, we can construct
the life table shown below.
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survival probabilities expected periods remaining
age class  (from age class 1) (from current age class)
1 1 14 s(1) +s(1)s(2) + s(1)s(2)s(3)
2 s(1) 14+ s(2) + s(2)s(3)
3 s(1)s(2) 1 + s(3)
4 s(1)s(2)s(3) 1



If we had adopted a finer partition of the age distribution into one-year intervals — so
that “age class” becomes simply “age” — then the third column of the life table would
become simply “life expectancy.” Due to our coarser specification of age classes, we
need to multiply each element in the final column by period length (20 years) in
order to obtain expected number of years remaining.?

To illustrate, let’s assume some hypothetical survival rates, setting s(1) = 0.9,
s(2) = 0.8, and s(3) = 0.7. The resulting life table (along with intermediate compu-
tations) is shown below.

> S =[0000; .9000; 0.800; 00 .7 0] % survival matrix

S =
0 0 0 0
0.9000 0 0 0
0 0.8000 0 0
0 0 0.7000 0
>> 872 7 survival after 2 periods
ans =
0 0 0 0
0 0 0 0
0.7200 0 0 0
0 0.5600 0 0
>> 873 % survival after 3 periods
ans =
0 0 0 0
0 0 0 0
0 0 0 0
0.5040 0 0 0

>> N = eye(4) + S + S°2 + S°3 7 (transpose of) fundamental matrix

N =
1.0000 0 0 0
0.9000 1.0000 0 0
0.7200 0.8000 1.0000 0

0.5040 0.5600 0.7000 1.0000
>> lifetable = [(1:4)’ N(:,1) sum(N)’] % life table

lifetable =
1.0000 1.0000 3.1240

2This computation implicitly assumes that everyone who enters an age class lives through the
entire interval. That is, death occurs only at the end of each period. Of course, in reality, deaths
occur continously throughout each period. While further discussion is beyond our present scope,
demographers would aacount for this by making “corrections” to life tables.
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2.0000 0.9000 2.3600
3.0000 0.7200 1.7000
4.0000 0.5040 1.0000

Thus, given our hypothetical survival rates, an individual in age class 1 has a 90%
chance of reaching age class 2, a 72% chance of reaching age class 3, and a 50.4%
chance of reaching age class 3. At birth (i.e., upon entry into age class 1), she is
expected to live 3.124 periods (= 62.48 years). If she survives to age class 2 (reaching
age 20), she is expected to live an additional 2.36 periods (= 47.2 years). If she survies
to age class 3 (reaching age 40), she is expected to live an additional 1.7 periods (=
34 years). Of course, given our assumption that no one lives beyond age class 4,
those who enter this class (at age 60) will live exactly one more period (= 20 years).?

9.2 Fertility

Having addressed survival, we can now expand our focus to include fertility and
thereby obtain a specification of population dynamics. Letting f(i) denote the av-
erage number of children born to individuals in age class i, and x;(i) denote the
number of individuals in age class ¢ in period ¢, the age distribution in period ¢ + 1
is determined by the following system of equations,

x¢+1(1) F)x(1) + f(2)xe(2) + f(3)x(3) + f(4)x(4)
x41(2) = s(1)x(1)
xi41(3) = s(2)x(2)
xi+1(4) = 5(3)x(3)

Intuitively, individuals currently in age class ¢ contribute to next period’s population
in two ways: by surviving to age class 7 + 1, and by “sending back” children who

3Again, demographers would correct life tables to account for deaths occuring within periods.
But these computations help connect our present analysis to our analysis of absorbing Markov
chains in Chapter 4.

4Technically, this diagram is not a transition diagram because the model is not a Markov chain
process. Nevertheless, the diagram remains useful for visualizing the system of equations.



begin life in age class 1. To specify population dynamics in more elegant matrix
notation, we can construct the matrix

f(1) f(2) f3) f4)
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0 0 s(3) 0

which demographers call the Leslie matrix. The system of equation given above can
now be written as
X1 = Lxy

where x; is a column vector. Given the initial age distribution x,, we obtain

X1 = LXO
X9 = LXl = L2X0
X3 = LX2 = L3X0
and hence by induction
x;, = L'xp.

By this point in the course, the form of this equation should be familiar. However,
let me emphasize (one last time) that we now following the demography convention,
postmultiplying L' by a column vector rather than premultiplying by a row vector.

Given that this model provides the standard demographic framework for studying
population dynamics, it may be surprising to observe that it is a one-sex model. That
is, we are continuing to maintain the fiction that each individual has one parent. Of
course, demographers are well aware that children have both mothers and fathers.
But perhaps due to the complexity of two-sex models (which we will address in
Chapter xx), the linear model based on the Leslie matrix remains the standard
framework. Given its one-sex formulation, the model is best interpreted as a model
of the female population, so that x; is the distribution of the female population
across age classes.” Having clarified this point, we might further recognize that
fertility rates will be zero for women who are either too young or too old to have
children. But this fact is easily captured within the present framework by setting
f(i) = 0 when i is very low or very high.

Demographers have developed two measures to summarize the level of fertility
within a population. The first measure, called the gross reproduction rate, is defined
as

GRR = f(1)+f(2)+f(3) + f(4).

SRecognizing that men and women have different survival probabilities, demographers would
conduct a “side” analysis of the age structure of the male population. But because only women
have children, they constitute the “engine” of population dynamics.




Mathematically, the GRR is simply the sum of the first row of the Leslie matrix
(reporting the average fertility level for each age class). Conceptually, the GRR
represents the expected number of children that a women would bear if she survives
through the final age class. The second measure is the net reproduction rate, defined
as

NRR =[S @) fO) S0 ]|

= f() +5(1)f(2) +s(1)s(2)f(3) + s(1)s(2)s(3) f(4).

Mathematically, the NRR is the inner product of the first row of the Leslie matrix
and the first column of the life table (reporting survival probabilities from age class
1). Conceptually, this measure adjusts downward the GRR to account for the fact
that some women die before reaching the end of their child-bearing years. Intuitively,
we might expect that the population size is rising given NRR > 1, stable given NRR
= 1, and falling given NRR < 1. This result will be established formally in Section
xx, where we also examine the relationship between the NRR and the dominant
eigenvalue of the Leslie matrix.
To illustrate, consider the numerical example below.

> L =8; L(1,:) = [0 1.2 .5 0] % Leslie matrix

L =
0 1.2000 0.5000 0
0.9000 0 0 0
0 0.8000 0 0
0 0 0.7000 0

>> GRR = sum(L(1,:)) % gross reproduction rate

GRR =
1.7000

>> NRR = L(1,:) * N(:,1) % net reproduction rate

NRR =
1.4400

Further assuming an initial age distribution, it is straightforward to compute the age
distribution for the next 20 periods (representing 400 years). Demographers would
refer to these sorts of computations as population “projections.”

>> x0 = [1 .9 .72 .504]°; % initial age distribution (period 0)



>> popfreq = [ ]; for t = 0:20; popfreq = [popfreq; (L"t * x0)’]; end; popfreq

popfreq =
1.0000 0.9000 0.7200 0.5040
1.4400 0.9000 0.7200 0.5040
1.4400 1.2960 0.7200 0.5040
1.91562 1.2960 1.0368 0.5040
2.0736 1.7237 1.0368 0.7258
2.5868 1.8662 1.3789 0.7258
2.9290 2.3281 1.4930 0.9653
3.5403 2.6361 1.8625 1.0451
4.0945 3.1862 2.1089 1.3038
4.8779 3.6851 2.5490 1.4762
5.6966 4.3901 2.9481 1.7843
6.7422 5.1269 3.5121 2.0636
7.9084 6.0680 4.1015 2.4585
9.3323 7.1175 4.8544 2.8711
10.9682 8.3991 5.6940 3.3981
12.9259 9.8714 6.7193 3.9858
15.2053  11.6333 7.8971 4.7035
17.9085  13.6848 9.3067 5.5280
21.0750 16.1177  10.9478 6.5147
24.8151  18.9675  12.8941 7.6635
29.2081 22.3336  15.1740 9.0259

While these projections might seem similar in form to those obtained from the
differential reproduction model in Chapter 4, recall that we are now considering an
age structured population. It is no longer true that the entire population “turns
over” each period. Rather, we can follow the progress of those individuals born in
some period — the birth cohort for that period — as they progress through their life
course. To illustrate, consider the fourth row of the popfreq table (which corre-
sponds to period 3 since we started indexing from period 0). In period 3, there were
1.9152 individuals born into age class 1. In period 4, the number of survivors in
this cohort is (1.9152)(0.9) = 1.7237, which appears as the 2nd element in the 5th
row of the table. Similarly, after 2 periods, the number of survivors in this cohort is
(1.7237)(0.8) = 1.3789, which appears as the 3rd element in the 6th row of the table.
Finally, after 3 periods, the number of survivors in this birth cohort has dwindled to
(1.3789)(0.7) = 0.9653, which appears as the 4th element in the 7th row of the table.
Schematically, we might keep track of birth cohorts using the following diagram,
which is conceptually similar to “Lexis” diagrams used by demographers.
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From our population projections, we see merely that the population is growing.
However, recalling our analysis from Chapter 3, you might anticipate (correctly)
that the population is converging to a stable growth equilibrium. To see this, we can
compute the growth factor for each period, and normalize the frequency distributions
so that they become probability distributions.

>> popsize = sum(popfreq,2); % row sums of popfreq
>> growthfactor = popsize(2:21)./popsize(1:20)

growthfactor =
1.1408
L1111
.2000
.1700
.1795
.1765
L1774
L1772
L1772
L1772
L1772
L1772
L1772
L1772
L1772
L1772
L1772
L1772
L1772
L1772
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>> popdist = diag(popsize.”-1) * popfreq

popdist =
0.3201 0.2881 0.2305 0.1613



0.4040 0.2525 0.2020 0.1414
0.3636 0.3273 0.1818 0.1273
0.4030 0.2727 0.2182 0.1061
0.3730 0.3100 0.1865 0.1305
0.3945 0.2846 0.2103 0.1107
0.3796 0.3018 0.1935 0.1251
0.3897 0.2902 0.2050 0.1150
0.3829 0.2980 0.1972 0.1219
0.3875 0.2927 0.2025 0.1173
0.3844 0.2962 0.1989 0.1204
0.3865 0.2939 0.2013 0.1183
0.3851 0.2955 0.1997 0.1197
0.3860 0.2944 0.2008 0.1188
0.3854 0.2951 0.2001 0.1194
0.3858 0.2946 0.2006 0.1190
0.3855 0.2950 0.2002 0.1193
0.3857 0.2948 0.2005 0.1191
0.3856 0.2949 0.2003 0.1192
0.3857 0.2948 0.2004 0.1191
0.3856 0.2949 0.2003 0.1192

Thus, we find that the population is indeed converging to a stable growth equilibrium,
with a long-run growth rate of 17.72% and a limiting distribution of the population
with approximately 38.56% in age class 1, 29.49% in age class 2, 20.03% in age class
3, and 11.92% in age class 4.

Based on our analysis in Chapter 3, you might further anticipate (again correctly)
that the long-run growth rate and limiting distribution could have been found directly
by computing the eigenvalues and eigenvectors of the Leslie matrix.

>> [eigvec, eigvall = eig(L)

eigvec =
0 0.7161 -0.4627 -0.0975
0 0.5475 0.5270 0.2268
0 0.3721 -0.5336  -0.4689
1.0000 0.2212 0.4727 0.8481

eigval =
0 0 0 0
0 1.1772 0 0
0 0 -0.7902 0
0 0 0 -0.3870

>> eigvec(:,2)/sum(eigvec(:,2)); ans’

ans =
0.3857 0.2948 0.2004 0.1191

In this case, Matlab has listed the dominant eigenvalue and the associated eigenvector
in the second column of these matrices. However, the eigenvalue and eigenvector
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reported in the first column also warrant discussion. If you return to Chapter 3
and inspect closely the relevant computations, you will find that only the dominant
eigenvalue is associated with a non-negative eigenvector (i.e., an eigenvector with all
non-negative elements). (—Indeed, we made use of this result in our discussion of
Theorem 2.—) In contrast, for the Leslie matrix in the current example, we see that
both the eigenvalue in the first column (= 0) and the dominant eigenvalue reported
in the second column (= 1.1772) are associated with non-negative eigenvalues.

On one hand, there is a simple demographic interpretation of the results in the
first column. Suppose we start from an initial age distribution in which everyone
belongs to the 4th age class. After one period, those original members of the pop-
ulation will have died, leaving behind no children. Thus, the size of the population
falls immediately to zero and remains at this level forever. On the other hand, the
existence of multiple non-negative eigenvectors raises an important question about
the long-run dynamics of age-structured populations. Will the population generally
converge to the stable growth equilibrium determined by the dominant eigenvalue
and associated eigenvector? Or can other long-run outcomes arise? To answer this
question, we need to look more closely at the Leslie matrix.

9.3 Reducibility of the Leslie matrix

For human populations, women in higher age classes have zero fertility levels.5 We
may thus write the set of age classes as {1,...,k,...,n} where k is the highest age
class with positive fertility (so that f(k) > 0 and f(i) = 0 for all ¢ > k). Recalling
the structure of transition diagram for the Leslie matrix from the previous section,
the reduced transition diagram is

and hence the reduced influence diagram is
{1,...k} —{k+1} —{k+2}--- — {n}

It is apparent that the Leslie matrix is reducible (and hence not primitive). Thus,
Theorem 2 does not guarantee that the population will converge to the stable growth
equilibrium. However, the reducibility of this simultaneous-equation system allows
us to solve sequentially for the long-run outcome. Letting L; denote the first k x k
submatrix of the Leslie matrix (corresponding to the first communication class), we

6This is not always true for non-human populations. See, e.g., the Leslie matrix for sandhill
cranes in Mooney and Swift (A Course in Mathematical Modeling, 1999).
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can begin by solving the k-equation system

If L, is primitive, then we obtain a unique population growth factor A (given by
the dominant eigenvalue of L,) and a limiting distribution {x(1),...,x(k)} that is
unique up to a scaling factor. We can then solve for the next element of the limiting
distribution using the equation

Ax(k+1) = s(k)x(k).

More generally, having obtained x(k + t), we can then solve for the next element of
the limiting distribution using the equation

Mx(k+t+1) = s(k+t)x(k+1).

In this way, we ultimately obtain the entire limiting distribution {x(1),...,x(n)}.

To illustrate, consider again our numerical example from the preceding section.
Given k = 3 and n = 4, we already know that the two communication classes will be
{1, 2, 3} and {4}. However, this result could also have been established using our
“recipe” for finding communication classes from Chapter 7.

>> L % Leslie matrix

L =
0 1.2000 0.5000 0
0.9000 0 0 0
0 0.8000 0 0
0 0 0.7000 0

>> R = (eye(4) + L)°3 >0 % reachability matrix

R =

e
e
[ = SN
= O O O

> C=R&R’ % can-reach-and-be-reached-by matrix

O - B
O = =
O~ - -
= O O O
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>> U = unique(C, ’rows’) 7% communication classes

>> M = UxLxU’ > 0

> M =M & “eye(2) % image matrix for reduced influence graph

Focusing now on the submatrix for the first communication class, we can first
check for primitivity, and then solve for the first & = 3 elements of the limiting
distribution.

>> L1 = L(1:3,1:3) % submatrix for class {1,2,3}

L1 =
0 1.2000 0.5000
0.9000 0 0
0 0.8000 0

>> L1°5 Y, to demonstrate primitivity

ans =
0.7776 1.5437 0.5832
1.0498 0.7776 0.1620
0.2592 0.9331 0.3888

>> [eigvec, eigvall = eig(L1)

eigvec =
0.7343 -0.5251 0.1841
0.5614 0.5981  -0.4280
0.3815  -0.6055 0.8848

eigval =
1.1772 0 0
0 -0.7902 0
0 0 -0.3870

>> lambda = eigval(1,1)

lambda =
1.1772

>> x = eigvec(:,1); x’
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ans =
0.7343 0.5614 0.3815

Note that the dominant eigenvalue for the L; submatrix (= 1.1772) is the same as the
dominant eigenvalue for the entire Leslie matrix (reported in the preceding section).
Essentially, the first communication class is the “engine” of population growth, while
the remaining classes are merely “pulled along.”

Having solved the 3-equation system corresponding to class {1, 2, 3}, we can now
proceed to communication class {4}.

>> x(4) = x(3)*L(4,3)/lambda; x’

ans =

0.7343 0.5614 0.3815 0.2269
>> x/sum(x); ans’ % normalizing to obtain probability vector
ans =

0.3857 0.2948 0.2004 0.1191

Normalizing, we thus obtain the same limiting distribution reported in the preceding
section. If our example included higher age classes (beyond 4) with zero fertility, we
could continue in the same sequential fashion to derive equilibrium frequencies for
those classes as well.

9.4 An alternative test for primitivity

The answer to the question posed at the end of section 9.2 is now apparent. If (i)
some members of the initial population have positive fertility levels (i.e., x¢(i) > 0
for some i < k) and (ii) the first k£ x k submatrix of the Leslie matrix (i.e., Ly) is
primitive, then the population will eventually reach the stable growth equilibrium.
But while condition (ii) holds for our numerical example, should we expect it to hold
more generally? The answer is yes. To see why, it will be useful to introduce an
alternative test for primitivity.

To this point, we have assessed the primitivity of matrix A by checking whether
there is some ¢ such that all elements of A’ are positive. However, the primitivity
of a matrix can also be assessed using the transition diagram of its zero pattern. In
particular, an irreducible matrix is primitive if and only if the transition diagram of
its zero pattern has at least two cycles whose lengths [; and [, are relatively prime.
That is, the greatest common divisor (GCD) of [ and Iy is 1. To illustrate, consider
the transition diagram for the zero pattern of the L; matrix in our numerical example.




Inspection of this diagram reveals a cycle of length 2 (from state 1 to 2 to 1) and
another cycle of length 3 (from state 1 to 2 to 3 to 1).” Because GCD(2, 3) = 1, the
Ly matrix is primitive.

We can now see why L; matrix will primitive more generally (for any empirical
Leslie matrix). Given two consecutive age classes j and j + 1 with positive fertility,
the transition diagram will contain cycles of length j and j+ 1. Hence GCD(j, 7+ 1)
= 1 and the submatrix is primitive. However, even this (rather weak) condition is
not necessary. Consider, for example, the transition diagram below.

Given that this diagram contains cycles of length 2 and 5, we obtain GCD(2, 5) =
1, and thus any L; matrix that generates this diagram is primitive.

In the present context, the transition diagram would contain a loop only if women
in age class 1 have positive fertility levels. Thus, if the age partition is not too
coarse, loops are not relevant for our present purposes. Nevertheless, for other (non-
demographic) applications, it is useful to note that any loops would immediately
indicate primitivity. More precisely, given the transition diagram for an irreducible
matrix A, any loop implies that A is primitive. Loops constitute a cycle of length 1,
and obviously GCD(j,1) = 1 for any j.

9.5 Further reading

Bradley and Meek (Matrices and Society, 1986, Chapter 10) provide a simple in-
troduction to matrix methods in demography. Allman and Rhodes (Mathematical
Models in Biology, Chapter 2) and Mooney and Swift (A Course in Mathemati-
cal Modeling, 1999, Chapter 3) provide other helpful introductions which focus on
non-human populations. For a more advanced treatment of matrix methods in de-
mography, see Smith (Formal Demography, 1992, Chapter 8). Other useful references
include Keyfitz (Applied Mathematical Demography, 1985) and Preston, Heuveline,
and Guillot (Demography: Measuring and Modeling Population Processes, 2001). Fa-
rina and Rinaldi (Positive Linear Systems, Chapter 4) discuss alternative tests for
primitivity.

"Recalling our analysis of reachability in Chapter 7, we could also find cycles using matrix
methods: cycles of length ¢ are indicated by positive elements on the main diagonal of the Z*
matrix.
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