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7 Communication Classes

Perhaps surprisingly, we can learn much about the long-run behavior of a Markov
chain merely from the zero pattern of its transition matrix. In the next section,
we use the zero-pattern matrix to partition the states of a chain into communication
classes, and then obtain a reduced transition diagram which can be used to determine
whether each communication class is open or closed. Essentially, this section extends
our previous analysis of absorbing states to recognize that a Markov chain may be
absorbed into a set of states (a closed communication class) even if no individual
state in this class is absorbing.

Our analysis of communication classes leads naturally to several definitions useful
for understanding the long-run behavior of Markov chains. Based on its zero pattern,
we may determine whether a matrix is reducible or irreducible. Irreducibile matrices
may be either primitive or cyclic. From the zero pattern, we may also determine
whether a matrix is centered. We will see that centeredness implies the long-run
convergence of linear dynamics, while cyclicity leads to non-convergence.

Finally, we see how the influence diagram reflects the interdependence of vari-
ables in a simultaneous-equation system. Reducing this diagram, the communication
classes correspond to sets of variables that are mutally dependent. When there is
more than one communication class, we can “reduce” the overall problem (of solving
for all variables in the system) to a series of simpler subproblems. This insight will
be employed again in subsequent chapters on influence networks and demography.

7.1 Finding communication classes

This section offers a “recipe” for finding communication classes, constructing the
reduced transition diagram, and determining whether each class is open or closed.
While developed here for Markov chains, this procedure is also useful for a variety
of other applications, as we will see in future chapters.

7.1.1 The zero pattern

The zero pattern of a transition matrix is constructed by setting each positive element
to 1 while the other elements remain 0. More formally, given a transition matrix P ,
the elements of its zero-pattern matrix Z are given by

Z(i, j) =

{
1 if P (i, j) > 0
0 otherwise

.
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Thus, while P is a valued matrix (with entries between 0 and 1), Z is a binary matrix
(with entries equal to 0 or 1).

Using Matlab, the zero-pattern matrix can be computed simply by testing whether
the elements of the transition matrix are positive.

>> P % transition matrix for a 5-state chain

P =
0 0 1.0000 0 0
0 0.5000 0.2500 0.2500 0

1.0000 0 0 0 0
0 0 0 1.0000 0
0 0 0.3333 0 0.6667

>> Z = double(P > 0) % zero-pattern matrix

Z =
0 0 1 0 0
0 1 1 1 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 1

The double command has been used here to convert the (P > 0) matrix from a
logical to numeric (double-precision) matrix that can be used in subsequent compu-
tations.1

The transition diagram for the zero pattern includes a directed edge from state
i to state j if and only if Z(i, j) = 1. To illustrate, the transition diagram for our
example is given below.
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Of course, this is quite similar to the transition diagram for the matrix P . However,
there is no need to label the edges because the zero-pattern matrix Z merely indicates
the possibility (not the precise probability) of a transition.

1Matlab will produce an error message if you attempt to multiply together two logical matri-
ces (even if their sizes imply that multiplication is possible). Given any matrix A in the Matlab
workspace, you can check whether this matrix is numeric or logical (or belongs to some other object
class) by typing class(A) on the command line. To ensure that this matrix is numeric, you can
enter A = double(A) on the command line.
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7.1.2 Reachability

Borrowing some terminology from social network analysis, we say that state i can
reach state j when i = j or there is a path of any length from i to j on the transition
diagram. For simple cases (such as our present example), we can easily determine
reachability by inspection of the transition diagram. However, especially when the
number of states is large, matrix methods are more convenient. Raising the Z matrix
to the power t, element Zt(i, j) gives the number of paths of length t from i to j.2

To illustrate, consider the Zt matrix for t ∈ {2, 3, 4}.

>> Z^2 % Z^2(i,j) = number of paths of length 2 from i to j

ans =
1 0 0 0 0
1 1 1 2 0
0 0 1 0 0
0 0 0 1 0
1 0 1 0 1

>> Z^3 % Z^3(i,j) = number of paths of length 3 from i to j

ans =
0 0 1 0 0
1 1 2 3 0
1 0 0 0 0
0 0 0 1 0
1 0 2 0 1

>> Z^4 % Z^4(i,j) = number of paths of length 4 from i to j

ans =
1 0 0 0 0
2 1 2 4 0
0 0 1 0 0
0 0 0 1 0
2 0 2 0 1

If the interpretation of these matrices is not immediately obvious, readers may find
it useful to reconcile these computations with the transition diagram given above,
finding the indicated number of paths of each length for each pair of states.3

2We have thus implicitly defined a path as any sequence of directed edges leading from i to j.
While irrelevant for present purposes, we might reserve the term simple path for sequences that
never use the same edge more than once. (See, e.g., Johnsonbaugh, Discrete Mathematics, 2001.)
Simple paths are more difficult to identify through matrix techniques.

3The rationale for this procedure is quite similar to rationale for iterated multiplication of the
transition matrix presented in Chapter 1. Briefly, it is apparent that Z2(i, j) =

∑
k Z(i, k)Z(k, j)

gives the number of paths of length 2 from i to j. Consequently, Z3(i, j) =
∑

k Z2(i, k)Z(k, j) gives
the number of paths of length 3 from i to j, and the general result follows by induction.
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To characterize the reachability relation using matrix methods, we may thus
construct a binary reachability matrix R with elements

R(i, j) =

{
1 if Zt(i, j) > 0 for some t ≥ 0
0 otherwise

.

This equation might suggest the need to compute Zt for every value of t up to infinity.
Fortunately, if Z is an n×n matrix, we actually need to consider only those values of
t up to n− 1. Intuitively, a path of length n− 1 could potentially include every node
in the transition diagram. If state i cannot reach state j through a path of length
n− 1 or less, then i cannot reach j at all. Consequently, the preceding equation may
be rewritten as

R(i, j) =

{
1 if (I + Z + Z2 + . . . + Zn−1)(i, j) > 0
0 otherwise

.

Further recognizing that we are interested only in the existence of a path (not the
number of paths) from i to j, this is equivalent to

R(i, j) =

{
1 if (I + Z)n−1(i, j) > 0
0 otherwise

.

For our present example, we may thus compute the reachability matrix as follows.

>> R = (eye(5) + Z)^4 > 0 % reachability matrix

R =
1 0 1 0 0
1 1 1 1 0
1 0 1 0 0
0 0 0 1 0
1 0 1 0 1

To reconcile this matrix with our transition diagram, note that Z(2, 1) = Z(5, 1) = 0
and hence the process cannot transition directly from state 2 or 5 to state 1. However,
both states 2 and 5 can reach state 1 indirectly (through state 3) and hence R(2, 1) =
R(5, 1) = 1.

7.1.3 Communication classes

Having determined reachability, we can now partition the states of the Markov chain
into communication classes, assigning states i and j to the same class if and only if
each of these states can reach and be reached by the other. Formally, we construct a
binary can reach and be reached by matrix C where

C(i, j) =

{
1 if R(i, j) = 1 and R(j, i) = 1
0 otherwise

.
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It is evident that the can-reach-and-be-reached-by relation is reflexive, symmetric,
and transitive. Thus, it is an equivalence relation, and we can partition the set of
states into its equivalence classes. Graph theorists would refer to these equivalence
classes as the strong components of the transition diagram.4 But we will refer to them
as communication classes, following the convention in the Markov chain literature.

Using Matlab, this matrix may be computed as follows.5

>> R’ % the can-be-reached-by matrix

ans =
1 1 1 0 1
0 1 0 0 0
1 1 1 0 1
0 1 0 1 0
0 0 0 0 1

>> C = R & R’ % can-reach-AND-be-reached-by matrix

C =
1 0 1 0 0
0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

If we drew the graph representing the C matrix, the communication classes would
appear as mutually exclusive cliques. That is, node i can reach and be reach by node
j if and only if i and j belong to the same clique. Consequently, if states i and j
belong to the same communication class, then

C(i, k) = C(j, k) for all k ∈ {1, . . . , n}.

Equivalently, if i and j belong to the same communication class, then rows i and j
of the C matrix are the same. To determine the membership of each communication
class, we may thus list the unique rows of the C matrix.

>> U = unique(C,’rows’) % communication classes

U =
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 1 0 0

4In contrast, the weak components of a directed graph are given by equivalence classes of the
can-reach-or -be-reached-by relation. For undirected graphs, the reachability relation is always
symmetric. Hence, there is no distinction between strong components and weak components, and
equivalence classes of the reachability relation are simply called components.

5But note that elementwise multiplication (C = R .* R’) would work just as well.
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Each row of this matrix characterizes the membership of a different communication
class. Thus, the communication classes are {5}, {4}, {2}, and {1,3}.

7.1.4 The reduced transition diagram

Having partitioned the states into communication classes, we may now draw a re-
duced transition diagram in which each communication class is “collapsed” into a
single node. More precisely, letting [i] denote the communication class containing
state i, the reduced transition diagram includes an edge from class [i] to class [j]
when there is a pair of states (i, j) such that Z(i, j) = 1 and [i] 6= [j]. For our
present example, we thus obtain the reduced transition diagram shown below.

{2} {5}

{4} {1, 3}
6 6

�
���

Intuitively, the reduced transition diagram will never include symmetric edges or
cycles because this would imply that some communication classes should have been
merged together.

The reduced transition diagram can be characterized by its image matrix. Using
Matlab, we may compute this matrix as follows.

>> M = U * Z * U’ > 0 % image matrix (with 1s on main diagonal)

M =
1 0 0 1
0 1 0 0
0 1 1 1
0 0 0 1

>> M = M & ~eye(4) % removing 1s from main diagonal

M =
0 0 0 1
0 0 0 0
0 1 0 1
0 0 0 0

Intuitively, the U matrix relates communication classes to states, the Z matrix relates
states to states, and the U’ matrix relates states to communication classes. Thus,
U*Z*U’ is a square matrix relating communication classes to communication classes.
Note that the ordering of these classes in the M matrix is determined by the ordering
of rows in the U matrix (which was determined by Matlab).
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7.1.5 Open and closed classes

Finally, using either the reduced transition diagram or its image matrix, we may
determine whether each communication class is open or closed. A communication
class [i] is open when there is a directed edge from class [i] to some class [j] on the
reduced transition diagram. Otherwise, class [i] is closed. Equivalently, a communi-
cation class is closed when every entry of its row of the image matrix is 0. For our
example, the classes {2} and {5} are open, while classes {1,3} and {4} are closed.
Closed communication class may be understood as a generalization of the concept of
an absorbing state introduced in Chapter 4. Any absorbing state constitutes its own
communication class (because it cannot reach any other state). However, a Markov
chain may be absorbed into a set of states (a closed communication class) even if no
individual state in the class is absorbing.

7.1.6 Another example

Here is a second (more elaborate) example. It proceeds from directly from a zero-
pattern matrix through the same steps described above to arrive at the image matrix.

>> Z % zero-pattern matrix

Z =
0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0

>> R = (eye(10) + Z)^9 > 0; % reachability matrix

>> C = R & R’; % can-reach-and-be-reached-by matrix

>> U = unique(C, ’rows’) % communication classes

U =
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

>> M = U * Z * U’ > 0;
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>> M = M & ~eye(6) % image matrix

M =
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0

Note that Matlab has listed the communication classes in the order {10}, {7, 8, 9},
{6}, {4}, {2, 3, 5}, and {1}. Thus, the reduced transition diagram is depicted below.

{4}

{10} {7, 8, 9}

{1} {2, 3, 5}

{6}
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It is apparent that class {6} is closed while all other classes are open.

7.2 Irreducibility and Centeredness

The preceding discussion of communication classes leads immediately to several def-
initions that are useful for understanding the long-run behavior of Markov chains
and linear systems more generally. Given any square, non-negative matrix A (not
necessarily a transition matrix), we may use its zero pattern to determine its commu-
nication classes. The matrix A is irreducibile when every state belongs to the same
communication class. Equivalently, A is irreducibile when every state can reach ev-
ery other state. As you might expect, any matrix that is not irreducible is said to
be reducible. Although every primitive matrix is irreducible, some irreducible ma-
trices are not primitive. For instance, consider a Markov chain with the following
zero-pattern transition diagram.

1 2
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It is apparent that this chain has a single communication class, and hence the tran-
sition matrix is irreducible. Alternatively, irreducibility can also be verified by com-
puting the reachability matrix.

>> P1 % an irreducible matrix

P1 =
0 1 0
0 0 1
1 0 0

>> (eye(3) + P1)^2 > 0 % reachability

ans =
1 1 1
1 1 1
1 1 1

However, iterated multiplication of the transition matrix yields

>> P1^2

ans =
0 0 1
1 0 0
0 1 0

>> P1^3

ans =
1 0 0
0 1 0
0 0 1

>> P1^4

ans =
0 1 0
0 0 1
1 0 0

and it becomes apparent that the zeros will never “fill in” regardless of the exponent.
Thus, the transition matrix is not primitive. As indicated by the transition diagram,
this Markov chain perpetually “cycles” from state 1 to 2 to 3 to 1 to 2 to 3 and so
on. For this reason, any matrix that is irreducible but not primitive is called a cyclic
matrix.

To offer one more definition: a square, non-negative matrix A is centered when it
has only one closed class and the submatrix for this class is primitive. Every primitive
matrix is centered because the “submatrix” for its sole communication class is the
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entire (primitive) matrix. However, some centered matrices are not primitive. For
instance, consider the following transition matrix.

>> P2 % a centered matrix that is not primitive

P2 =
0.8000 0.2000 0

0 0 1.0000
0 0.5000 0.5000

From the zero-pattern transition diagram,

1 2 3- � -
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it is easy to see that this matrix has two communication classes, with the reduced
transition diagram given below.

{1} −→ {2,3}

Because the process cannot transition from state 2 (or 3) to state 1 in any number
of steps, this transition matrix is not irreducible and hence not primitive. However,
it is easy to see that the submatrix for the closed class is primitive.

>> P2(2:3,2:3) % submatrix for class {2,3}

ans =
0 1.0000

0.5000 0.5000

>> P2(2:3,2:3)^2 % to demonstrate primitivity

ans =

0.5000 0.5000
0.2500 0.7500

Before proceeding, perhaps it is useful to quickly review the connections between
the definitions just introduced. Matrices can be reducible or irreducible. Reducible
matrices can be centered (like P2) or not centered. Irreducibile matrices can be
primitive or cyclic. Primitive matrices are always centered, while cyclic matrices
(like P1) are never centered.
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7.2.1 Implications for convergence

In Chapter 1, we saw that a Markov chain will reach a unique long-run equilibrium
regardless of its initial condition if the transition matrix is primitive. More pre-
cisely, given the dynamics xt = x0P

t, the probability distribution xt converges to
the unique limiting distribution x determined by the condition x = xP . Because a
closed communication class acts as an “absorbing set” of states, it is easy see that
this convergence result will also hold under the weaker condition that P is centered.
Intuitively, because the chain must ultimately be absorbed into the sole closed class,
the long-run probabilities will be zero for all states in any other classes. The prob-
ability distribution for states within the closed class can thus be determined using
the (primitive) submatrix for this class. For the preceding example,

>> P2(2:3,2:3)^100 % long-run outcome within closed class

ans =
0.3333 0.6667
0.3333 0.6667

>> P2^100 % long-run outcome for all states

ans =
0.0000 0.3333 0.6667

0 0.3333 0.6667
0 0.3333 0.6667

Consequently, for any initial condition, we obtain the limiting distribution given by
any row of the preceding matrix.

In contrast, convergence is not guaranteed if the transition matrix is cyclic. To
illustrate, consider the cyclic transition matrix given above, along with the following
initial condition. Projecting ahead for several periods, it becomes obvious that the
distribution will continue to cycle forever, never converging to a limiting distribution.

>> x0 = [.1 .3 .6] % initial condition

x0 =
0.1000 0.3000 0.6000

>> for t = 0:10; disp(x0*P1^t); end

0.1000 0.3000 0.6000
0.6000 0.1000 0.3000
0.3000 0.6000 0.1000
0.1000 0.3000 0.6000
0.6000 0.1000 0.3000
0.3000 0.6000 0.1000
0.1000 0.3000 0.6000
0.6000 0.1000 0.3000
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0.3000 0.6000 0.1000
0.1000 0.3000 0.6000
0.6000 0.1000 0.3000

While easily understood in the context of the preceding example, non-convergence
might seem more surprising given that there is a version of Perron-Frobenius Theo-
rem for irreducible matrices which is quite similar to the version that we encountered
in Chapter 3.

Perron-Frobenius Theorem (for irreducible matrices). If A is a non-negative,
irreducible matrix then (i) one of its eigenvalues is positive and greater than or equal
to (in absolute value) all other eigenvalues, and (ii) there is a positive eigenvector
corresponding to that eigenvalue.

Carefully comparing the two versions of theorem, note the addition of the crucial
phrase “or equal to” in point (i). Thus, while primitivity of A implies there is one
eigenvalue that is strictly larger than all others, cyclic matrices may have several
eigenvalues that share the largest absolute value. To illustrate the consequences,
consider the eigenvectors and eigenvalues of the P1 matrix.

>> [eigvec, eigval] = eig(P1’)

eigvec =
-0.2887 - 0.5000i -0.2887 + 0.5000i -0.5774
-0.2887 + 0.5000i -0.2887 - 0.5000i -0.5774
0.5774 0.5774 -0.5774

eigval =
-0.5000 + 0.8660i 0 0

0 -0.5000 - 0.8660i 0
0 0 1.0000

>> abs(diag(eigval))’

ans =

1.0000 1.0000 1.0000

Computing the absolute value of each of these eigenvalues, we find that all three
have the same absolute value. Because no one eigenvalue “dominates” all others, the
distribution does not simply converge to the corresponding eigenvector, but demon-
strates the more complicated (cyclic) behavior we saw above.

7.3 Reducibility of simultaneous equation systems

Given the conventional rendering of a transition diagram, the directed edges reflect
possible transitions between states over time. That is, by following the arrows, we
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can visualize the transitions that might occur from one period to the next. While
this convention seems quite natural, it is sometimes useful to reverse the direction
of the edges of the transition diagram. Formally, given a zero-pattern matrix Z,
its transition diagram contains an edge from i to j when Z(i, j) = 1, while its
influence diagram contains an edge from i to j when Z(j, i) = 1. Put differently, the
influence diagram for Z is the transition diagram for the transpose of Z. Influence
diagrams are especially helpful for visualizing interdependence – whether one variable
is “influenced by” another variable – in a simultaneous equation system. To illustrate,
consider again the centered transition matrix given above. The dynamics for the
Markov chain process are given by the matrix equation

xt+1 = xtP

which (given the coefficients in the P2 matrix) may be rewritten as

xt+1(1) = 0.8 xt(1)

xt+1(2) = 0.2 xt(1) + 0.5 xt(3)

xt+1(3) = xt(2) + 0.5 xt(3)

Based on these equations, we might now construct a directed graph, including an
edge from node i to node j when xt+1(i) is a function of xt(j), as shown below.

1 2 3� � -
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Of course, this graph is simply the influence diagram for the zero pattern of P2

(i.e., the transition diagram for the zero pattern of the transpose of P2). Pushing
further, we might use the preceding diagram to determine its communication classes,
obtaining the reduced influence diagram below.

{1} ←− {2,3}

This diagram simply reverses the direction of the edge on the reduced transition
diagram given in section 7.2. More generally, transposition of a zero-pattern matrix
never affects its communication classes, but merely reverses the direction of any
edges between classes. Thus, for any zero-pattern matrix, we can obtain its reduced
influence diagram simply by reversing the edges of its reduced transition diagram.6

Given this motivation for the reduced influence diagram, the mathematical ra-
tionale for the terms “irreducible” and “reducible” becomes more apparent. If this
diagram reveals a single communication class, every variable depends (directly or

6To put this differently, if the reduced transition matrix is characterized by image matrix M ,
then the reduced influence matrix is characterized by the transpose of M .
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indirectly) on every other variable, and the entire set of equations must be solved
together. Hence, the problem (of solving the simultaneous-equation system) is “ir-
reducible.” But if there is more than one communication class, it is possible to
“reduce” the overall problem to a series of (simpler) subproblems. In particular, we
may begin by solving the set of equations corresponding to some closed class (be-
cause the variables in this set are not influenced by variables outside this set). And
once we have solved for the variables within each closed set, we may then proceed
sequentially to solve for variables in the open sets.

To illustrate, let’s solve for the long-run distribution for our present example,
determined by the following system of equations,

x(1) = 0.8 x(1)

x(2) = 0.2 x(1) + 0.5 x(3)

x(3) = x(2) + 0.5 x(3)

along with the requirement that the long-run distribution is a probability vector,

x(1) + x(2) + x(3) = 1

From the reduced influence diagram, we see that communication class {1} is closed.
We can thus solve that (one-equation) system first, obtaining x(1) = 0. Given this
solution, we may now consider the remaining (two-equation) system,

x(2) = 0.5 x(3)

x(3) = x(2) + 0.5 x(3)

which, along with the requirement

x(2) + x(3) = 1

leads to the result x(2) = 1/3 and x(3) = 2/3 already obtained in section 7.2. The
following chapters on influence networks and demography will offer further illustra-
tions of reducibile simultaneous-equation systems.

7.4 Further Reading

For the classic discussion of equivalence classes in communication networks, see Ke-
meny, Snell, and Thompson, Introduction to Finite Mathematics, Prentice-Hall, 1966.
The standard reference for social network analysis is Wasserman and Faust, Social
Network Analysis: Methods and Applications, Cambridge, 1994. The standard ref-
erence for graph theory is Harary, Norman, and Cartwright, Structural Models: An
Introduction to the Theory of Directed Graphs, Wiley, 1965. The term “centered”
seems to have been coined by Friedkin and Johnsen in their 1997 Social Networks
paper, which we will address more directly in the next chapter. For further discussion
and application of influence diagrams in a more general linear-systems framework,
see Farina and Rinaldi, Positive Linear Systems: Theory and Applications, Wiley,
2000.
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