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4 Absorbing Markov Chains

So far, we have focused on reqular Markov chains for which the transition matrix P
is primitive. Because primitivity requires P(i,7) < 1 for every state i, regular chains
never get “stuck” in a particular state. However, other Markov chains may have one
or more absorbing states. By definition, state i is absorbing when P(i,i) = 1 (and
hence P(i,j) =0 for all j # i). In turn, the chain itself is called an absorbing chain
when it satisfies two conditions. First, the chain has at least one absorbing state.
Second, it is possible to transition from each non-absorbing state to some absorbing
state (perhaps in multiple steps). Consequently, the chain is eventually “absorbed”
into one of these states.!

This chapter focuses on absorbing Markov chains, developing some special anal-
ysis of this type of chain. We begin with a simple social-psychological application,
and then consider a more elaborate model of network formation.

4.1 Conformity to group pressure

In a famous psychology experiment, Asch (1951) examined the degree to which people
conform to group pressure. Ostensibly, the experiment concerned visual perception.
A subject was led into a room and seated with some other participants. The experi-
menter presented them with a simple visual task — to determine which of three lines
was the same length as a reference line. In sequence, each participant was asked to
give his response, with the subject answering last. The task was designed so that the
correct response was obvious. However, unbeknownst to the subject, all of the other
participants were confederates of the experimenter, and had been instructed to give
the same incorrect answer. Thus, when it was finally the subject’s turn to answer,
the subject had to choose whether to give the correct answer (ignoring pressure to
conform to the group) or the incorrect answer (giving into this pressure).

After recording the responses, the experimenter presented another similar task,
and participants again answered sequentially with the subject going last. In one
version of this experiment (reported by Cohen 1958), this procedure was repeated 35
times in all. Thus, for each subject, the data might consist of a sequence of responses
such as

aababbaabbbabbbaaabbabbbbbbbbbbbbbbbbbbbbbbbb

'We’ve already seen one example of an absorbing state at the end of Chapter 2. In the mover-
stayer model, any individual who is a stayer (occupying some absorbing state iS) never changes
state. However, in that example, the chain itself was not absorbing because it was not possible to
transition (even indirectly) from any of the non-absorbing (mover) states to some absorbing (stayer)
state. The general observation is that a Markov chain can be neither regular nor absorbing. We
will develop a more complete typology of states and chains in Chapter 7.




where a denotes the correct answer (against the group) and b denotes the incorrect
answer (with the group). This experiment was repeated with other subjects, each of
whom generated his own response sequence. While hypothetical, the sequence above
illustrates a common pattern. Namely, most subjects initially waver between a’s and
b’s, but eventually “lock into” a single response (with some subjects choosing a and
others choosing b).

What type of process might generate such sequences? A regular Markov chain
could potentially produce the initial portion (when subjects appear to be alternating
stochastically between responses) but cannot account for the final portion (when the
process seems to have been “absorbed”). To reconcile these observations, Cohen
(1958) proposed a Markov chain model with 4 states:

1 permanent non-conformist
2 permanent conformist
3 temporary non-conformist
4 temporary conformist

Observationally, subjects in state 1 or 3 give response a, while subjects in state 2 or 4
give response b. But in Cohen’s model, states 1 and 2 are absorbing, while transitions
can occur from state 3 to 1 or 4, and from state 4 to 3 or 2. More precisely, using
the experimental data, Cohen estimated the transition matrix

1 0 0 0

p_ 0 1 0 0
0.06 0 063 031
0 0.05 0.46 0.49

which can be represented as the transition diagram below.

1.0 0.63 0.49 1.0
Q‘ 0.06 Q 0.31 Q 0.05 Q
\_/

0.46

Because it is possible to transition from each of the non-absorbing states (3 and 4)
into an absorbing state (1 or 2), this Markov chain is absorbing.?

Regardless of the type of Markov chain (e.g., regular or absorbing), we can con-
tinue to apply the matrix analysis developed in Chapter 1.3. That is, for any Markov

2In this example, it is possible to move directly from each non-absorbing state to some absorbing
state. But the definition of an absorbing chain merely requires indirect (multi-step) transitions.



chain, P'(i,j) can always be interpreted as the probability that the process that
occupied state 7 in period 0 will occupy state j in period t. Thus, the following
computations reveal the (probabilistic) future of the chain

>P=[1000; 0100; .060 .63 .31; 0 .05 .46 .49]

P =
1.0000 0 0 0
0 1.0000 0 0
0.0600 0 0.6300 0.3100
0 0.0500 0.4600 0.4900
>> P2
ans =
1.0000 0 0 0
0 1.0000 0 0
0.0978 0.0155 0.5395 0.3472
0.0276 0.0745 0.5152 0.3827
>> P~3
ans =
1.0000 0 0 0
0 1.0000 0 0
0.1302 0.0329 0.4996 0.3374
0.0585 0.0936 0.5006 0.3472
>> P~10
ans =
1.0000 0 0 0
0 1.0000 0 0
0.3073 0.1334 0.3324 0.2269
0.2375 0.1958 0.3368 0.2299
>> P~100
ans =
1.0000 0 0 0
0 1.0000 0 0
0.6618 0.3351 0.0019 0.0013
0.5967 0.4001 0.0019 0.0013
>> P~1000
ans =
1.0000 0 0 0
0 1.0000 0 0
0.6638 0.3362 0.0000 0.0000

0.5987 0.4013 0.0000 0.0000



Following Cohen (1958), we might assume that subjects began the experiment in
one of the non-absorbing states. In the “short run” — after only 2 or 3 responses
— most subjects would still occupy one of the non-absorbing states. For instance,
consider a subject who was initially a temporary non-conformist (state 3). For the
third response, she has a 49.96% chance of being a temporary non-conformist and a
33.74% chance of being a temporary conformist (state 4).

But in the “long run” — after many responses — each subject will eventually be-
come either a permanent non-conformist (state 1) or a permanent conformist (state
2). In particular, if she was initially a temporary non-conformist (state 3), the sub-
ject has a 66.38% chance of ending up as a permanent non-conformist and a 33.62%
chance of ending up a permanent conformist. If she was initially a temporary con-
formist (state 4), she has a 59.87% chance of ending up a permanent non-conformist
and a 40.13% chance of ending up as a permanent conformist. This illustrates an
important general result: the limiting distribution for an absorbing chain typically
depends on the initial state of the process. In contrast, the Theorem from Chapter 1
guarantees that the limiting distribution for a regular chain does not depend on the
intial state.

4.2 Analysis of expected time until absorption

Following the preceding example, the transition matrix for any absorbing chain can
be written in the “canonical” form

I 0
P =
[ R @ ]
where R is the rectangular submatrix giving transition probabilities from non-absorbing
to absorbing states, () is the square submatrix giving these probabilities from non-

absorbing to non-absorbing states, / is an identity matrix, and 0 is a rectangular
matrix of zeros.® Iterated multiplication of the P matrix yields

po_ [T 0 I o] I 0
" |IRQ||R Q| T |R+QR Q|

P I 0 I 0] _ I 0
| R+QR Q@ || R Q] [R+QR+QR @ |’

and hence by induction we obtain

Pt _ ] 0
| I+Q+Q*+...+Q"HR Q' |

3Note that R and 0 are not necessarily square. More precisely, if there are n4 absorbing states
and ny non-absorbing states, then Ris ny X na, Qisny X ny, I isna X na, and 0 isng X ny.




The preceding example illustrates the general result that Q' — 0 as t — oco.? Thus,

w [ 1 0
P _[NRO}

where the matrix

N=14+Q+Q+... = (1-Q)"

is called the fundamental matriz for the absorbing chain.’

The elements of the N matrix can be given an interesting interpretation. However,
we should first clarify the indexing of states in this matrix. Given its derivation from
the @ matrix, N is a square matrix with rows and columns corresponding to the
non-absorbing states. Thus, row ¢ corresponds to the ith non-absorbing state, not
the ith state overall. For instance, in the preceding example, row 1 and 2 of the N
matrix correspond to states 3 and 4 (i.e., the 1st and 2nd non-absorbing states).

With that clarification, here’s the interpretation: N(i,7) is the expected number
of periods that the chain spends in the jth non-absorbing state given that the chain
began in the 7th non-absorbing state. Perhaps this interpretation is apparent from
the specification of the N matrix as the infinite sum

N =T1+Q+Q*+...

which implies
N(i,j) = Qi,j) +Q(i,5) + Q*(i,5) + ...

where Q'(i, 7) is the probability that the process which began in the ith non-absorbing
state will occupy the jth non-absorbing state in period t. However, Q'(i,j) can
also be understood as the expected proportion of period t spent in the jth state.
Summing over all time periods ¢, we thus obtain the total number of periods that
the chain is expected to occupy the jth state.

To arrive at this interpretation in a different way, we can also specify these ex-
pectations recursively. To begin, we can write

N(i,i) = 1+ > N(G,k)Q(k, i)

where the summation is taken over all non-absorbing states k. Intuitively, if the chain
begins in the ith non-absorbing state, then it must (obviously) occupy the ith state
for the one initial period. Further, for each of the N(i, k) periods that the chain is
expected to occupy the kth non-absorbing state, the chain transitions back to the ¢th

4Because the sum of every row of Q is strictly less than 1, the largest eigenvalue of Q is less
than 1, and hence Q! — 0 as t — 0.

5To simplify the infinite sum, note that NQ = Q + Q? + ..., and hence N — NQ = I.

6 Alternatively, averaging over many chains, Q'(i, j) is the proportion of chains in the jth non-
absorbing state in period ¢.



non-absorbing state with probability Q(k, 7). Summing over all non-absorbing states,
we obtain the total number of periods (in addition to the first) that the process is
expected to occupy the ith non-absorbing state. Similarly, we can write

N(i,j) = Y N(i,k)Q(k,j) for all j # i.
k

This equation is similar to the first, but omits the initial period since the chain did
not begin in the jth non-absorbing state. Rewriting this system of equations in
matrix notation, we obtain

N = I+QN

and hence

N = (-Q"

Given this interpretation of the fundamental matrix, the sum of each row ¢ reveals
the expected number of periods spent in any non-absorbing state given that the chain
initially occupied the ith absorbing state. Equivalently,

ZN(Z'J)

is the expected number of periods before absorption (into any absorbing state) given
that the chain began in the ¢th non-absorbing state.
To illustrate, let’s return to the example from the previous section.

>> R = P(3:4,1:2) % the submatrix R

0 0.0500

>> Q = P(3:4,3:4) % the submatrix Q
Q:

0.6300 0.3100

0.4600 0.4900
>> N = inv(eye(2)-Q) % the fundamental matrix N
N =

11.0629 6.7245

9.9783 8.0260
>> sum(N,2) I expected number of periods before absorption
ans =

17.7874
18.0043



>> N*R % lower left submatrix of P"t as t becomes large

ans =
0.6638 0.3362
0.5987 0.4013

If the chain began in the 1st non-absorbing state (i.e., state 3), we can thus expect
the chain to spend 11.06 periods in that state, 6.72 periods in the 2nd non-absorbing
state (i.e., state 4), and hence 17.78 periods overall before absorption (into either
state 1 or 2). Alternatively, if the chain began in the 2nd non-absorbing state (i.e.,
state 4), we can expect it to spend 9.98 periods in the 1st non-absorbing state, 8.03
periods in the 2nd non-absorbing state, and hence 18.00 periods before absorption.
Of course, in the context of the example, each “period” corresponds to one response
made by the subject.

4.3 Formation of dominance hierarchies

Sociologists have long been interested in the structure of social networks. In some
types of networks, social ties between actors are not always reciprocated. For in-
stance, within an organization, we might observe worker ¢ giving advice to worker j
but not receiving advice in return. Similarly, in a study of middle-school students,
we might find that student ¢ admires student 7, but also find that j does not ad-
mire ¢. Depending on the context, such networks are sometimes labeled dominance
hierarchies, and researchers might try to infer the “pecking order” within the group
from the structure of the network.

It is sometimes difficult to determine the pecking order, as illustrated by the
annual controversy in the US over the ranking of college football teams. Let ¢Bj
indicate that team 7 beat team j this year. There would be no controversy about the
annual ranking if (i) every pair of teams played each other and (ii) there were never
any upsets. More formally, the who-beats-whom relation B on the set of teams S
would need to be complete, which requires

iBjor jBi foralli,j €S,
and transitive, which requires
(1Bj and jBk) implies iBk for all ¢, 5,k € S.

Of course, in reality, many college football teams do not play each other, and we
sometimes see upsets corresponding to “cycles” where 1Bj and jBk but kBi. Thus,
the annual debate over the rankings seems inevitable.



To the extent that dominance hierarchies are transitive, we might wonder what
sort of network-formation process would generate this outcome.” Perhaps some in-
sight can be gained through close observation of animal populations. Given the
origin of the phrase “pecking order,” research by Chase (1982) seems especially rel-
evant. After being placed together in a pen, previously unacquainted chickens will
eventually establish a dominance hierarchy that is complete. Further, while these
hierarchies sometimes contain cycles, transitivity is more common than chance would
dictate (i.e., if dominance between each pair of chickens was determined by flipping
a coin). Based on his observation of the network-formation process, Chase suggested
that this result could be explained by “bystander effects.” Dominance can be es-
tablished directly when chicken i attacks (i.e., pecks, scratches, or jumps on) some
other chicken k. However, if this attack was witnessed by bystander j, the attack
may also induce dominance of i over j or dominance of j over k (or both). Thus, a
single attack may generate a transitive subnetwork, increasing the degree to which
the entire network will be transitive when it is complete.

Chase’s description of this process led Fararo and Skvoretz (1986) to develop
the following model of network formation. The process begins in period 0 with no
pre-existing dominance relation. Each subsequent period then brings the following
series of events:

1. Some actor 7 attacks some actor k, and this attack is witnessed by some by-
stander j. The triple (4,7, k) is drawn randomly from the set of all distinct
triples such that k& does not already dominate .

2. If attacker ¢ does not already dominate attackee k, then i dominates k& (from
this period forward) with probability .

3. If dominance has not yet been established (in either direction) between at-
tacker ¢ and bystander j, then ¢ dominates j (from this period forward) with
probability 6.

4. If dominance has not yet been established (in either direction) between by-
stander j and attackee k, then j dominates k (from this period forward) with
probability 6.

For simplicity, we assume that the two bystander effects (in steps 3 and 4) occur with
the same probability §, and that the three random draws (in steps 2, 3, and 4) are
independent. Note that this network-formation process is monontonic (i.e., ties are
added but never removed), preserves the asymmetry of the dominance relation (i.e.,
i dominates j only if j does not dominate i), and eventually results in a dominance
relation that is complete.

"Given the mathematical definition of transitivity just stated, a social relation either is or is
not transitive. However, sociologists are often assess the degree of transitivity in a network by
determining the proportion of triads (subnetworks of three individuals) that are transitive.



This model can be specified as an absorbing Markov chain, with the states of the
chain given by the possible configurations of the network. For simplicity, suppose
that the group is composed of 3 actors.® Because we are concerned only with the
structure of the network (rather than the identities of the actors), the 7 possible
network configurations are depicted below. A directed edge from node i to node j
indicates that ¢+ dominates j.

R VA VAN

SO S1 S2a S2b

S3 C H

Given the assumptions of the model, the chain is intially in state SO (the empty
graph), and will eventually reach one of the two absorbing states, C (for “cycle”) or
H (for “hierarchy”).

Having considered the states of the chain, we can now tackle the transition ma-
trix. Because this model is more complicated than others we have encountered, the
derivation of the transition probabilities requires some thought. One approach is to
construct, for each of the non-absorbing states, a probability tree diagram reflecting
the sequence of steps within each period. Using this diagram, we can then determine
the probability of moving from that non-absorbing state to each possible state in the
next period. To illustrate, Figure 4.1 depicts the probability tree diagram for state
S3. Summing over the various paths from state S3 to state H, we find that this
transition occurs with probability

(1/4)0 + (1/4)7 + (1/4)0 = (20 + 7)/4,

and the transition probability from S3 to S3 or from S3 to C can obtained in the
same way. Note that it is not possible to transition from state S3 to any of the other
non-absorbing states.

It is straightforward (though admittedly tedious) to construct similar probability
tree diagrams for each of the other non-absorbing states. (I'll leave this to the reader

8This assumption was originally adopted by Fararo and Skvoretz (1986) not only for simplicity,
but also because many of Chase’s observations were actually made on groups composed of 3 chickens.



Figure 4.1 Probability tree diagram for state S3

step 1 step 2 step 3 step 4 state  probability
) xDz —zDy H (1/4)0
TAy xDy Q
-xDz _____ —zDy S3 (1/4)(1 —0)
1/4 xDz Dy ___ yDz H (1/4)m
/
TAz ﬁ
—xDz ____ a2Dy _____ yDz S3 (1/4)(1 — 7T)
1/4
S3
1/4
) xDz H (1/4)0
1/4 yAz yDz _____ —wyDx @
—xDz S3 (1/4)(1 —0)
2Dx __ —zDy ___ —yDx C (1/4)m
/
zAx ﬁ
-zDx ___ -zDy ___ —yDzx S3 (1/4)(1 —7)

In this diagram, i Aj indicates that ¢ attacks j, iD7j indicates that ¢ dominates 7, and —iDj indicates
that ¢ does not dominate j. State S3 is characterized by Dy and yDz (where the labels z, y,
and z are assigned to match actors’ positions in the network). Unlabeled edges indicate certain

(probability 1) outcomes.
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as an exercise.) After constructing the tree diagrams for S2a and S2b, you would
find that all of the transition probabilities are identical for these states. That is,
the rows of the transition matrix corresponding to S2a and S2b would be identical.
This makes it possible to merge these two states into a single state.® Labeling this
state S2, the model thus has 6 states, and the transition matrix is given below. Note
that this matrix has been specified in canonical form, with absorbing states listed
first.

H C S0 S1 S2 S3
H| 1 0 0 0 0 0

0 1 0 0 0 0
So| 70?2 0 (1-m)(1-0)?2 w(1-6)2+2(1—m)0(1-0) 270(1-6) (1—m)0?
S1 | im0 0 (=01 +4(-m)(1=0) 21=m0+(r+0)(1=0)]  2Ar(1=0)+(1=r)0)
s2| &= 0 0 0 iblom 0
3| #= 0 0 0 Lotion

Having developed the model, we can now assess Chase’s argument about the
bystander effect. In particular, we can examine how the strength of the direct effect
(given by the parameter m) and the bystander effect (given by the parameter )
influence the probability that the chain is eventually absorbed into the transitive
hierarchy rather than the non-transitive cycle. To facilitate numerical experiments,
I've written a Matlab function m-file placed in Appendix 4.5.

>> help fararoskvoretz

P = fararoskvoretz(p,q)

output P = transition matrix for network-formation model
input p (= pi) = probability that attacker dominates attackee
input q (= theta) = probability that bystander effects occur

Thus, using this m-file, we can easily substitute different numerical values of the
parameters into the transition matrix given above.

To begin, let’s suppose a moderately strong direct effect (x = 0.5) but no by-
stander effect (§ = 0). In the usual way, we can determine the long-run outcome by
raising the transition matrix to some high power.

9See Kemeny and Snell (1960) for a discussion of the “lumpability” conditions under which
states of a chain can be merged in this way.
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>> P = fararoskvoretz(.5,0)

0.2500
0.1250

>> P~100

ans =
1.0000
0
0.7500
0.7500
1.0000
0.5000

We are assuming that the chain always begins in state SO. Thus, from the 3rd
row of the P9 matrix, we find there is a 75% chance that the chain is ultimately
absorbed in the transitive hierarchy (state H), and hence a 25% chance that the
chain is absorbed into the non-transitive cycle (state c). It is in this baseline case
that we are essentially “flipping a coin” to determine the direction of dominance for

each pair.

Holding constant the direct effect (7 = 0.5), let’s now consider what happens
when we introduce a weak bystander effect (0 = 0.2).

O O =

.0000
0

.1250

0
.0000
.2500
.2500

0
.5000

>> P = fararoskvoretz(.5,.2)

P =
1.0000

0

0.0200
0.0880
0.3500
0.2250

>> P~100

ans =
1.0000

0.8982
0.8706
1.0000
0.6429

.0000
.1018
.1294

.3571

0
0
0.5000
0.6000
0
0

0
0
0.0000
0.0000
0
0

0
0
0.4800
0.4480
0
0

0
0
0.0000
0.0000
0
0
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0
0

0.2000
0.7500

0.0000
0.0000
0.0000

0
0
0.1600
.2640
0.6500

o

0.0000
.0000
0.0000

o

0.2000

0.7500

0
0
0.0000
0.0000
0
0.0000

0.0200
0.2000

0.6500

0.0000
0.0000

0.0000



Again assuming that the chain begins in state SO, there is now a greater chance
(89.82%) that the network is ultimately transitive. Consistent with Chase’s orginal
argument, the bystander effect seems to promote transitivity.

While this is an interesting finding, there are many other combinations of param-
eter values to be considered. In their paper, Fararo and Skvoretz (1986, p 600, Table
3) performed a “grid search,” computing the long-run probability of absorption in
state H given initial state SO for every pair in

{(z,0) | 7.0 € {0,0.1,0.2,... 1}}.

This is easily accomplished in Matlab using a nested loop.

>> table = []; for pi = 0:.1:1; row = []; for theta = 0:.1:1; P = fararoskvoretz(pi,theta);
X = P71000; row = [row, X(3,1)]; end; table = [table; row]; end; table

table =
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7500 0.9067 0.9372 0.9493 0.9552 0.9585 0.9602 0.9609 0.9609 0.9603
0.7500 0.8774 0.9137 0.9285 0.9355 0.9388 0.9400 0.9398 0.9385 0.9364
0.7500 0.8638 0.9037 0.9207 0.9284 0.9314 0.9318 0.9304 0.9278 0.9241
0.7500 0.8562 0.8996 0.9192 0.9281 0.9313 0.9313 0.9292 0.9255 0.9205
0.7500 0.8515 0.8982 0.9208 0.9315 0.9357 0.9360 0.9336 0.9295 0.9238
0.7500 0.8482 0.8981 0.9241 0.9372 0.9428 0.9440 0.9420 0.9380 0.9322
0.7500 0.8459 0.8987 0.9281 0.9440 0.9517 0.9542 0.9533 0.9499 0.9448
0.7500 0.8442 0.8997 0.9325 0.9514 0.9615 0.9659 0.9665 0.9645 0.9607
0.7500 0.8429 0.9009 0.9370 0.9590 0.9718 0.9785 0.9811 0.9811 0.9792
0.7500 0.8418 0.9021 0.9415 0.9667 0.9825 0.9917 0.9968 0.9991 0.9999
>> % columns correspond to theta in {0, .1, ..., 1.0}; rows correspond to pi in {0, .1, ..., 1.0}

>> J, entries give the probability that the process is eventually absorbed in state H

Note that the two results already computed appear in row 6 (corresponding to m =
0.5), columns 1 and 3 (corresponding to § = 0 and 6 = 0.2).

Intuition might suggest that a stronger bystander effect necessarily increases the
likelihood of transitivity. However, we can see from our grid search that an increase
in 6 can actually reduce this likelihood. For instance, consider the 6th row of the
table (so that 7 is held fixed at 0.5). As 6 begins to rise from 0, the probability of
absorption in H also rises. However, once 6 rises to 0.6, this probability reaches a
maximum, and any further increase in the bystander effect causes the probability
of absorption in H to fall. It is also interesting to note that, holding constant the
strength of the bystander effect, the likelihood of transitivity is lowest when the
direct effect is moderate. For instance, consider the final column of the table (so
that 6 is held fixed at 1.0). If the direct effect is either absent (m = 0) or certain
(m = 1) then state H is reached with certainty. But given intermediate values of 7,
there is some chance that the process will be absored in state C. Overall, analysis of
the model suggests that the implications of the bystander effect are somewhat more
nuanced than might have been expected from Chase’s original (informal) argument.
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.0000
.9591
.9333
.9192
.9143

9167

.9250
.9382
.9556
.9763
.0000



4.4 Further reading

Most social psychology textbooks contain a chapter on conformity. See, e.g., Aronson
(The Social Animal, 1988, Chap 1). The original Asch experiments were reported in
Asch (1951); the absorbing chain model was developed by Cohen (Sociometry 1958).
My presentation draws heavily on Bradley and Meeks (1986, Chap 9). See Kemeny
and Snell (Mathematical Models in the Social Sciences, 1962, Chap 5) for a more
elaborate treatment focusing on the parameter estimation.

Both Bradley and Meeks (1986, Chaps 8 and 9) and Kemeny et al (1968, pp
282-291) offer introductions to absorbing Markov chains, discussing the fundamental
matrix and its interpretation.

The standard textbook for social network analysis is Wasserman and Faust (1994).
Many researchers have proposed mathematical methods for ranking college football
teams. See Callaghan et al (Am Math Monthly 2007) for one recent suggestion and
further references. The research on pecking orders among chickens is reported in
Chase (Am Soc Rev 1980, Science 1982). The absorbing chain model was developed
by Fararo and Skvoretz (Am Soc Rev 1986).

4.5 Appendix

4.5.1 fararoskvoretz m-file

function P = fararoskvoretz(p,q)

% P = fararoskvoretz(p,q)

% output P = transition matrix for network-formation model

% input p (= pi) = probability that attacker dominates attackee
% input q (= theta) = probability that bystander effects occur

P= [1, 0, O, O, O, O; ...
0, 1, 0, 0, 0, O; ...
p*q°2, 0, (1-p)*(1-q)"2, px(1-q) "2+2*(1-p)*q*(1-q), 2*p*q*(1-q), (1-p)*q°2; ...
(q2+4%p*q) /5, 0, 0, ((1-q)~2+4*(1-p)*(1-q))/5, ...
2% ((1-p)*q+p*(1-q)+(1-q)*q) /5, 2*(p*x(1-q)+(1-p)*q)/5; ...
(g*+p)/2, 0, 0, 0, (1-g+1-p)/2, 0; ...
(2xq+p) /4, p/4, 0, 0, 0, (1-g+1-p)/2];
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