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Abstract

In recent location choice models, households randomly vary with respect to their utility of

living in a location. We demonstrate the distribution generating this randomness is not

identifiable from location choice data and the optimal allocation chosen by a social planner

is not identified. We propose an algorithm for setting the distribution generating the random

utility across locations that implies a planner will optimally choose no redistribution in the

absence of externalities or equity motives between different types of people. Our algorithm

preserves a planner’s motives to redistribute due to equity considerations between types of

people and efficiency in production.
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1. Introduction

For decades, federal, state and local governments have directly or indirectly redistributed

income across locations. This redistribution can take many forms: It can be a subsidy for

development of new low-income housing (Davis et al., 2019); a subsidy to local businesses op-

erating in low-income areas such as Empowerment Zones (Busso et al., 2013) or Opportunity

Zones (Arefeva et al., 2021); a large-scale government works projects (Kline and Moretti,

2014); or other forms. Thus, a central area of investigation in economics is to understand

the context in which redistribution across locations improves welfare.

Recent papers by Fajgelbaum and Gaubert (2019), Rossi-Hansberg et al. (2020) and

Gaubert et al. (2020) extend this tradition by studying optimal transfers of income across

households and locations using sophisticated equilibrium location choice models. The models

include well-documented externalities in production and multiple types of households, for

example low- and high-skill. Using calibrated models, these papers quantify transfers across

people and locations that improve expected utility for reasons of both efficiency and equity.

We show that in location choice models a planner will have three motives to redistribute

resources across locations and people relative to an environment in which households con-

sume the income they generate and do not receive (or pay) transfers. The first, which we

call “across-type equity,” is to narrow inequality in consumption across different types of

households, for example low-skill and high-skill. The second, which we call “efficiency,”

arises from externalities and spillovers across types in production; the planner will transfer

resources to provide incentives for households to internalize the external impacts of their

decisions. Understanding motives for redistribution arising from these first two reasons has

been the focus of recent studies.

We show that a planner has a third reason to redistribute in these models: To equate the

average marginal utility of consumption of otherwise identical households that make different

location choices. A typical prediction is that a planner will redistribute resources from ex-

ante identical households choosing to live and work in high-income locations to households

choosing low-income locations. We call this third motive “within-type transfers.”

To understand why a planner may wish to make within-type transfers in location choice

models, we need to provide some background. For all locations to be occupied in models with
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ex-ante identical households, some households must choose to live in low-income locations.

In an older literature that relies on the Rosen-Roback model (Roback, 1982) to describe the

economic environment, utility in every location is assumed identical and each household is

indifferent as to its location. The Rosen-Roback model implies that population elasticities

are infinite with respect to a small change in location attributes such as consumption or

amenities holding all else fixed.

This infinite elasticity is not realistic and many researchers now use a different framework

where utility in every location is not assumed to be equal. Instead, households receive

“location attachment” draws that affect the utility of living in each location. From the

perspective of the researcher, these draws vary randomly across locations and households.

The inclusion of these draws imply households are not indifferent as to where they live

and some households will not leave their chosen location in response to marginal changes in

utility. Researchers can calibrate the distribution of the draws to match empirical population

elasticities with respect to changes in wages, amenities, or other location characteristics. The

fact that some households are sticky with respect to location choice raises the possibility of

welfare-improving place-based policies. The calibration of the distribution of the location

attachment draws that generates this stickiness enables accurate predictions about behavioral

responses to policy.

We document that the exact distribution of these location attachment draws is funda-

mentally not identifiable from location choice data. This implies the size and direction of

optimal within-type transfers are not identified, even when a model includes all three mo-

tives for redistribution. Different, untestable assumptions about the distribution of location

attachment draws can lead to large swings in predicted optimal within-type transfers. The

uncertainty this creates potentially swamps predicted redistribution arising from the mo-

tives of across-type equity or efficiency. When researchers compare policies across a number

of scenarios, we often do not know the role played by within-type transfers in generating

changes to policy. We propose an adjustment to the standard planning problem that elim-

inates within-type transfers, while preserving motives for redistribution due to reasons of

across-type equity or efficiency.
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2. Proving Lack of Identification of Within-Type Transfers

2.1. A Common Model

We start by considering the predictions of a simple location choice model with no ex-

ternalities and one type of household that is at the core of some more complicated models.

The economy consists of a measure 1 of ex-ante identical households and each household

must choose where to live from one of n = 1, . . . , N discrete locations. Households value

consumption, which is produced and transferrable across locations. Each household living in

location n produces zn units of output. Ln is the measure of households living and working

in n.

Denote cn as consumption enjoyed by each household living in location n, not necessarily

equal to zn. The utility of household i choosing to live in location n is

uni = Ancneni

An are amenities freely enjoyed by all households living in location n. eni is a level of

attachment to location n by household i that varies across locations and households. Each

household observes eni for n = 1, . . . , N before making a location choice. Households differ

only with respect to eni. We assume, as is common, that the eni are drawn iid across locations

for each household and iid across all households from the Fréchet distribution with shape

parameter ν.

Consider a planner with the objective to maximize expected utility subject to satisfying

aggregate feasibility,
∑

n znLn =
∑

n cnLn, population feasibility, 1 =
∑

n Ln, and respects

that households choose the location offering the maximum value of uni, i.e. household i

chooses n∗i when n∗i = argmax {uni}Nn=1. We show in Appendix A that a planner that

maximizes expected utility will relate the per-household consumption differential between

any two locations n and n′ to the per-household income differential of those locations as

follows

cn − cn′ =

(
ν

1 + ν

)
(zn − zn′) (1)
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Equation (1) illustrates what we call within-type transfers, as the planner optimally redis-

tributes consumption from households living in high income locations to those living in low

income locations. Households choosing to work and live in low income locations receive sub-

sidies that are funded by otherwise identical households choosing to work and live in high

income locations. A typical calibration sets ν = 2 (Rossi-Hansberg et al., 2020).

2.2. Economics of Within-Type Transfers

So why does the planner wish to redistribute income? After all, there are no externalities

and all households have the ability to choose any location in which to live and earn the

income of that location. We use intuition from the literature on optimal unemployment

insurance to show why a planner makes within-type transfers. Consider a simple setup with

only 2 locations where locations differ in their income per household, denoted w1 and w2.

Assume residents of location 2 pay a tax t to finance a subsidy b paid to residents of location

1. For example, when z1 = w1 and z2 = w2 it can be shown equation (1) implies

b =
(1− L1) (z2 − z1)

1 + ν
and t =

L1 (z2 − z1)

1 + ν

Each household draws idiosyncratic preferences for locations we label as ε1 and ε2 and

chooses the location that provides the highest utility. Utility is derived from consumption

bundled with each individual’s draws of ε1 and ε2. Expected utility is

V = Eε1,ε2 max
(
u
(
w1 + b, ε1

)
, u
(
w2 − t(b), ε2

))
with t(b) =

L1

1− L1

b

The second expression is the government balanced budget condition assuming there is a

measure 1 of households in the economy.

The optimal subsidy is the value of b at which
dV

db
= 0. To characterize this optimal

subsidy, begin with the expression,

dV

db
=

∂V

∂b
+
dt

db

∂V

∂t
+
(∂L1

∂b
+
dt

db

∂L1

∂t

)
�
�
�∂V

∂L1︸︷︷︸
=0

The third term is equal to zero because individuals who switch locations in response to a
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marginal policy change receive the same utility in both locations.1

The partial effects of changing b and t depend only on the populations of the two locations

and the average marginal utility of consumption of residents in each location, denoted µ1

and µ2:

∂V

∂b
= L1

≡µ1︷ ︸︸ ︷
E

[
∂u
(
w1 + b, ε1

)
∂w1

∣∣∣∣∣u(w1 + b, ε1

)
> u

(
w2 − t, ε2

)]
∂V

∂t
= −(1− L1)E

[
∂u
(
w2 − t, ε1

)
∂w2

∣∣∣∣∣u(w1 + b, ε1

)
< u

(
w2 − t, ε2

)]
︸ ︷︷ ︸

≡µ2

The government balanced budget condition implies that

dt

db
=

L1

1− L1

(
1 +

dL1

db
b
L1

1− L1

)

The first term is the mechanical change in the tax is necessary to finance the change in

transfers in the absence of any behavioral responses. The second term captures the fact that

an additional tax increase is necessary to offset the population response to the change in

taxes/transfers. We can now write

dV

db
= L1µ1 −

L1

1− L1

(
1 +

dL1

db
b
L1

1− L1

)
(1− L1)µ2

= L1

[
µ1 − µ2

(
1 +

dL1

db
b
L1

1− L1

)]

In the case when the current transfer is b = 0, the planner wishes to transfer consumption

to the location with the higher marginal utility of consumption. At the optimal transfer b

(satisfying dV/db = 0), we have

µ1 − µ2

µ2

=
dL1

db
b
L1

1− L1

(2)

1dt/db is not a partial derivative both because people move as a result of the policy and because of the
need to balance the budget.
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This result is exactly analogous to the Baily-Chetty formula of Chetty (2006) characterizing

the optimal generosity of unemployment insurance. The left-hand side is the insurance

benefit of moving 1 dollar (in total) from location 2 to location 1, which, for most commonly

considered utility functions, is decreasing in b. The right-hand side describes the marginal

cost of raising one dollar in total from location 2, which captures the fact that as benefits

rise, the population of location 1 also increases which causes an excess burden of transferring

one additional dollar.

2.3. Location Choice and Location Specific Preference Draws

In a two location model where eni are iid drawn from the Fréchet, we can derive the

left-hand side of equation (2). A household chooses location 1 whenever e1 > e2t where

t = A2c2/ (A1c1). This implies the following expected values

E
[
e1

∣∣ e1 > e2t
]

= (1 + tν)1/ν Γ

(
1− 1

ν

)
E
[
e2

∣∣ e2 > e1/t
]

= (1 + (1/t)ν)
1/ν

Γ

(
1− 1

ν

)

where Γ is the gamma function. The average marginal utility of consumption of households

living in locations 1 and 2 is equal to the appropriate expression above multiplied by A1

for location 1 and A2 for location 2. After cancelling redundant terms, the left-hand side of

equation (2) is equal to2

(
A1

A2

)[
1 + tν

1 + (1/t)ν

]1/ν

− 1 =

(
A1

A2

)
(A1c1)ν + (A2c2)ν

(A1c1)ν

(A2c2)ν + (A1c1)ν

(A2c2)ν


1/ν

− 1

=
1/c1 − 1/c2

1/c2

We now write down a transformation of the location attachment draws that yields exactly

the same probability distribution over all location choices but different values for the left-

2Note that the Fréchet shape parameter ν only determines the marginal deadweight loss from increasing
transfers, the right-hand side of equation (2). This expression shows ν does not determine any benefits, the
left-hand side of equation (2).
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hand side of equation (2) and therefore different optimal within-type transfers. Note that

the optimal location choice for household i, call it n∗i , satisfies

n∗i = argmax [A1c1e1i, A2c2e2i, . . . , ANcNeNi]

Suppose a researcher had considered a different distribution for the location attachment

draws, ẽni, such that the optimal location choice for household i resulting from this distri-

bution, call it ñ∗i , satisfies

ñ∗i = argmax [A1c1ẽ1i, A2c2ẽ2i, . . . , ANcN ẽNi]

When ẽni = Dieni, with Di random but taking on a single realized value for each household

i, optimal location choices for every household are identical to those when household utility

is Ancneni:

ñ∗i = argmax [A1c1ẽ1i, A2c2ẽ2i, . . . , ANcN ẽNi]

= argmax [A1c1Die1i, A2c2Die2i, . . . , ANcNDieNi]

= argmax [A1c1e1i, A2c2e2i, . . . , ANcNeNi]

= n∗i

Di is fundamentally not identifiable from location choice data: Optimal choices from ẽni are

exactly the same as eni.
3

3We can use the results of Matzkin (1993) to formally state what is identified in this model. Define utility
in location n for household i as AncnDieni. For arbitrary location m, the probability a household chooses
to live in m, call it ρm, is

ρm
(
{An}Nn=1, {cn}Nn=1

)
= Prob{logAm + log cm + logDi + log emi > logAn + log cn + logDi + log eni} for n 6= m

= Prob{log emi − log eni > logAn − logAm + log cn − log cm} for n 6= m

The joint CDF of the N−1 terms (log emi − log eni) is all that is nonparametrically identified, assuming
sufficient continuous variation in consumption or amenities. The Di terms do not appear and therefore they
are not identifiable.
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2.4. Lack of Identification of Optimal Transfers

For predicting population responses to various changes in location attributes such as

consumption and amenities, setting Di = 1 for all households is harmless as location choice

predictions do not depend on Di. For the purposes of deriving optimal within-type transfers,

setting Di = 1 for all households is an arbitrary assumption with significant consequences

as any correlation of Di with one or more of the draws of eni for n = 1, . . . , N can change

predicted optimal transfers.

To see this, define utility in location n for household i as

Ancnẽni with ẽni = Dieni

where eni are drawn iid from the Fréchet and Di is defined as:

Di =

[
N∏
n=1

eφnni

]−1

The parameters φ1, φ2, . . . , φN govern the correlation of Di and each eni; for now, we assume

these parameters are the same for all households. φ1, φ2, . . . , φN are nuisance parameters

since they are not identifiable from location choice data. Now consider three cases of (φ1, φ2)

for the two location model with A1 = A2 = 1 and z1 = z2.

• Case 1: φ1 = φ2 = 0

Utility in location 1 = c1e1i and Utility in location 2 = c2e2i

Household i chooses location 1 as long as e1i/e2i ≥ c2/c1. Given the eni are drawn

iid from the Fréchet distribution, optimal transfers are characterized by equation (1).

Since z1 = z2 the planner optimally sets c1 = c2 and no resources are transferred across

locations.

• Case 2: φ1 = 0 and φ2 = 1

Utility in location 1 = c1

(
e1i

e2i

)
and Utility in location 2 = c2
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Household i chooses location 1 as long as e1i/e2i ≥ c2/c1. For any given values of e1i

and e2i, households choose exactly the same locations as in case 1.

The planner will not optimally choose to set c1 = c2. Suppose that c1 = c2 and

households choose location 1 whenever e1i/e2i > 1. The marginal utility of consumption

for all households living in location 2 is always 1. The average marginal utility of

consumption for all households choosing to live in location 1 at at this allocation is

E

[
e1i

e2i

∣∣ e1i

e2i

> 1

]
> 1

When c1 = c2, the average marginal utility of consumption of residents optimally

choosing to live in location 1 is strictly larger than the average marginal utility of

consumption of residents choosing to live in location 2. Therefore, the planner will

transfer some consumption from location 2 to location 1 and c1 > c2.

• Case 3: φ1 = 1 and φ2 = 0 such that

Utility in location 1 = c1 and Utility in location 2 = c2

(
e2i

e1i

)

Household i chooses location 1 as long as e1i/e2i ≥ c2/c1 and for any given values of

e1i and e2i, households optimally choose exactly the same locations as in cases 1 and 2.

Now consider the allocation c1 = c2, such that households choose to live in location 2

whenever e2i/e1i > 1. The marginal utility of consumption for all households living in

location 1 is 1. The average marginal utility of consumption for all households choosing

to live in location 2 is

E

[
e2i

e1i

∣∣ e2i

e1i

> 1

]
> 1

At the allocation c1 = c2, the average marginal utility of consumption of households

optimally choosing to live in location 2 is strictly larger than the average marginal

utility of consumption of households choosing to live in location 1. The planner will

transfer some consumption from location 1 to location 2 and c2 > c1, exactly the
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opposite result as in case 2.

In each of cases 1-3, households choose to live in location 1 as long as e1i/e2i ≥ c2/c1 and

this choice is completely independent of the values of φ1 and φ2. Yet in case 1 the planner

chooses no transfers, in case 2 the planner transfers consumption from location 2 to location

1, and in case 3 the planner transfers consumption from location 1 to location 2. The size

and direction of the transfers is determined by the nuisance parameters φ1 and φ2.

This example is sufficient for the general point we wish to make: Since φ1, φ2, . . . , φN are

not identified from location choice data, optimal within-type transfers across locations are

also not identified.

2.5. Numerical Examples

To illustrate the potential quantitative significance of this problem, we simulate the

planning solution to a two location version of the model when utility for household i in

location n is

uni = Ancnẽni

with ẽni = Dieni and Di =

[
N∏
n=1

eφnni

]−1

where eni is drawn iid from the Fréchet distribution with shape parameter ν = 2. In simula-

tions we consider values of φ1 ∈ {0.0, 0.5, 1.0} and φ2 ∈ {0.0, 0.5, 1.0}. For all combinations

of φ1 and φ2, we consider the case of equally productive locations, z1 = z2 = 1.0, and location

1 more productive, z1 = 4/3 and z2 = 2/3. We set A1 = A2 = 1.0 in all simulations. Given

the draws of ẽni, we assume each household chooses the location that provides the highest

level of utility and then determine the allocation of consumption to residents of each loca-

tion that maximizes overall average utility in the economy, subject to the resource constraint∑
n

Ln (zn − cn) = 0 and population constraint
∑
n

Ln = 1.

The top panel of Figure 1 shows results for the case in which residents of both locations

are equally productive and the bottom panel shows results when residents of location 1

are more productive. The y-axis shows transfers per person from location 2 to location 1,

(c1 − c2) − (z1 − z2); the x-axis marks the value of φ2; and the different lines show results
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for the three values of φ1 we consider. The dashed black lines mark allocations where

consumption in each location equals production in that location and no within-type transfers

occur.

Consider first the optimal allocation that arises when φ1 = 0.0 and φ2 = 0.0, a standard

parameterization. When the two locations are equally productive, there are no transfers

(top panel); and when households in location 1 are more productive than in location 2,

the planner redistributes from location 1 to location 2, as the planner sets the difference in

consumption of the two locations equal to ν/ (1 + ν) = 2/3 of the difference in TFP. Once we

consider other values for φ1 and φ2, both panels of figure 1 make clear that optimal transfers

can vary in both sign and magnitude depending on the values of these nuisance parameters.

For any value of φ1, increasing φ2 – a movement from left to right along any given line –

increases consumption allocated to households living in location 1 relative to those living in

location 2. For any given value of φ2, increasing φ1 – moving down from a higher line to

a lower line holding φ2 fixed – increases allocations of consumption to households living in

location 2 relative to those in location 1. These patterns are consistent with the intuition of

the three cases discussed in section 2.4.

3. Method for Eliminating Motives for Within-Type Transfers

3.1. The Method

Since location choice data do not identify optimal within-type transfers, we advocate

setting the distribution of the location attachment draws such that the planner optimally

chooses no within-type transfers in simple models with one type of household and no exter-

nalities. Below, we propose a 5-step algorithm to find a distribution of location attachment

draws that accomplishes this objective and does not change any household’s optimal location

choice. We describe this algorithm as implementing an adjustment to the planning problem:

1. Guess a variable ωi = 1.0 for all households in the simulation

2. Multiply the utility function by ωi. Find the allocation of cn for all n = 1, . . . , N that

is feasible and maximizes the planner’s objectives at the current guess for ωi.

3. Given each household’s optimal choice at this allocation, n̂i, compute ω̂i as the inverse

of the marginal utility of consumption for that household at the optimally chosen loca-
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tion. Using the framework described in section 2.5, if we define n̂i as the optimally cho-

sen location for household i at the current guess of cn then we set ω̂i = (An̂i Di en̂i)
−1.

4. Compute ω′i = ωi + d · (ω̂i − ωi), where d ∈ (0, 1] is a dampening factor.

5. Update ωi = ω′i and repeat steps 2-5 until cn has converged.

This algorithm finds the solution the planner’s problem that is consistent with the marginal

utility of consumption equal to 1 for all households at the optimal allocation, thus setting

the left-hand side of equation (2) to zero.

3.2. The Adjustment Applied to the Simple Model

Denote the planner’s objective asO. In the model we have analyzed so far, our adjustment

normalizes the location attachment draws as follows

O = Ei

[
max
n
{Ancnêni}Nn=1

]
where êni = ωiẽni and ẽni = Dieni (3)

In the above, êni are the normalized draws and ωi is set to the inverse of the marginal

utility of consumption for household i at the planner’s optimal allocation. Explaining, if

household i optimally chooses location n∗i given the planner’s allocation c∗1, c
∗
2, . . . , c

∗
N , then

ωi =
(
An∗i Di en∗i i

)−1
. Since ωi is fixed across locations for any given household it does not

affect any location choices of households; additionally, since ωi rescales the draws such that

all households have the same marginal utility of consumption of 1 at the optimal allocation,

the planner has no motives for within-type transfers. Given any initial researcher-chosen

distribution of location attachment draws ẽni, êni implies exactly the same optimal location

choices but removes motives for the planner to implement within-type transfers.

Referring again to Figure 1, when we set ωi in this way, the planner optimally chooses

the dashed line at 0.0 in both panels (c1 − c2 = z1 − z2) for all values of z1 − z2 and for any

combination of the nuisance parameters φ1 and φ2.

3.3. More Complicated Models

3.3.1. Theory

In our introduction, we describe three possible motives for a planner to redistribute re-

sources across people and locations: Across-type equity, efficiency, and within-type transfers.
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So far, we have analyzed a simple model where a planner has no motives for redistribution

due to across-type equity, as there is only one type of household, or efficiency, as there are

no externalities. We now show that in a more complicated model where all three motives

may be present, our adjustment removes motives for within-type redistribution but motives

for redistribution due to across-type equity and efficiency remain.

Consider an environment in which there are are n = 1, . . . , N discrete locations, τ =

1, . . . , T distinct types of people, and possible externalities and complementarities across

types in production. We assume a planner can choose any level of consumption for any type

of household in any location, as long as the overall allocation satisfies aggregate feasibility

conditions and respects individual optimization, i.e. households are assumed to optimally

choose locations given their location attachment draws and given the allocation of consump-

tion across locations.4

The planner chooses consumption for each type in each location to maximize the social

welfare function

∑
τ

ΠτLτU (V τ ) (4)

where Πτ is the planner’s Pareto weight on type τ households in the economy, Lτ is the

total population of type τ , V τ is the expected utility associated with a type τ household and

U is a concave function. The constraints on the problem are listed below, with Lagrange

multipliers placed to the left of the brackets:

Expected Utility, by type: τ = 1, . . . , T λτ
[
Eeni

(
max
n′

uτn′i

)
− V τ

]
= 0

Resource constraint: P

[∑
n

∑
τ
tτnL

τ
n

]
= 0

Population, by type: τ = 1, . . . , T γτ
[
Lτ −

∑
n
Lτn

]
= 0

Optimization, by type and location: τ = 1, . . . , T and n = 1, . . . , N W τ
n [ρτnL

τ − Lτn] = 0

4In this framework, the planner does not need to and will not want to implement across-location transfers
as a means to implement across-type transfers. We can modify the environment to restrict transfers across
locations to be identical across types. If different types tend to occupy different locations, then across-
location transfers accomplish some across-type redistribution (Gaubert et al., 2020). This changes details of
the solution but does not affect our general conclusions.
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Lτn is the population of type τ in location n, uτni for agent i of type τ is the function

un (cn, Di, eni) with cτn = zτn − tτn where zτn is income generated by one type τ worker in

location n.5 ρτn is the probability that n = argmaxn′ u
τ
n′i for n′ = 1, . . . , N .

In Appendix B.1 we derive the solution to this problem; below we copy the equation

from that Appendix that characterizes optimal location- and type-specific transfers for type

τ in location n

κU τΠτµτn − UΠµ̄

UΠµ̄︸ ︷︷ ︸ −
κετn
UΠµ̄︸ ︷︷ ︸ =

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
︸ ︷︷ ︸

(1) (2) (3)

This solution is similar to that of the simple model, but modified to allow for multiple types of

people in the economy and the possibility of complementarities across types and externalities

in production. For a given type τ in location n, the first term on the left-hand side captures

the difference in the Pareto-weighted (κU τΠτ ) marginal utility of consumption of that type

in that location (µτn) from the economywide-average marginal utility of consumption (UΠµ̄)

and the second term captures the economy-wide utility net benefit of production spillovers

generated by that type in that location (κετn).6 The difference of these two terms is equated

to the marginal deadweight loss from increasing transfers, the third term.

In Appendix B.2, we derive the impact of our 5-step procedure on the solution for the

optimal transfer to type τ in location n, which we copy below

(
κU τΠτ − UΠ

)
− κετn =

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
(5)

After the adjustment, the planner continues to have motives to transfer resources across

types and locations. The right-hand side of equation (5), the marginal deadweight loss

from increasing transfers, does not change. The term in parentheses on the left-hand side,

5This can be a function of Lτ
′

n for τ ′ = 1, . . . , T , for example zτn = z
(
zn, L

1
n, L

2
n, . . . , L

T
n

)
where zn is TFP

for location N .
6The Uτ term is the derivative of the U function in the planner’s objective function for type τ . κ is a

scalar related to economy-wide fiscal externalities, marginal utilities of consumption and average production
externalities and spillovers.
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κU τΠτ−UΠ, is constant across locations for any given type of household, but this term allows

for transfers across different types of households arising from motives of across-type equity

based on differences in Pareto weights Πτ and the slope of the concave function U evaluated

at the optimal policy.7 The term κετn measures the impact of spillovers and externalities

in production. Within-type variation in this term determines across-location, within-type

transfers.

3.3.2. Numerical Examples

We now demonstrate that optimal transfers across locations are unidentified in more com-

plicated models by examining these transfers in an environment with one type of household

(as before), but with a large number of possible locations in which to live and produce and an

externality in production. We set output per person in location 1 equal to z1 (L1/L
∗)δ, where

L1 is the population in location 1 and for all locations n > 1 we set output per person equal

to zn. We consider two cases: δ = 0.0, no externalities, and δ = 0.15, a large population

externality in city 1.

The planner chooses cm for all locations m to maximize expected utility,
∑
m

LmVm, where

Vm is the expected utility of households optimally choosing to live in location m. Utility of

household i choosing to live in location m is

Amcmẽmi

where ẽmi = Diemi and Di =

[∏
m

eφmmi

]−1

implying Vm = Ei [AmcmDiemi | m chosen by i]. In all simulations, we draw emi iid from

the Fréchet distribution with shape parameter ν = 2 and we set Am = 1 for all m.

In our simulations, we assume 26 total locations in the economy and set z1 = 4/3 in

location 1 and zn = 2/3 in the other 25 locations. As before, we consider values φ1 ∈

7Exactly at the optimal solution, this adjustment causes the marginal utility of consumption of all house-
holds of all types to be identical. This means that the planner will not redistribute from high-income types
to low-income types unless the Pareto weights for low-income types are higher than for high-income types.
Researchers can pick Pareto weights to replicate optimal across-type transfers that are the solution to the
planner’s problem prior to applying our adjustment, if desired.
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{0.0, 0.5, 1.0} and φn ∈ {0.0, 0.5, 1.0}. In each simulation, we fix φn to be the same for all

n > 1 but allow φn to be different from φ1. Since all locations n > 1 have identical TFP and

identical values of φn, a planner will set cn to be identical in each location n > 1. We will

study the planner’s redistribution from cn to c1.

The top panel of Figure 2 shows optimal within-type redistribution for the case of δ = 0.0,

(c1 − cn)−(z1 − zn). As before, the sign and magnitude of optimal transfers is not identified.

By comparing the bottom panel of Figure 1 to the top panel of Figure 2 we can see the

impact on optimal policy from expanding the model from 2 locations to 26 locations. For

the standard case of φ1 = φn = 0, the blue circles, the number of locations has no impact

on optimal transfers. For other values of φ1 and φn, the size of the optimal transfer depends

on the total number of locations in the environment. In a many-location model, the planner

can heavily subsidize one location by transferring a small amount of resources from multiple

locations. This has the potential to increase total optimal transfers relative to a model with

only a few locations, where large transfers may be more distortionary.

The bottom panel of Figure 2 shows optimal within-type redistribution for the 26-location

economy when δ = 0.15 and production in location 1 is subject to increasing returns. The

y-axis of this panel is (c1 − cn) −
(
z1

(
L1

L∗

)δ − zn), which are optimal transfers from any

location n > 1 to location 1 given TFP in location 1 of z1

(
L1

L∗

)δ
. We set L∗ = 4/29. When

L1 = L∗ = 4/29, the ratio of both consumption and TFP of location 1 to location n > 1 is

(4/3) / (2/3) = 2 and there are no transfers.8

By comparing the results in the bottom panel to those in the top panel, we can see the

impact of the externality on redistribution. For any given value of φ1 and φn, when the

externality is present the planner wants to redistribute more to location 1 from locations

n > 1. In Appendix C, we show this directly by deriving optimal transfers for the standard

8When ν = 2, L1/Ln = (c1/cn)
ν

= [(4/3) / (2/3)]
ν

= 4. Given Ln = (1− L1) /25, this gives
L1/ (1− L1) = 4/25 and therefore L1 = 4/29.
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case of φ1 = φn = 0:

c1 − cn =

(
ν

1 + ν

) [
z1

(
L1

L∗

)δ
− zn︸ ︷︷ ︸ + δz1

(
L1

L∗

)δ
︸ ︷︷ ︸

]
A B

A is the TFP differential of locations 1 and n at the optimal allocation and B is the impact

on output of existing residents at location 1 from a marginal increase in the population in

location 1 due to the externality. As the bottom panel of Figure 2 illustrates, even with a

large externality and a motive to transfer additional resources to location 1, when φ1 and φn

are unknown, both the sign and magnitude of optimal transfers are not identified.

This example illustrates the quantitative importance of within-type transfers on optimal

policy relative to the importance of a large externality. Comparing the top and bottom

panels of Figure 2, it is obvious that the large externality in location 1 shifts optimal policy,

as all lines on the bottom panel are about 0.2 higher than all lines in the top panel. That

said, the range of optimal policies arising from within-type redistribution due to the lack of

identification of φ1 and φn is substantially larger than the change in optimal policy at any

φ1 and φn once the externality is introduced.

To implement our adjustment, we redefine the location attachment draws for household

i in location m such that utility is

Amcmêmi (6)

where êmi = ωiẽmi, ẽmi = Diemi, Di =

[
e
φτ1
1i

∏
n>1

eφnni

]−1

and ωi =
[
Am∗i i Di em∗i i

]−1

where m∗i is the optimally chosen location for agent i given realized emi at the planner’s

optimal allocation of consumption c∗m for all m locations. Including ωi in utility in this way

ensures that the average marginal utility of consumption in a location is constant across lo-

cations at the planner’s chosen allocation, and thus the planner has no motive to redistribute
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to equate within-type marginal utilities of consumption.9

The impact of the adjustment on redistribution is shown by the dashed black lines in

Figure 2. In the top panel, the version of the model with no externalities, the planner chooses

no redistribution for all values of φ1 and φn. In the bottom panel, the planner chooses to

redistribute from households living in location n > 1 to households living in location 1 due

to the production externality. The amount of redistribution does not depend on φ1 or φn and

is exactly equal to the impact on output of residents in location 1 from a marginal increase

in the population in location 1 due to the externality, part “B” in equation (6).10 This

example shows our adjustment allows for the direct study of optimal place-based transfers in

response to production externalities, without the size and direction of those transfers being

influenced by differences in the marginal utility of consumption across locations that are not

identifiable from location choice data.

3.4. Discussion of Uniqueness

In all simulations where we apply our adjustment, we use the 5-step procedure outlined in

section 3.1 to find optimal allocations. The procedure finds an allocation with the following

property: With weights ωi set equal to the inverse of the marginal utility of consumption

at the candidate allocation, the candidate allocation solves the adjusted planner’s problem

once adjusted to include ωi. An allocation has this property if and only if it is a solution to

equation (5). Therefore, if equation (5) has a unique solution our procedure also produces

a unique solution. Uniqueness of equation (5) depends on researcher choices that determine

elasticities, externalities, and Pareto weights.11 If researchers can prove equation (5) has a

unique solution, our experience suggests our procedure will find that solution as long as the

dampening factor d is sufficiently small.

9The planner may still wish to redistribute across locations and types (in a multiple-type model) for
reasons of across-type equity or efficiency.

10This wedge is slightly bigger than 0.2 = δ ∗ z1 = 0.15 ∗ (4/3) since L1 > L∗ at the optimal allocation.
11For example, multiple candidate solutions may exist depending on the properties of agglomeration ex-

ternalities in the model.
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4. Additional Thoughts

At seminars, participants have asked if the problem we identify is relevant for researchers

choosing a utility function of the form ν log cn + eni, where cn is consumption in location n

and eni are drawn iid across households i and locations n from the Type 1 Extreme Value

distribution. This specification has the virtue that the shocks determining location choice eni

do not directly affect the marginal utility of consumption; additionally, the optimal policy

arising from this specification is identical to the policy from the base case we considered

earlier, cn − cn′ =
(

ν
1+ν

)
(zn − zn′).

With this specification, the problem we document does not go away. Define a variable

Di that is constant for any household i but can vary across households. If utility is specified

as Di [ν log cn + eni] then each household’s optimal location decision does not change, but

optimal policy might depending on the correlation across households of Di with the values

of eni.
12 For all specifications of utility including this one, our proposed 5-step adjustment

can be implemented exactly as written.

The possibility that the marginal utility of consumption may be low when measured

income is low, and the implications of this for optimal policy, has been identified in other

areas of economics. For example, Klevin et al. (2009) studies optimal taxation of married

couples. In that paper, the secondary earner can choose not to work for one of two reasons:

he/she either receives a bad draw of market earnings or a good draw of home productivity.

Klevin et al. (2009) show that optimal policy depends on which of the two explanations

caused the secondary earner to not work in the market.13

One path for future research may be to use data to estimate differences across locations in

the average marginal utility of consumption of otherwise identical households. Researchers

in other fields of economics have attempted to estimate state dependence in the marginal

utility of consumption. For example, health economists have tried to identify how the state

of a person’s health affects their marginal utility of consumption. Finkelstein et al. (2009)

12There are other specifications in which households living in low-income locations may have a low
marginal utility of consumption, on average. For example, suppose utility for household i in location n is
ν log (cn + εni) + eni, where εni is drawn from some distribution. This specification allows that unobservable
attachment factors that push households to live in certain locations may be substitutable for consumption.

13We thank Patrick Kline for suggesting this connection.
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survey the various approaches and results in the literature and conclude, “Currently available

estimates offer little in the way of a consensus on the sign or magnitude of health state

dependence.” The hurdle for estimation is high in location choice models, as researchers

need to understand variation in the average marginal utility of consumption across locations

and we believe this will be difficult to measure. Even if a policy experiment exogenously

shifts location choices of some marginal households, optimal policy depends on the marginal

utility of consumption of all households including – perhaps most importantly – those least

likely to move. Until we have direct evidence on differences in the average marginal utility of

consumption across locations, we advocate imposing our adjustment to the planning problem,

which removes a planner’s incentives for within-type transfers across locations absent motives

of productive efficiency or externalities.
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Figure 1: Redistribution from Location 2 to 1, 2 Locations
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Figure 2: Redistribution from Location n > 1 to Location 1, 26 Locations
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Not-For-Publication Online Appendix

Appendix A. Planning Solution

Denote An as amenities in location n and cn as consumption in location n such that the

deterministic portion of utility in location n is un = Ancn and utility for person i in location

n is uni = uneni where eni is drawn iid from the Fréchet distribution with parameter ν. Also

denote Ln as the population in location n and let G denote the pre-determined amount of

government expenditure that needs to be funded by taxation. The planner solves:

max
{cn,Ln}Nn=1

U

subject to the following constraints (Lagrange multipliers are to the left of the brackets)

Expected Utility λ

[(∑
n

uνn

) 1
ν

− U

]
= 0

Resource constraint P

[∑
n

Lnzn −
∑
n

Lncn −G
]

= 0

Population: µ

[
1−

∑
n

Ln

]
= 0

Utility n=1,. . . ,N θn [Ancn − un] = 0

Individual optimization n=1,. . . ,N: Wn

[(un
U

)ν
− Ln

]
= 0

First-order conditions are

un : 0 = λLnU − θnun + νWnLn

cn : 0 = θnun − PLncn

Ln : 0 = P (zn − cn)Ln − WnLn − µLn

U : 0 = 1− λ − (ν/U)
∑

nWnLn

From the FOC for U we have (ν/U) (
∑

nWnLn) = 1 − λ. Add the Focs for un to get 1 =∑
n θn (un/U). Now add the FOCs for cn to get (U/P ) = GDP −G where GDP =

∑
n

znLn.
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Now start with the FOC for Ln

0 = P (zn − cn)Ln − WnLn − µLn

Use FOC for un

WnLn =
1

ν
(θnun) − 1

ν
(λLnU) =

1

ν
(PLncn) − 1

ν
(λLnU)

Insert

0 = PLnzn − PLncn −
1

ν
(PLncn) +

1

ν
(λLnU) − µLn

0 = zn − cn −
1

ν
(cn) +

1

Pν
(λU) − µ

P

= zn −
[

1 + ν

ν

]
cn +

(
U

P

)(
λ

ν
− µ

U

)

Rearrange terms and substitute for U/P to get

cn =

[
ν

1 + ν

]
zn +

λ− µν

U
1 + ν

 (GDP −G) (A.1)

If we multiply the above equation by Ln and then sum over n, we get the expression

(
λ− µν

U

)
(GDP −G) = (1 + ν) (GDP −G) − νGDP

= GDP − (1 + ν)G (A.2)

After inserting equation (A.2) into (A.1), we get the following expression for optimal con-

sumption in location n

cn =

(
ν

1 + ν

)
zn + T

where T =
GDP

1 + ν
− G
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Appendix B. Multiple Types of Households, Multiple Locations and Produc-

tion Externalities

Appendix B.1. No Adjustment

We now consider an environment with n = 1, . . . , N discrete locations and τ = 1, . . . , T

types. We assume a planner can choose any level of consumption for any type in any location,

as long as the allocation satisfies aggregate feasibility conditions and respects individual op-

timization, i.e. households optimally choose locations given their location attachment draws

and given the allocation of consumption across locations.

The objective of the planner is as follows

max
{{tτn,Lτn}Tτ=1}Nn=1

∑
τ

ΠτLτU (V τ )

where U is a concave function, Lτn is the population of type τ in location n, Lτ is the

total population of type τ and V τ is the expected utility associated with type τ . Then

planner maximizes this function subject to constraints listed below. Note that in the list of

constraints the Lagrange multipliers are to the left of the brackets:

Expected Utility, by type: τ = 1, . . . , T λτ
[
Eeni

(
max
n′

uτn′i

)
− V τ

]
= 0

Resource constraint: P

[∑
n

∑
τ
tτnL

τ
n

]
= 0

Population, by type: τ = 1, . . . , T γτ
[
Lτ −

∑
n
Lτn

]
= 0

Optimization, by type and location: τ = 1, . . . , T and n = 1, . . . , N W τ
n [ρτnL

τ − Lτn] = 0

uτni for agent i of type τ is the function un (cn, Di, eni) with cτn = zτn− tτn where zτn is income

generated by one type τ worker in location n which can be a function of Lτ
′
n for τ ′ = 1, . . . , T ,

for example zτn = z
(
zn, L

1
n, L

2
n, . . . , L

T
n

)
where zn is TFP for location N . As specified, this

framework allows for complementarities across types or externalities involving one or more

types in production.14 ρτn is the probability that n = argmaxn′ u
τ
n′i for n′ = 1, . . . , N .

14As an example, in a decentralized economy firms may take as given in location n multifactor productivity
of an where an = zn (Lτ∗n )

δ
, with Lτ∗n an externality in type τ∗ workforce. The planner explicitly takes into

consideration the impact of allocations on the externality.
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The first-order conditions are:

V τ : 0 =

(
∂U

∂V τ

)
ΠτLτ − λτ

Lτn : 0 =
∑
τ ′
λτ
′

∂Eeni
(

max
n′

uτ
′

n′i

)
∂Lτn

+ Ptτn − γτ −W τ
n

tτn : 0 = −λτ

∂Eeni
(

max
n′

uτn′i

)
∂cτn

+ PLτn +
∑
m

W τ
mL

τ

(
∂ρτm
∂tτn

)

where we have made use in the last equation that ∂cτn/∂t
τ
n = −1.

To reduce notation, for any given type τ ′ define the derivative of the expected value with

respect to Lτn as

∂Eeni

(
max
n′

uτ
′

n′i

)
∂Lτn

=
∂Eeni

(
max
n′

uτ
′

n′i

)
∂cτ ′n

· ∂c
τ ′
n

∂Lτn
=

∂Eeni

(
max
n′

uτ
′

n′i

)
∂cτ ′n

· ετ→τ ′n

Also define

∂Eeni

(
max
n′

uτn′i

)
∂cτn

=

(
Lτn
Lτ

)
µτn

where µτn is the average of the marginal utility of consumption of type τ agents that have

chosen to live in location n:

µτn = E

[
∂uτni
∂cτn

∣∣∣ n = argmaxuτn′i

]

After substituting U τ = ∂U/∂V τ , this allows us to rewrite the FOCs as:

V τ : 0 = U τΠτLτ − λτ

Lτn : 0 =
∑
τ ′
λτ
′
(
Lτ
′
n

Lτ ′

)
µτ
′
n ε

τ→τ ′
n + Ptτn − γτ −W τ

n

tτn : 0 = −λτ
(
Lτn
Lτ

)
µτn + PLτn +

∑
m

W τ
mL

τ

(
∂ρτm
∂tτn

)
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Consider the FOC for Lτn after reducing for λτ :

0 =
∑
τ ′

U τ ′Πτ ′Lτ
′

n µ
τ ′

n ε
τ→τ ′
n + Ptτn − γτ −W τ

n

Multiply everything by Lτn and sum over n

0 =
∑
n

Lτn

[∑
τ ′

U τ ′Πτ ′Lτ
′

n µ
τ ′

n ε
τ→τ ′
n

]
+ P

∑
n

tτnL
τ
n − γτ

∑
n

Lτn −
∑
n

W τ
nL

τ
n

Define total tax revenues collected for type τ residents as T τ . After rearranging terms, this

reduces to

γτ =
∑
n

(
Lτn
Lτ

)[∑
τ ′

U τ ′Πτ ′Lτ
′

n µ
τ ′

n ε
τ→τ ′
n

]
+ P

(
T τ

Lτ

)
−
∑
n

W τ
n

(
Lτn
Lτ

)

Insert this expression for γτ into the FOC for Lτn, rearrange terms, and replace n with m

everywhere:

W τ
m =

Ptτm − P
(
T τ

Lτ

)
+
∑
m′

W τ
m′

(
Lτm′

Lτ

)
+
∑
τ ′

Uτ ′Πτ ′Lτ
′
mµ

τ ′
mε

τ→τ ′
m −

∑
m′

(
Lτm′

Lτ

)[∑
τ ′

Uτ ′Πτ ′Lτ
′
m′µ

τ ′
m′ε

τ→τ ′
m′

]

Now return to the tn equation and substitute for λτ

U τΠτLτnµ
τ
n = PLτn +

∑
m

W τ
mL

τ

(
∂ρτm
∂tτn

)

Insert for W τ
m

UτΠτLτnµ
τ
n =

PLτn +
∑
m

{
Ptτm − P

(
T τ

Lτ

)
+
∑
m′

W τ
m′

(
Lτ
m′

Lτ

)
+
∑
τ ′
Uτ

′
Πτ

′
Lτ

′
mµ

τ ′
mε

τ→τ ′
m −

∑
m′

(
Lτ
m′

Lτ

)[∑
τ ′
Uτ

′
Πτ

′
Lτ

′
m′µ

τ ′
m′ε

τ→τ ′
m′

]}
Lτ
(
∂ρτm
∂tτn

)

Note that since the overall population of type τ is fixed, this implies
∑
m

(∂ρτm/∂t
τ
n) = 0.
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Thus, the above can be reduced to:

U τΠτLτnµ
τ
n = PLτn + P

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
+
∑
m

∑
τ ′

U τ ′Πτ ′Lτ
′

mµ
τ ′

mε
τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)

Add across τ and rearrange:

∑
τ

U τΠτLτnµ
τ
n −

∑
τ

∑
m

∑
τ ′

U τ ′Πτ ′Lτ
′

mµ
τ ′

mε
τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
= P

∑
τ

Lτn + P
∑
τ

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)

Sum over n

∑
n

∑
τ

UτΠτLτnµ
τ
n −

∑
n

∑
τ

∑
m

∑
τ ′

Uτ
′
Πτ ′

Lτ
′

mµ
τ ′

mε
τ→τ ′

m Lτ
(
∂ρτm
∂tτn

)
= P

∑
n

∑
τ

Lτn + P
∑
n

∑
τ

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)

Define UΠ, µ̄, ` and ∆ as follows

UΠ =
∑
n

∑
τ

U τΠτLτn

µ̄ =
(
UΠ
)−1∑

n

∑
τ

U τΠτLτnµ
τ
n

` =
∑
n

∑
τ

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
∆ =

∑
n

∑
τ

∑
m

∑
τ ′

U τ ′Πτ ′Lτ
′

mµ
τ ′

mε
τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)

For economic interpretation, µ̄ is the Pareto-weighted average marginal utility of consump-

tion in the economy; ` measures the impact on the tax base generated by the location

responses to a marginal increase in taxes that is uniformly applied across locations and

types; ∆ measures the Pareto-weighted sum of the marginal change in economy-wide utility

arising from spillovers generated by the location responses to a marginal increase in taxes

that is uniformly applied across locations and types.15

15In the special case in which utility is linear in consumption and location-specific preferences are additive
to utility then

∑
n

(∂ρτm/∂t
τ
n) = 0 giving ` = ∆ = 0.
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With this notation, we write

P =
UΠµ̄ − ∆

1 + `
= UΠµ̄

1 − ∆

UΠµ̄

1 + `


Insert this definition of P and return to the FOC for tn

UτΠτLτnµ
τ
n −

∑
m

∑
τ ′

Uτ ′Πτ ′Lτ
′
mµ

τ ′
mε

τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
= UΠµ̄

1− ∆

UΠµ̄

1 + `


[
Lτn +

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)]

Divide by Lτn

UτΠτµτn −
(

1

Lτn

)∑
m

∑
τ ′

Uτ
′
Πτ ′

Lτ
′

mµ
τ ′

mε
τ→τ ′

m Lτ
(
∂ρτm
∂tτn

)
= UΠµ̄

1− ∆

UΠµ̄

1 + `


[

1 +

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)]

Define κ = 1+`
1− ∆
UΠµ̄

. Then

κUτΠτµτn − κ
(

1

Lτn

)∑
m

∑
τ ′

Uτ ′Πτ ′Lτ
′
mµ

τ ′
mε

τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
= UΠµ̄

[
1 +

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)]

Subtract UΠµ̄ and then divide.

κUτΠτµτn − UΠµ̄

UΠµ̄
−

κ

(
1

Lτn

)∑
m

∑
τ ′
Uτ ′Πτ ′Lτ

′
mµ

τ ′
mε

τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
UΠµ̄

=

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)

Define ετn as the Pareto-weighted sum of the marginal change in economy-wide utility arising

from spillovers generated by the location responses to a marginal increase in taxes that is

applied in location n to type τ :

ετn =

(
1

Lτn

)∑
m

∑
τ ′

U τ ′Πτ ′Lτ
′

mµ
τ ′

mε
τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
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Rewrite the above as

κU τΠτµτn − UΠµ̄

UΠµ̄︸ ︷︷ ︸ −
κετn
UΠµ̄︸ ︷︷ ︸ =

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
︸ ︷︷ ︸

(1) (2) (3)

(B.1)

For a given type τ in location n, the first term on the left-hand side captures the difference in

the Pareto-weighted marginal utility of consumption of that type in that location from the

economywide-average and the second term captures the economy-wide utility (net) benefit

of production spillovers generated by that type in that location. The difference of these two

terms is equated to the the marginal deadweight loss from increasing transfers for that type

in that location, the third term.

We can rewrite this third term to gain some intuition. To start, note the following

∂ρτn
∂tτn

= −
∑
m 6=n

∂ρτm
∂tτn

Then the third term becomes

(
1

Lτn

)
∂ρτn
∂tτn

Lτ

tτn −
∑
m6=n

tτm

(
∂ρτm
∂tτn

)
∑
m 6=n

∂ρτm
∂tτn

 (B.2)

This “fiscal externality” is the amount by which the tax from type τ in location n exceeds

the tax that the marginal leavers of type τ will be exposed to, on average, conditional on

leaving location n.

Appendix B.2. With our Proposed Adjustment

It is convenient to rewrite equation (B.1) as follows

κU τΠτ (µτn − µτ ) + κU τΠτµτ − UΠµ̄

UΠµ̄
− κετn
UΠµ̄

=

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)

where µτ =
∑
n

(Lτn/L
τ )µτn. We have shown earlier that location data do not pin down

within-type transfers that are only based on differences in within-type marginal utility of
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consumption across locations, the term involving µτn − µτ . For this reason, we advocate

setting µτn = µτ , thereby eliminating the desire for a planner to redistribute for this motive.

If researchers wish to eliminate these transfers, they simply need to ensure that the

average marginal utility of consumption for a given type does not vary across locations. There

are many possible ways to generate this outcome. We propose simply setting µτn = µτ = 1

for all households, which also implies µ̄ = 1. After this adjustment, the optimal tax on type

τ at location n satisfies:

(
κU τΠτ − UΠ

)
− κετn =

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
(B.3)

With one type and no externalities in production, ετn = 0 and ∆ = 0. The condition for

optimality can be written as

` · U =

(
1

Ln

)∑
m

tm

(
∂ρm
∂tn

)

Notice that the left-hand side does not vary across locations. The only solution that satisfies

this equation for every location is tn = 0 for all n.16

Returning to the multiple-type case of equation (B.3) , the framework has the capacity

to deliver both transfers across and within types. The term κU τΠτ − UΠ is constant across

locations for any given type, but allows transfers of consumption across types based on

differences in Pareto weights and the slope of the concave function U evaluated at the optimal

policy. The term κετn measures the impact of spillovers and externalities in production (which

we believe the data can identify).17 Within-type variation in this term determines across-

location, within-type transfers.

16` = 0 when tn = 0 at every n.
17Recall we have set µτn = 1, such that ετn contains Pareto weights, elasticities of location choices with

respect to income, and production-function spillovers and externalities.
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Appendix C. Multiple Locations and a Production Externality

In this section, we solve for optimal consumption in an N + 1 location model where loca-

tions n = 2, . . . , N are all identical and location 1 is subject to an agglomeration externality.

We assume utility for household i in location m is cmemi where cn is consumption in m

and and emi is an iid draw from the Fréchet distribution with parameter ν. Given these

assumptions, the planner maximizes U which we define as

(∑
m

cνm

)1/ν

subject to the following first-order conditions:

Resource: P

[
z1

(
L1

L∗

)δ
L1 +

∑
n 6=1

znLn −
∑
m

cmLm

]

Incentive Compatibility,∀m Wm

Lm − cνm∑
m′
cνm′


Population: µ

[
1−

∑
m

Lm

]
The first order conditions are

cm : 0 =

(∑
m

cνm

) 1
ν
−1

cν−1
m − PLm −WmLm (1− Lm)

(
ν

cm

)
+
∑
n6=m

WnLnLm

(
ν

cm

)
L1 : 0 = P

[
(1 + δ) z1

(
L1

L∗

)δ − c1

]
+W1 − µ

Ln, n > 1 : 0 = P [zn − cn] +Wn − µ

Define the externality wedge as

∆ ≡ δz1

(
L1

L∗

)δ
L1

Note that if we multiply the FOC for L1 by L1, multiply the FOC for Ln by Ln, and then

add the FOCs for Lm for all m, we get the expression

µ = P∆ +
∑
m

WmLm (C.1)
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Now multiply the FOC for cm by cm and use definition of U to get

0 = ULm − PLmcm − νWmLm (1− Lm) + ν
∑
n6=m

WnLnLm

= ULm − PLmcm − νWmLm + νLmWmLm + νLm
∑
n 6=m

WnLn

= ULm − PLmcm − νWmLm + νLm
∑
n

WnLn

= ULm − PLmcm − νWmLm + νµLm

Sum this FOC for all m and use equation (C.1) to get

U = P ·GDP − νP∆

From the FOC for Ln for n > 1 we have

WnLn = µLn − PLn [zn − cn]

Insert into the FOC for cn for n > 1

0 = ULn − PLncn − νµLn + νPLn [zn − cn] + νµLn

= U − Pcn + νP [zn − cn]

= GDP − ν∆− cn + ν [zn − cn]

= GDP − (1 + ν) cn + ν [zn −∆]

Implying

cn =

(
ν

1 + ν

)
[zn −∆] +

GDP

1 + ν
(C.2)

From the FOC for L1 for we have

W1L1 = µL1 − PL1

[
(1 + δ) z1

(
L1

L∗

)δ
− c1

]
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Insert into the FOC for cn for n > 1

0 = UL1 − PL1c1 − νµL1 + νPL1

[
(1 + δ) z1

(
L1

L∗

)δ
− c1

]
+ νµL1

= U − Pc1 + νP

[
(1 + δ) z1

(
L1

L∗

)δ
− c1

]

= GDP − ν∆− c1 + ν

[
(1 + δ) z1

(
L1

L∗

)δ
− c1

]

= GDP − (1 + ν) cn + ν

[
(1 + δ) z1

(
L1

L∗

)δ
−∆

]

Implying

c1 =

(
ν

1 + ν

)[
(1 + δ) z1

(
L1

L∗

)δ
−∆

]
+

GDP

1 + ν
(C.3)

Combining equations (C.2) and (C.3) gives

c1 − cn =

(
ν

1 + ν

)[
(1 + δ) z1

(
L1

L∗

)δ
− zn

]

which we can write as

c1 − cn =

(
ν

1 + ν

) [
z1

(
L1

L∗

)δ
− zn︸ ︷︷ ︸ + δz1

(
L1

L∗

)δ
︸ ︷︷ ︸

]
A B

A is the TFP differential of locations 1 and n at the optimal allocation and B is the impact

on output of existing residents at location 1 from a marginal increase in the population in

location 1 due to the externality.
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