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 Robert Mare’s (1979; 1980; 1981) innovative analyses of American educational 

transitions in the 1973 Occupational Changes in a Generation Survey (OCG) were among the 

most important and influential contributions to research on social stratification in the past three 

decades. Prior to the introduction of Mare’s model of educational transitions in 1980, social 

stratification research typically employed linear probability models of school continuation and 

linear models of highest grade completed, e.g., Hauser and Featherman (1976). This research 

uniformly emphasized the stability of the stratification process in general and the effects of 

parental socioeconomic status on educational attainment.  In his analyses, Mare applied a logistic 

response model to school continuation, restricting the base population at risk for each successive 

transition to those who had completed the prior educational transition.  Contrary to prior 

supposition, Mare’s estimates suggested the effects of some socioeconomic background 

variables declined across six successive transitions, including completion of elementary school 

through entry into graduate school conditional upon graduation from college. 

Mare’s studies of educational transitions have been both influential and controversial.   

His work spawned theories on the transition rates and odds ratios within educational systems, 

most notably the theories of Maximally Maintained Inequality (Raftery and Hout 1993) and 

Effectively Maintained Inequality (Lucas 2001).  His models were also the basis of a widely 

cited international comparative study of educational attainment (Shavit and Blossfeld 1993). 

However, the thesis that effects of social background decline across educational transitions has 

also been attacked by prominent labor economists (Cameron and Heckman 1998). They 

suggested, among other things, that Mare’s logistic response model is only loosely behaviorally 

motivated and that the general decline of social background effects is a statistical artifact of the 

parameterization of the model.  Sociologists have also criticized Mare’s logistic response model 
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of educational transitions. Applying multinomial logit models to longitudinal data from Sweden, 

Breen and Jonsson (2000) showed that class-origin effects on transition probabilities varied 

according to the particular choice made at a given transition point and that the probability of 

making a particular choice was path dependent. 

Given the impact of Mare’s work and the continuing controversy surrounding logistic 

response models of educational transitions, we return to the data originally analyzed by Mare in 

an appreciative effort to validate and extend his model.  We introduce a modified version of his 

model that explicitly expresses and estimates changes in social origin effects across educational 

transitions.  Rather than analyzing each educational transition separately as Mare did, we 

estimate a single model across all educational transitions.  In this model, the relative effects of 

some (but not all) background variables are the same at each transition, and multiplicative scalars 

express proportional change in the effect of those variables across successive transitions. 

 

Models of Educational Stratification: A Review  

Aside from linear regression and linear probability models, researchers in educational 

stratification have employed a number of more appropriate models to explore the effects of 

social background on educational transitions, including logistic response, loglinear, and 

multinomial models.  Each model has advantages and disadvantages in the study of educational 

transitions.  Logistic response or continuation odds models employ conditional samples across 

successive educational transitions and allow for the estimation of robust coefficients that are 

invariant to marginal changes in educational attainment. In these models, continuation 

probabilities are asymptotically independent; a model may be estimated separately for each 

transition, or multiple transitions may be analyzed within a single model (Bishop, Fienberg, and 
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Holland 1975; Fienberg 1977).  While logistic response models have been widely used in 

stratification research, these models require a large number of parameters, allowing effects of 

covariates to fluctuate freely across transitions, whether or not they vary in the population. 

Erikson and Goldthorpe’s (1992: 91-92) model of uniform differences in parameters of 

social mobility, Xie’s (1992) log-multiplicative layer model for comparing mobility tables, and 

Hout, Brooks, and Manza’s (1995: 812) model of trends in class voting in the U.S. each resemble 

the model introduced here by imposing proportionality constraints across the coefficients of a 

model .1  These models provide population average estimates of changes in an outcome over 

time or place, but they do not easily allow for the introduction of individual-level covariates.  

Moreover, estimation problems may occur when log-linear models are extended to higher 

dimensions or in instances where the analyst wishes to consider more than three or four 

transitions, whether they be educational transitions or transitions among occupational groups.   

Multinomial models have also been used to study educational transitions, though perhaps 

less often than logistic response and log-linear models.  Multinomial models provide the 

opportunity to assess horizontal stratification in tandem with vertical stratification, allowing for a 

richer analysis in some instances (Breen and Jonsson 2000).  Anderson’s (1984) well-known 

stereotype regression model provides a flexible means to consider proportionality of the effect of 

a group(s) of covariates on of ordered outcomes but has been relatively ignored in educational 

stratification research.  This model is an important analytic tool. For example, DiPrete’s 

exemplary paper (1990) uses stereotype regression models to introduce individual-level 

covariates in social mobility analyses.  However, multinomial models are of limited value in the 

analysis of educational transitions.  They specify multiple and possibly ordered categorical 

outcomes, but not the conditional risk of transitions.  With the exception of stereotype regression 
                                                 
1  We thank Michael Hout for bringing these similarities to our attention. 
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models, multinomial models also include a large number of coefficients. As in the case of 

unrestricted logistic response models, these may add unnecessary complexity and may make it 

difficult to interpret findings. 

Given the various weaknesses of existing models of educational transitions, we propose a 

logistic response model with partial proportionality constraints in an effort to statistical models 

of educational stratification.  We believe that the model proposed here provides a parsimonious 

and powerful description of changes in the effects of socioeconomic background on educational 

attainment and, equally important, that it has wide application in studies of changes and 

differentials in social stratification. 

 

Logistic Response Models with Partial Proportionality Constraints  

We begin with a logistic response model in Mare’s (1980: 297) notation:  

 0log ( ) ,
1

ij
e j jk ijk

ij k

p X
p

β β= +
− ∑   (1) 

where ijp is the probability that the ith person will complete the jth school transition, is the 

value of the kth explanatory variable for the ith person who is at risk of the jth transition, and the 

ijkX

jkβ  are parameters to be estimated. That is, for each transition a logistic response model is 

estimated for persons at risk of completing that transition with no constraints on any parameters 

across transitions.  Delineated above, the logistic response model has two important properties.  

First, the effects in equation 1 are invariant to the marginal distribution of schooling outcomes.  

That is, for k > 0, a given set of jkβ  is consistent with any rate of completion of a transition.  

Second, the continuation probabilities are asymptotically independent of one another (Fienberg 

1977).  Thus, the model may be estimated separately for each transition, or multiple transitions 

may be analyzed within a single model. 
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Suppose that instead of analyzing the data for each transition separately the data are 

converted to person-transition records. Thus, for each individual a record appears once for each 

transition for which an individual is eligible. In each record, there is a single outcome variable, 

say, yij, where yij = 1 if the transition is completed and yij = 0 if it is not completed. Since the 

transitions are ordered and each transition is conditional on completion of prior transitions, there 

is at most one record for which yij = 0 for each individual, namely, for the last transition for 

which that individual is eligible; at all prior transitions, yij =1. In this setup, for example, one 

could estimate a model that is similar to equation 1, except there is only one set of regression 

parameters, which apply equally to each transition: 

 0log ( ) .
1

ij
e j k ijk

ij k

p X
p

β β= +
− ∑  (2) 

This model, like that of equation 1, may be estimated with any software that supports logistic 

regression analysis.  

However, the hypothesis that socioeconomic background effects decline across 

transitions might suggest a different and more parsimonious model: 

 0log ( ) ,
1

ij
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− ∑  (3) 

The first term on the right-hand side of equation 3 says there may be a different intercept at each 

transition.  The summation represents effects of the that are invariant across all transitions; 

notice there is no j index on

ijkX

kβ .  However, there is a multiplicative scalar for each transition, jλ , 

which rescales the kβ at each transition, subject to the normalizing constraint that 1λ =1.  That is, 

the jλ introduce proportional increases or decreases in the kβ across transitions, so equation 3 

implies proportional changes in main effects across transitions.  The proportionally constrained 

covariate(s) determine a composite variable, which can be interpreted in reference to a latent 

 5



theoretical construct(s).  In this instance, the main effects of the covariates can be interpreted as 

the weights of these covariates in that composite.  Although equation 3 may appear to have more 

terms than equation 2, it is actually more parsimonious because there are only as many 

interaction terms as transitions.  Equation 2 has as many interaction terms as the product of the 

number of explanatory variables and the number of transitions.   

Conceptually, the model in equation 3 is similar to the well-known MIMIC (multiple 

indicator, multiple cause) model of Hauser, Goldberger, and Jöreskog (Hauser and Goldberger 

1971; Hauser 1973; Jöreskog and Goldberger 1975; Hauser and Goldberger 1975).  However, 

proportionality constraints appear within a single-equation model in the present context, whereas 

the MIMIC model imposes proportionality constraints across the coefficients of two or more 

equations.   

Our argument is that one ought to estimate a model like that in equation 3 before 

proposing more complex explanations of change in the effects of socioeconomic background 

variables across educational transitions. However, one cannot simply jump from the finding that 

the model of equation 3 fits a set of data to the conclusion that the effects of background 

variables are the same across transitions up to a coefficient of proportionality. Allison (1999) 

shows that, if the model of equation 3 fits a set of data, one cannot distinguish empirically 

between the hypothesis of uniform proportionality of effects across transitions and the hypothesis 

that group differences between parameters of binary regressions are artifacts of heterogeneity 

between groups in residual variation.2

 It is also possible to mix the features of equations 2 and 3 to permit some variables to 

interact freely with a given transition while others follow a model of proportional change: 

                                                 
2 Ballarino and Schadee (2005) advance this argument in the context of an analysis of educational transitions in Italy 
and several other nations. 

 6



 
'

0
1 ' 1

log ( ) ,
1

k K
ij

e j j k ijk jk ijk
ij k k

p X X
p

β λ β β
= +

= + +
− ∑ ∑  (4) 

Equation 4 says that for some variables, kX , where k = 1, …, k′ , there is proportional change in 

effects across transitions, while for other kX , k = k′  + 1, … K, the effects interact freely with 

transition level.  For example, equation 4 could apply to Mare’s analysis, where effects of 

socioeconomic variables appear to decline across transitions, while those of farm origin, one-

parent family, and Southern birth vary in other ways. 

 Equation 4 may be generalized to cover multiple cohorts as well as multiple transitions.  

For example, equation 5 is one such generalization: 

 
' ''
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1 ' 1 1 '' 1

log ( ) ,
1

k K k K
ijt

e jt j k ijtk jk ijtk t k ijtk tk ijtk
ijt k k k k

p X X X
p

β λ β β γ β β
= + = +

= + + + +
− ∑ ∑ ∑ ∑ X         (5) 

Here, for one set of variables, effects change proportionately across transition levels, j; for 

another (possibly overlapping) set of variables, effects change proportionately across time 

periods, indexed by t. The effects of the remaining sets of variables may interact freely with 

transition level j and with period t. 

 Estimation of equations 3 through 5 is not as simple as that of equations 1 and 2.  The 

same linear expression, such as k ijk

k

Xβ∑ , appears twice in the former equations--once with freely 

estimated coefficients and again as a linear composite in j k ijk
k

Xλ β∑ .   The problem is to estimate 

the models in a way that will yield the same estimates of the kβ in both expressions.  One way to 

accomplish this is simply to iterate.  First, estimate the kβ in a model with no interactions.  Then, 

estimate the model again with an interaction in the composite estimated in the previous step, and 

continue until the fit and parameter values change very little from one iteration to the next 
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(Allison 1999; MacLean 2004).  We have used another method, writing the equations of the 

models and estimating them directly by maximum likelihood (see Appendix).3

 In summary, this framework allows for the estimation of parsimonious, single equation 

models of educational transitions and addresses many of the shortcomings in extant models of 

educational transitions.  These models are invariant to change in the marginal distribution, but 

they use fewer parameters and are characterized by ease in the introduction of individual-level 

covariates.  These models can include uniform and/or partial proportionality constraints across 

model covariates and transitions of interest while freely estimating effects of other model 

covariates.  Moreover, proportionality constraints in these models can be interpreted as indicative 

of a latent construct similar to that in the MIMIC model.  Finally, unlike traditional logistic 

response models, these models of educational transitions allow for tests of the significance of 

estimated differences in model covariates across educational transitions and, thus, more 

informative inferences about the effects of social background on educational transitions.4  We 

next apply this framework in a replication of Mare’s (1980, 1981) original work on educational 

transitions.   

 

Replicating and Extending Logistic Response Models Using the 1973 Occupational 

Changes in a Generation Survey 

 In replicating Mare’s (1980) original analysis, we use the 1973 Occupational Changes in 

a Generation (OCG) survey data, converting individual records to person-transition records.  The 

OCG survey was carried out as a supplement to the March 1973 Current Population Survey 

(CPS).  The CPS, which is carried out by field staff of the U.S. Bureau of the Census, is the large 

                                                 
3  We thank Jeremy Freese for writing a macro in STATA 9 to estimate the model by maximum likelihood. For 
similar specifications in STATA and other statistical packages, see Allison (1999). 
4 We thank Shu-Ling Tsai for pointing this out.   
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monthly survey of households that has produced estimates of the unemployment rate for the past 

60 years.  The 1973 OCG supplement was a mail-out, mail-back operation.  It was carried out in 

September 1973, after all of the households participating in the March demographic supplement 

had rotated out of the CPS.  The response rate was 83 percent among target males.  The present 

analysis includes 21,682 white men 21 to 65 years old in the civilian noninstitutional population 

who responded to all of the social background questions in the OCG supplement. 

Father’s occupational status (FASEI) is the value of the Duncan Socioeconomic Index for 

Occupations (Duncan 1961); scale values were assigned using an adaptation of the original scale 

to codes for occupation, industry, and class of worker that were used in the Census of 1970.5 

Number of siblings (SIBS) is based on questions about the number of older and younger siblings 

of each sex.  The count of siblings was top-coded at 9 with persons reporting 9 or more siblings 

assigned the value 9.  Family income (FAMINC) was represented by categorical responses to the 

question, “When you were about 16 years old, what was your family’s annual income.” Pretest 

respondents indicated that they answered in contemporary rather than price-adjusted dollars, so 

we adjusted the midpoints of responses from dollars in the year that the participant turned 16 to 

1967 dollars using the Consumer Price Index.  We assigned reports of “no income or loss” to the 

lowest reporting category ($1-499).  After examining scatterplots of the relationship between 

various transformations of income and the probabilities of educational transitions, we top-coded 

the adjusted incomes at 2.5 standard deviations above the mean and re-expressed the variable in 

natural logs.  Father’s education (FED) and mother’s education (MED) are expressed in years of 

regular schooling completed.  Participants were coded as living in a broken family (BROKEN) if 

they responded, “no,” to the question, “Were you living with both your parents most of the time 

                                                 
5  Our code for the Duncan SEI differs from that used by Mare.  This code is more fine-grained than that which was 
available to Mare (1980, 1981) though the results are largely the same.   
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up to age 16?” A dummy variable for farm origin (FARM) was coded 1 if the participant said 

that he had not moved since age 16 (in the OCG survey) and currently lived on a farm (as 

reported in the CPS) or if he reported in the OCG survey that he had lived on a farm when he 

was 16 years old; otherwise, FARM was coded 0.  State of birth was ascertained in the OCG 

survey, and a dummy variable (SOUTH) was created for men born in a Southern state as defined 

by the U.S. Bureau of the Census.  With the exception of family income, all of the continuous 

background variables have approximately linear relationships in their original metrics with each 

of the educational transitions. 

 Educational attainment was ascertained in the March CPS.  Respondents (who may or 

may not have been the OCG target male) reported both the highest grade in regular school that 

the OCG participant attended and whether or not he had completed that grade.  With that 

protocol, it was possible to create plausible definitions of six key educational transitions in 

populations at risk of those transitions: (1) completing elementary school (grade 8); (2) attending 

high school (grade 9) among those who completed elementary school; (3) completing high 

school (grade 12) among those who attended high school; (4) attending college among those who 

completed high school; (5) completing college among those who attended college;6 and (6) 

attending some form of post-graduate education among those who graduated from college.  

Unfortunately, it would not be possible to carry out a comparable analysis of educational 

transitions with Census data after 1990, when the Bureau chose a one-question item on 

educational attainment (Hauser 1997). 

 Table 2 shows descriptive statistics for continuous variables used in the present analysis, 

and Table 3 displays descriptive statistics for the three discrete background variables.  Without 

                                                 
6  Based on comparisons of our sample counts with those reported by Mare (1980: 301), we strongly suspect that he 
defined the base population for completion of college to exclude persons who entered college but did not complete 
at least one year of college work. We defined the base for college completion to include that group. 
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exception, each successive transition yields a more selective and successful set of students.  At 

each transition, successful students have more highly educated parents with higher occupational 

status and income and come from smaller families than students who did not complete that 

transition.  They are less likely to have been raised by a single parent, less likely to live or have 

lived on a farm, and less likely to have been born in a Southern state.7

 

Replicating Traditional Logistic Response Models 

 Table 4 reports our unconstrained estimates of the effects of social background variables 

on educational transitions in the 1973 OCG data.  These estimates were based on equation 1 and 

replicate Mare’s (1980) original logistic response model.  The coefficients differ from those 

estimated by Mare (1980) for several reasons.  Either we did not use the same version of the 

1973 OCG data file or our sample definition was different from Mare’s in some way that we 

have been unable to determine.  We use a different scheme for scaling father’s occupational 

status and a logarithmic transformation of family income.  Moreover, we used all of the available 

cases at every transition and defined the base population for college graduation to include those 

who attended college, but did not complete at least one year of college. 

 Despite these differences in variable definitions and case selection, the estimates in Table 

4 follow the main patterns of Mare’s estimates (Table 1).  Social background explains less of the 

variation at each higher educational transition, and the effects of the socioeconomic background 

variables as defined by Mare (FASEI, FAMINC, FED, MED, and SIBS) typically decline from 

lower to higher educational transitions.  Similarly, effects of the other background variables 

(BROKEN, FARM, and SOUTH) do not show the same pattern of decline across transitions. 

 
                                                 
7  We find substantially fewer men than Mare with farm background or Southern birth. 
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Extending Traditional Logistic Response Models: The Logistic Response Model with Partial 

Proportionality Constraints 

 Table 5 describes the fit of models estimated for the combination of all six educational 

transitions.  Model 1 is a null baseline in which no parameters are fitted except the grand mean.  

The likelihood ratio test statistic under this model, -2 × (log likelihood), defines the denominator 

of the pseudo-R2 statistics, and can be used to measure improvements in the fit of more complex 

models.  Model 2 fits an intercept for each transition, and it yields a substantial improvement in 

fit.  Model 3 adds invariant effects of social background variables to Model 2.  This follows the 

scheme of equation 2. Overall rates of transition vary across levels of schooling, but the effects 

of social background do not vary across transitions.  This modification also yields a substantial 

improvement in fit. 

 Model 4 is based on equation 3.  Rather than specifying constant effects of the eight 

social background variables, it says that the all of the background effects vary in the same 

proportion across each transition.  With six more degrees of freedom, the parameters of 

proportional change yield an improved model fit (change in the chi-square statistic of 1607.3).  

Evidently, substantial variation in effects of background across educational transitions is 

captured by the model of proportional change. However, Model 4 does not fit the data well. 

Model 7 fits all of the interactions between social background variables and transitions, and its fit 

is significantly better than that of Model 4 (chi-square of 395 with 34 degrees of freedom).  

Moreover, as noted above, the improvement of fit in Model 4 relative to Model 3 does not tell us 

whether the background effects actually vary proportionately across transitions or whether there 

are corresponding differences in residual variation across transitions. 
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 Model 5 specifies constant effects of the socioeconomic background variables (FASEI, 

FAMINC, MED, and FED) and number of siblings (SIBS), but it permits effects of the other 

three background variables (BROKEN, FARM, and SOUTH) to interact freely with transition 

level.  Note that Model 5 is a special case of equation 2 – because some effects do not vary 

across educational transitions – and that Model 4 is not nested within Model 5.  Comparing 

Model 5 to Model 3, we find a significant improvement in fit, but it is only about a quarter of the 

improvement from Model 3 to Model 4, and it uses 15 degrees of freedom. 

 Model 6 is based on the specification of Model 5, but it adds proportional change across 

transitions in the effects of FASEI, FAMINC, MED, FED, and SIBS.  It is an example of the 

model specified in equation 4.  The improvement of fit in Model 6 relative to Model 5 is almost 

as large as in that of Model 4 relative to Model 3.  That is, even after the introduction of freely 

estimated interaction effects between each transition level and BROKEN, FARM, and SOUTH, 

fit is improved substantially by the specification of proportional change in effects of 

socioeconomic background across educational transitions. However, because proportionality 

constraints do not apply to all of the background effects in Model 6, but only to a subset of them, 

we can reject the hypothesis that proportionality is an artifact of heterogeneous residual variation 

in transitions. 

 Finally, Model 7 is an example of the specification in equation 2 in which effects of all 

background variables are permitted to interact with educational transition levels.  Although it 

uses 19 more parameters than Model 6, the improvement in fit is negligible by comparison with 

the other contrasts in Table 5.  Thus, we prefer Model 6 to Model 7 and the other models listed in 

Table 5. 
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 Table 6 shows the estimated parameters of Model 6.  Recall that this model includes 

additive effects of all of the social background variables, freely estimated interactions of broken 

family, farm background, and Southern birth with transition level, and multiplicative effects of 

transition level with a linear composite of the socioeconomic variables and number of siblings. 

 Table 6 identifies four groups of parameters: (a) freely estimated additive effects, (b) 

freely estimated interaction effects, (c) multiplicative effects, and (d) additive effects and 

multiplicative composite.  However, for purposes of estimation, the first two groups are not 

distinct.  In this instance, group (a) includes the main effects of each transition level and the main 

effects of broken family, farm background, and Southern birth, while group (b) comprises the 

interaction effects of broken family, farm background, and Southern birth with each educational 

transition.  There are no interaction effects with the first transition because the main effects of 

broken family, farm background, and Southern birth are defined to reference that transition.  

Group (c) specifies the multiplicative effects of the second through sixth transitions relative to 

the effects of socioeconomic background in the first transition.  Finally, group (d) includes the 

main effects of the socioeconomic variables and number of siblings, which are also the weights 

of those variables in the composite that interacts with educational transition level. 

 The estimates of direct interest in Table 6 are the main effects of the socioeconomic 

variables (d) and the multiplicative effects of the transition levels (c).  As one should expect, the 

main effects of father’s occupational status, family income, mother’s education, and father’s 

education are positive and highly significant, while that of number of siblings is negative and 

highly significant.  The multiplicative effects of transition level are also highly significant, and 

they are increasingly negative at higher level transitions.  These coefficients may appear 

anomalous at first sight, but increasingly negative effects are exactly what we should expect.  
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That is, at each higher transition level, there is a larger proportional decrement in the main 

effects of the socioeconomic variables.  For example, the estimate of -.2257 for the transition to 

high school conditional upon completion of elementary school says that the total effect of each 

socioeconomic background variable is 20.3 percent smaller at the transition from elementary 

school to high school than it is at the transition from school entry to the completion of 

elementary school.  Note that the decrements in the multiplicative effects are not equal across 

transitions.  The largest decrement is that between college entry and college completion (-0.7804 

– (-0.4312) = -0.3492), and the second largest is between elementary school completion and high 

school entry (-0.2257). 

 To illustrate the implications of these estimates for the total effects each of the social 

background variables, we insert the parameter estimates into the linear model (equation 4) and 

rearrange terms.  The first panel of Table 7 displays the total effects in Model 6 that are implied 

by the parameter estimates.  As expected, the effects of father’s occupational status, number of 

siblings, family income, and parents’ educations decline regularly across transitions, while those 

of broken family, farm background, and Southern birth do not.  In the second panel, for purposes 

of comparison, we show the corresponding unconstrained estimates from Model 7.8  The latter 

are necessarily identical to those in Table 4 because Model 7 fits all of the background by level 

interactions.  The third panel shows the deviations of the estimates in Model 6 from those in 

Model 7. 

 As we should expect from the contrast reported in Table 5 between Models 6 and 7, in 

most cases the deviations in the third panel are small.  The largest single deviation (-0.199) 

pertains to the anomalously large and negative effect of family income on the transition from 

                                                 
8  We are concerned here mainly with the deviations in the effects of social background variables, and not with the 
intercepts. 
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college to graduate school.  A second large deviation is an under-prediction of the salutary effect 

of farm background on the completion of college.  One notable pattern in the deviations is that 

the model underestimates the effect of father’s occupational status on higher-level transitions, 

and it overestimates the effects of the other background variables in the linear composite at those 

levels.9  

 Conceivably, one might argue that father’s occupational status should be removed from 

the linear composite in the other social background variables and interacted freely with transition 

levels.  However, such a decision – along with the inclusion of number of siblings in the linear 

composite – would be inconsistent with the idea that socioeconomic effects vary proportionately 

across transition levels.  We should then be left with a less parsimonious and less appealing 

claim that some effects vary proportionately while others do not. 

 

Discussion 

In the age of high-speed portable computing, it is perhaps difficult to appreciate the 

magnitude of Mare’s contribution.  One salient indicator of the growing accessibility of scientific 

tools is that it now takes only a few seconds to estimate a logistic regression equation with many 

thousands of observations.  Estimation of such equations was so slow and expensive in the 1970s 

that Mare used 25 or 50 percent subsamples of the 1973 OCG cases in his analyses of lower-

level transitions, where sample cases were plentiful.  We hope that the present exercise will not 

be read in any sense as a criticism of Mare’s work, but rather as an appreciative effort to extend 

it. 

                                                 
9  This is consistent with Mare’s (1980: 302-3) observations about the pattern of coefficients in the unrestricted 
estimates. 
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 In this analysis, we have shown that specification of interaction effects with a linear 

composite is a parsimonious way to represent and assess the way in which social background 

effects vary across educational transitions.  In the case of Robert Mare’s analysis of educational 

transitions among American men, we have shown that this model reproduces most of the 

empirical features of his estimates.  While estimation of the model is not as straightforward as an 

ordinary regression analysis, it can be done easily and quickly with standard statistical software.   

 We can think of several other ways in which models with interaction effects with a linear 

composite could be useful. We have already noted earlier applications of the same idea to 

comparative analysis of mobility tables (Erikson and Goldthorpe 1992; Xie 1992) and to trends 

in class voting (Hout et al. 1995). One obvious extension is to analyses, like those in Mare 

(1979) and in Persistent Inequality (Shavit and Blossfeld 1993) where multiple educational 

transitions have been observed in several cohorts.10 Such models, we believe, would also be 

useful to structure and other discipline international comparative analyses, such as pooled 

analyses of the data used in Persistent Inequality or other cross-national studies that have been 

designed specifically to create comparable data.  We hope that similar models and methods may 

prove useful across a wide range of research questions in the social and behavioral sciences. 

                                                 
10 Equation 5 of this paper provides a template for such analyses. 
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Table 1. Coefficients Representing Effects of Social Background Factors on School Continuation Decisions (from Mare (1980:301))

Completes Attends High Completes High Attends College Completes Attends Post-
Elementary School Given School Given Given Completes College Given college Given

(0-8) Completes Attends High High School Attends College Completes
Elementary (8-9) School (9-12) (12-13) (13-16) College (16-17)

Variable b b/se(b) b b/se(b) b b/se(b) b b/se(b) b b/se(b) b b/se(b)

Intercept 0.9886 4.22 1.2410 5.40 -0.1778 -1.48 -1.7440 -15.98 -0.6434 -6.33 -0.4669 -3.42
FASEI 0.0075 1.42 0.0041 0.87 0.0154 7.82 0.0145 10.49 0.0115 9.28 0.0070 4.24
SIBS -0.1325 -5.67 -0.1444 -6.40 -0.1335 -11.39 -0.1067 -9.53 -0.0737 -6.30 -0.0138 -0.84
FAMINC 0.1067 5.36 0.0587 3.79 0.0655 8.57 0.0444 9.24 0.0097 2.68 -0.0110 -2.44
FED 0.1188 4.79 0.0939 3.96 0.0784 6.77 0.0420 4.47 0.0071 0.84 -0.0050 -0.45
MED 0.1677 7.16 0.1243 5.56 0.0815 7.11 0.0940 9.29 0.0361 3.86 0.0383 3.11
BROKEN -0.3163 -1.71 -0.1256 -0.64 -0.2192 -2.30 -0.0078 -0.09 -0.1567 -1.84 -0.3713 -3.08
FARM -0.6060 -4.54 -1.0560 -7.94 0.3013 3.88 0.0107 0.14 0.1138 1.41 0.1826 1.55
SOUTH -0.5948 -4.70 0.4182 3.03 -0.0973 -1.45 0.0309 0.53 -0.0604 -1.08 -0.2736 -3.66

"R2" 0.270 0.178 0.120 0.091 0.026 0.008
x2(8) 770.4 497.2 1226.4 1332.2 390.5 68.3
N 5,368 5,009 9,301 7,732 7,674 4,185
Subsample    % 25 25 50 50 100 100

NOTE : Dependent variables are the log odds of continuing from one schooling level to the next. Estimates are based on 1973 sample of U.S. white male 
civilian noninstitutional population born 1907-1951 . Independent variables are FASEI: father's occupational Duncan socioeconomic index when respondent 
was 16; SIBS: number of siblings; FAMINC: annual income of family in thousands of constant (1967) dollars when respondent was 16; FED: father's grades
of school completed; MED: mother's grades of school completed; BROKEN: absence of one or both parents from respondent's household most of the time to
age 16; FARM: respondent lived on a farm at age 16; SOUTH: respondent born in the South census region.  x2 tests null hypothesis that all coefficients are 
zero.
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Table 2. Means and Standard Deviations of Social Background Variables at Selected Levels of Schooling: 1973 
Occupational Changes in a Generation Survey

Level of Schooling

Father's
Occupation

(FASEI)

Family
Income

(FAMINC)

Father's
Schooling

(FED)

Mother's
schooling
(MED)

Number of
Siblings
(SIBS) N

School Entry 31.4 1.773 8.6 9.1 3.7 21682
22.9 0.900 4.1 3.8 2.6

Elementary School 32.6 1.857 9.0 9.5 3.5 20058
Completion 23.1 0.832 3.9 3.6 2.5

High School 33.7 1.906 9.2 9.7 3.4 18725
Attendance 23.3 0.800 3.9 3.5 2.5

High School 36.0 1.987 9.7 10.1 3.1 15602
Graduation 23.8 0.764 3.8 3.4 2.4

College Attendance 42.8 2.165 10.7 11.0 2.6 8462
25.1 0.710 3.9 3.3 2.1

College Graduation 46.6 2.226 11.1 11.3 2.4 4239
25.3 0.698 3.9 3.3 2.0
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Table 3. Percentages of Men with Selected Background Characteristics by Levels of Schooling: 1973 Occupational 
Changes in a Generation Survey

Broken Family
(BROKEN)

Farm
Background

(FARM)
Southern Birth

(SOUTH) % Continuing % of All Men

School Entry 10.4 16.6 27.0 92.5 100.0

Elemntry Compltn 9.9 15.4 25.1 93.4 92.5

HS Attendance 9.8 13.9 24.9 83.3 86.4

HS Graduation 9.2 13.3 23.8 54.2 72.0

College Attendance 8.2 9.9 22.4 50.1 39.0

College Graduation 7.4 9.2 22.1 49.7 19.6
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Table 4. Coefficients Representing Effects of Social Background Factors on School Continuation: 1973 Occupational Changes in a Generation Survey

Completes Attends High Completes High Attends College Completes Attends Post-
Elementary School Given School Given Given Completes College Given college Given

(0-8) Completes Attends High High School Attends College Completes
Elementary (8-9) School (9-12) (12-13) (13-16) College (16-17)

Variable b b/se(b) b b/se(b) b b/se(b) b b/se(b) b b/se(b) b b/se(b)

Intercept 0.4655 4.45 0.8376 7.32 -0.1509 -1.78 -1.8544 -22.45 -0.4352 -4.04 -0.1628 -1.05
FASEI 0.1731 6.87 0.2308 9.40 0.1575 11.98 0.1650 17.56 0.1162 10.22 0.0678 4.22
SIBS -0.1234 -10.83 -0.1397 -12.05 -0.1260 -15.21 -0.1042 -13.24 -0.0889 -8.02 -0.0048 -0.29
FAMINC 0.5690 18.29 0.4013 11.87 0.2953 10.92 0.2976 11.04 0.0213 0.59 -0.1552 -3.01
FED 0.1216 10.13 0.0627 5.22 0.0566 7.10 0.0465 7.12 -0.0114 -1.40 -0.0075 -0.67
MED 0.1496 13.15 0.1083 9.34 0.0911 11.46 0.0748 10.66 0.0225 2.52 0.0327 2.67
BROKEN -0.3121 -3.66 -0.0554 -0.57 -0.2228 -3.38 -0.1001 -1.64 -0.1473 -1.79 -0.5010 -4.08
FARM -0.1413 -2.08 -0.6979 -10.37 0.2811 4.80 -0.0278 -0.52 0.2306 2.92 -0.0152 -0.13
SOUTH -0.6419 -10.57 0.3268 4.71 -0.0771 -1.63 0.0131 0.31 -0.0286 -0.54 -0.2649 -3.52

"R2" 0.313 0.191 0.134 0.120 0.025 0.011
x2(8) 3611.6 1868.4 2263.9 2582.1 293.6 64.8
N 21,682 20,058 18,725 15,602 8,462 4,239

NOTE : Dependent variables are the log odds of continuing from one schooling level to the next. Estimates are based on 1973 sample of U.S. white male 
civilian noninstitutional population born 1907-1951. Independent variables are FASEI: father's occupational Duncan socioeconomic index when respondent 
was 16; SIBS: number of siblings; FAMINC: natural log of truncated annual income of family in thousands of constant (1967) dollars when respondent
was 16; FED: father's grades of school completed; MED: mother's grades of school completed; BROKEN: absence of one or both parents from respondent's 
household most of the time to age 16; FARM: respondent lived on a farm at age 16; SOUTH: respondent born in the South census region.  x2 tests null 
hypothesis that all coefficients are zero.
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Table 5. Fit of Selected Models of Educational Transitions: 1973 Occupational Changes in a Generation Survey

Model Description
Log

Likelihood
DF for
Model

Model
Chi-

square Contrast

Contrast
Chi-

square BIC
Pseudo R
-squared

1 Fit the grand mean -46830.8 0 -- -- 0

2 An intercept for each transition -38674.3 5 16313.0 2 vs. 1 16313.0 16256.0 0.17

3
An intercept for each transition and constant social 
background effects -34333.3 13 24995.0 3 vs. 2 8682.0 8590.8 0.27

4
An intercept for each transition and proportional social 
background effects -33529.7 19 26602.2 4 vs. 3 1607.3 1538.9 0.28

5

An intercept for each transition, constant effects of 
socioeconomic variables, interactions of BROKEN, 
FARM, and SOUTH with transition -34112.0 28 25437.6 5 vs. 3 442.6 340.1 0.27

6

An intercept for each transition, proportional effects of 
socioeconomic variables, interactions of BROKEN, 
FARM, and SOUTH with transition -33399.7 34 26862.1 6 vs. 5 1424.6 1356.2 0.29

7

Saturated model: Intercepts for each transition and 
interactions of all social background variables with 
transition -33332.2 53 26997.2 7  vs. 6 135.1 -81.4 0.29

Note: See text for explanation.



Table 6. Estimated Parameters of Model 6: 1973 Occupational Changes in a Generation Survey

Variable Coefficient Standard Error t-statistic

a. Freely estimated additive effects

Completes Elementary (0-8, TRANS1) 0.7815 0.0777 10.06
Attends High School If Completes Elementary (8-9, TRANS2) 0.7738 0.0655 11.82
Completes High School If Attends High School (9-12, TRANS3) -0.3125 0.0670 -4.66
Attends College If Completes High School (12-13, TRANS4) -1.9488 0.0613 -31.79
Completes College If Attends College (13-16, TRANS5) -0.9565 0.0734 -13.03
Attends Post-College If Completes College (16-17, TRANS6) -0.3145 0.1085 -2.90
Non-intact Family (BROKEN} -0.3453 0.0833 -4.15
Farm Background (FARM) -0.1010 0.0672 -1.50
Southern Birth (SOUTH) -0.6276 0.0612 -10.25

b. Freely estimated interaction effects

TRANS2 X BROKEN 0.2913 0.1265 2.30
TRANS2 X FARM -0.6159 0.0929 -6.63
TRANS2 X SOUTH 0.9564 0.0914 10.47
TRANS3 X BROKEN 0.1390 0.1053 1.32
TRANS3 X FARM 0.3894 0.0885 4.40
TRANS3 X SOUTH 0.5488 0.0776 7.08
TRANS4 X BROKEN 0.2449 0.1024 2.39
TRANS4 X FARM 0.0506 0.0849 0.60
TRANS4 X SOUTH 0.6431 0.0740 8.69
TRANS5 X BROKEN 0.2326 0.1160 2.01
TRANS5 X FARM 0.2259 0.1018 2.22
TRANS5 X SOUTH 0.6058 0.0811 7.47
TRANS6 X BROKEN -0.0866 0.1473 -0.59
TRANS6 X FARM 0.0767 0.1303 0.59
TRANS6 X SOUTH 0.3855 0.0967 3.99

c. Multiplicative Effects

Attends High School If Completes Elementary (8-9, TRANS2) -0.2257 0.0238 -9.50
Completes High School If Attends High School (9-12, TRANS3) -0.3704 0.0221 -16.76
Attends College If Completes High School (12-13, TRANS4) -0.4312 0.0180 -23.95
Completes College If Attends College (13-16, TRANS5) -0.7804 0.0157 -49.68
Attends Post-College If Completes College (16-17, TRANS6) -0.9159 0.0214 -42.73

d. Additive Effects and Multiplicative Composite

FASEI 0.2662 0.0123 21.55
SIBS -0.1698 0.0072 -23.71
FAMINC 0.5233 0.0209 25.07
FED 0.0911 0.0066 13.90
MED 0.1435 0.0064 22.25

Note: See text for explanation.
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Table 7. Comparison of Estimates from Preferred Model (6) with Estimates from Saturated Model (7)

Completes Attends High Completes High Attends College Completes Attends Post-
Elementary School Given School Given Given Completes College Given college Given

Variable (0-8) Completes Attends High High School Attends College Completes
Elementary (8-9) School (9-12) (12-13) (13-16) College (16-17)

Model 6: Intercept for each transition, proportional effects of socioeconomic variables, and interactions of BROKEN, 
FARM, and SOUTH with each transition

FASEI 0.266 0.206 0.168 0.151 0.058 0.022
SIBS -0.170 -0.132 -0.107 -0.097 -0.037 -0.014

FAMINC 0.523 0.405 0.329 0.298 0.115 0.044
FED 0.091 0.071 0.057 0.052 0.020 0.008

MED 0.143 0.111 0.090 0.082 0.032 0.012
BROKEN -0.345 -0.054 -0.206 -0.100 -0.113 -0.432

FARM -0.101 -0.717 0.288 -0.050 0.125 -0.024
SOUTH -0.628 0.329 -0.079 0.016 -0.022 -0.242
Intercept 0.781 0.774 -0.313 -1.949 -0.956 -0.314

Model 7: Saturated model with intercepts for each transition and interactions of all social background variables with 
each transition

FASEI 0.173 0.231 0.158 0.165 0.116 0.068
SIBS -0.123 -0.140 -0.126 -0.104 -0.089 -0.005

FAMINC 0.569 0.401 0.295 0.298 0.021 -0.155
FED 0.122 0.063 0.057 0.047 -0.011 -0.007

MED 0.150 0.108 0.091 0.075 0.023 0.033
BROKEN -0.312 -0.055 -0.223 -0.100 -0.147 -0.501

FARM -0.141 -0.698 0.281 -0.028 0.231 -0.015
SOUTH -0.642 0.327 -0.077 0.013 -0.029 -0.265
Intercept 0.465 0.838 -0.151 -1.854 -0.435 -0.163

Deviations (Model 7 - Model 6)

FASEI -0.093 0.025 -0.010 0.014 0.058 0.045
SIBS 0.046 -0.008 -0.019 -0.008 -0.052 0.010

FAMINC 0.046 -0.004 -0.034 -0.000 -0.094 -0.199
FED 0.030 -0.008 -0.001 -0.005 -0.031 -0.015

MED 0.006 -0.003 0.001 -0.007 -0.009 0.021
BROKEN 0.033 -0.001 -0.016 0.000 -0.035 -0.069

FARM -0.040 0.019 -0.007 0.023 0.106 0.009
SOUTH -0.014 -0.002 0.002 -0.002 -0.007 -0.023
Intercept -0.316 0.064 0.162 0.094 0.521 0.152
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APPENDIX 
 

STATA 9 CODE FOR PREFERRED MODEL 
OF EDUCATIONAL TRANSITIONS 

 
 
**Model 6: Continuous Parameters Constrained to Equality **  
**Across Transitions, Discrete Parameters Vary Freely ** 
**Across Transitions**  
 
capture program drop malogit 
  program define malogit 
   tempname theta             
        version 6 
        args lnf theta1 theta2 theta3   
   gen `theta' = `theta1' + `theta3' + (`theta2'*`theta3') 
        quietly replace `lnf' = ln(exp(`theta')/(1+exp(`theta'))) if 
$ML_y1==1 
        quietly replace `lnf' = ln(1/(1+exp(`theta'))) if $ML_y1==0 
  end 
  
  ml model lf malogit (outcome = trans1 trans2 trans3 trans4 trans5 
trans6 broken farm16 south trans2Xbroken trans2Xfarm16 trans2Xsouth 
trans3Xbroken trans3Xfarm16 trans3Xsouth trans4Xbroken trans4Xfarm16 
trans4Xsouth trans5Xbroken trans5Xfarm16 trans5Xsouth trans6Xbroken 
trans6Xfarm16 trans6Xsouth, nocons) (trans2 trans3 trans4 trans5 trans6, 
nocons) (dunc sibsttl9 ln_inc_trunc edhifaom edhimoom, nocons) 
 
**The following set of starting values are not essential ** 
**but estimation is much faster when starting values are assigned ** 
 
        ml init eq1:trans1 =.4041526 eq1:trans2 =.7751678 eq1:trans3 =-
.3116492 eq1:trans4 =-1.948527 eq1:trans5 =-.9562174 eq1:trans6 =-.3119838 
eq1:trans2Xbroken =-.0519577 eq1:trans2Xfarm16 =-.7136086 eq1:trans2Xsouth 
=.3302017 eq1:trans3Xbroken = -.2044395 eq1:trans3Xfarm16 = .2908632 
eq1:trans3Xsouth =-.0779455 eq1:trans4Xbroken =-.0985229 eq1:trans4Xfarm16 =-
.0484765 eq1:trans4Xsouth =.0161895 eq1:trans5Xbroken =-.1119574 
eq1:trans5Xfarm16 =.1257399 eq1:trans5Xsouth = -.0215616 eq1:trans6Xbroken =-
.4318161 eq1:trans6Xfarm16 =-.0246239 eq1:trans6Xsouth =-.2418691 eq2:trans2 =-
.2524217 eq2:trans3 =-.3919983 eq2:trans4 =-.4505379 eq2:trans5 =-.7878735 
eq2:trans6 =-.9192267 eq3:dunc =.2752204 eq3:sibsttl9 =-.1762127 
eq3:ln_inc_trunc =.554373 eq3:edhifaom =.0953649 eq3:edhimoom =.1451568  
        
        ml maximize 
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