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Abstract

I quantify the contribution of sectoral shocks to business cycle fluctuations in ag-

gregate output. I develop and estimate a multi-industry general equilibrium model in

which each industry employs the material and capital goods produced by other sec-

tors. Using data on U.S. industries’ input prices and input choices, I find that the

goods produced by different industries are complements to one another as inputs in

downstream industries’production functions. These complementarities indicate that

industry-specific shocks are substantially more important than previously thought, ac-

counting for at least half of aggregate volatility.

1 Introduction

What are the origins of business cycle fluctuations? Do idiosyncratic micro shocks–

disturbances at individual firms or industries– have an important role in explaining short-run

macroeconomic fluctuations? Or are shocks that prevail on all industries the predominant

source?

I address these questions by constructing and estimating a multi-industry dynamic

general equilibrium model in which both common and industry-specific shocks have the po-

tential to contribute to aggregate output volatility. I find that sectoral shocks are important,

accounting for considerably more than half of the variation in aggregate output growth.
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A challenge in identifying the relative importance of industry-specific shocks is that,

because of input-output linkages, both aggregate and industry-specific shocks have similar

implications for data on industries’sales. To see why, consider the following two scenarios. In

the first, some underlying event (e.g., a surprise increase in the federal funds rate) reduces the

demand faced by all industries, including the auto parts manufacturing, steel manufacturing

(a supplier of auto parts), and auto assembly industries. In the second scenario, a strike

occurs in the auto parts manufacturing industry, which temporarily reduces the demand

faced by sheet-metal manufacturers, and increases the cost of establishments engaged in

auto assembly. Even if industry-specific shocks are independent of one another, input-output

linkages will induce co-movement in these industries’output and employment growth rates,

just as in the first scenario. Intuitively, though, the more correlation across industry output

growth that is observed, the more likely it is that common shocks are responsible for aggregate

fluctuations.

But the extent to which industry activity co-moves depends on how easily consumers

can substitute across the goods they consume, and how easily the firms within an industry

can substitute across different factors of production. A particular amount of observed co-

movement in output could result from one of two reasons. Production elasticities may be

low, and common shocks relatively unimportant. Alternatively, elasticities of substitution

may be large, and common shocks relatively important. The second challenge, then, emerges

from the paucity of reliable, precise estimates of how easily industries can substitute across

their inputs.1

In this paper, I confront these two related challenges sequentially. First, using data

from the 1997 to 2013 BEA (Bureau of Economic Analysis) Annual Input-Output Tables,

I estimate the relevant elasticities of substitution. In the data, the expenditure share of

an industry on particular intermediate inputs are both volatile and positively correlated to

the input’s price. From these patterns, I estimate a relatively low value for the elasticity of

substitution (which I call εM) among the intermediate inputs produced by different upstream

industries: My point estimates of εM are consistently lower than 0.2, always significantly less

than 1. In other words, different intermediate inputs are highly complementary to one

another.

Second, armed with estimates of εM and the model’s other salient elasticities of

substitution, I construct a multi-industry dynamic general equilibrium model with which

to infer industry productivity shocks. This model is an extension of that introduced in

Foerster, Sarte, and Watson (2011), allowing for sectoral production functions that have

non-unitary elasticities of substitution across inputs. Using the model, in conjunction with

1I discuss existing estimates of the relevant elasticities in Section 3.

2



data on industries output levels from 1960-2013, I back out the productivity shocks that

each industry experienced over this sample period. I then extract the common component

of these productivity shocks.

From here, I compute the fraction of the variation in aggregate output growth that

can be explained by industry-specific (versus common) shocks. I find that most of the

variation in aggregate output growth is attributable to the industry-specific components, 83

percent in my benchmark estimates. When I impose unitary elasticities of substitution on my

model, I estimate that 21 percent of the variation in output volatility comes from industry-

specific shocks. In sum, these results indicate that sectoral shocks are more important than

previously thought, and that the difference is largely due to past papers’ imposition of a

unitary elasticity of substitution across different inputs in sectoral production functions.

These results are robust to countries, industry classification schemes, treatment of trends,

and other modeling choices.

This paper resolves the hypothesis, first advanced in Long and Plosser (1983), that

independent industry-specific shocks generate patterns characteristic of modern business cy-

cles. Models of business cycles typically portray fluctuations as the result of economy-wide,

aggregate disturbances to production technologies and preferences. These disturbances, how-

ever, are diffi cult to justify independently, and may simply represent "a measure of our ig-

norance."2 Given the results of the current paper, future research on the sources of business

cycle fluctuations would benefit from moving beyond the predominant one-sector framework.

Related Literature: The current paper falls within the literature on multi-industry
real business cycle models initiated by Long and Plosser (1983). Long and Plosser present a

model in which the economy is composed of a collection of perfectly competitive industries.

Each industry produces its output by employing a combination of labor and intermediate

inputs. The intermediate input bundles of each industry are, in turn, combinations of goods

that are purchased from other industries. Long and Plosser (1983) and others in this lit-

erature (e.g., Horvath 1998 and 2000; Dupor 1999; Acemoglu et al. 2012; and Acemoglu,

Ozdaglar, and Tahbaz-Salehi 2017) use this framework to argue that idiosyncratic shocks to

industries’productivities, by themselves, have the potential to generate substantial aggre-

gate fluctuations.3 These papers, however, do not allow for aggregate shocks; they are not

attempting to assess the relative importance of industry-specific and aggregate shocks.

2This phrase was coined by Abramovitz (1956), when discussing the sources of long-run growth, but
applies to our understanding of short-run aggregate fluctuations, as well. More recently, Summers (1986)
and Cochrane (1994) have argued that it is a priori implausible that aggregate shocks can exist at the scale
needed to engender the business cycle fluctuations that we observe.

3Among these papers, Dupor (1999) is exceptional. Instead of arguing that industry-specific shocks have
the potential to produce business cycle fluctuations, he does the converse: He provides conditions on the
input-output matrix under which industry-specific shocks are irrelevant.
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Uniquely among the aforementioned papers, the model in Horvath (2000) accommo-

dates non-unitary elasticities of substitution in consumers’preferences (across goods) and

in the production of the intermediate input bundle (across inputs purchased from upstream

industries).4 His is the first article to articulate that lower elasticities of substitution "en-

gender greater sectoral comovement... by reducing the ability of sectors to avoid the shocks

of their input supplying sectors." (p. 83) A key difference between the current paper and

Horvath (2000) is that the earlier paper does not attempt to estimate the values of these

elasticities of substitution, nor does it seek to identify the role of common vs. sectoral shocks

in generating aggregate fluctuations.

So, compared to the Long and Plosser literature, the current paper makes three ad-

vances. First, I extend Foerster, Sarte, and Watson (2011)’s identification scheme to accom-

modate flexible substitution patterns in consumers’preferences and industries’production

technologies. Second, using data on industries’ input usage and input prices, I estimate

these production elasticities. Together, these two contributions are necessary to arrive at

the paper’s main result, that industry-specific shocks play a much larger role in generating

aggregate volatility than previously believed. As a tertiary contribution, I make a sequence

of smaller advances: I allow for consumption good durability, consider a dataset that covers

the entire economy,5 and examine data from several developed economies.6

Outline: In the remainder of the paper, I spell out the multi-sector real business cycle
model (Section 2); estimate how easily industries can substitute across inputs (Section 3);

apply these estimated elasticities to the real business cycle model to re-examine the relative

importance of industry-specific shocks (Section 4); and conclude (Section 5). In Appendix

A, I provide some additional details on the datasets used in the paper.7

4There are papers in other fields which focus more closely on these elasticities: Johnson (2014) and
Boehm, Flaaen, and Pandalai-Nayar (2015a) study the transmission of shocks across international borders
as a mechanism for generating cross-country co-movement and examine how the extent of model-predicted
co-movement varies with production and preference elasticities.

5Foerster, Sarte, and Watson (2011) is unique in its application of the Federal Reserve Board’s dataset
on industrial production, a dataset that spans only the goods-producing sectors of the U.S. economy. Other
papers (e.g., Long and Plosser 1983, Horvath 2000, and Ando 2014), employ datasets that cover the entire
economy.

6A parallel literature attempts to gauge the relative importance of industry-specific shocks by estimating
vector autoregressions (see Long and Plosser 1987, Stockman 1988, Shea 2002, and Holly and Petrella 2012).
Yet another line of research constructs simple summary statistics of shocks to the largest firms or industries,
relates these summary statistics to aggregate output movements, and in this way establishes the importance
of micro shocks. Gabaix (2011) defines the granular residual– changes in productivity to the largest 100
firms– and shows that this statistic explains approximately one-third of the variation in GDP (see also
di Giovanni, Levchenko, and Mejean 2014). Along these lines, Carvalho and Gabaix (2013) show that a
summary statistic, one which measures the relative sizes of industries with different productivity volatilities,
can help explain time-varying aggregate volatility.

7In the Online Appendices, I re-estimate one of the model’s elasticities of substitution using plant-level
data on manufacturers’input choices in Online Appendix B, describe the datasets from other countries (On-
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2 Model

In this section, I present a multi-industry general equilibrium model. This is the sim-

plest model that can be used to compare the importance of industry-specific and aggregate

disturbances, and to estimate the production elasticities of substitution. The model is pop-

ulated by a representative consumer and N perfectly competitive industries. I first describe

the representative consumer’s preferences, then the production technology of each industry,

and finally the evolution of the exogenous variables.

2.1 Preferences

The consumer has balanced-growth-consistent preferences over leisure and the services

provided by the N different consumption goods.8

The preferences of the consumer are given by the following utility function:

U =
∞∑
t=0

βt

log

( N∑
J=1

ξ
1
εD
J (CtJ)

εD−1
εD

) εD
εD−1

− εLS
εLS + 1

·
(

N∑
J=1

LtJ

) εLS+1

εLS

 . (1)

The demand parameters, ξJ , reflect the time-invariant differences in the importance

of industries’goods in the consumer’s preferences; CtJ equals the final consumption purchases

on good/service J at time t. The elasticities of substitution parameterize how easily the

representative consumer substitutes across the different consumption goods (εD) and how

responsive the consumer’s desired labor supply is to the prevailing wage (εLS).9

line Appendix C), report on a sequence of robustness checks (Online Appendices D and E), and characterize
the solution of Section 2’s model (Online Appendix F).

8In Online Appendix F, I extend the model to accomadate durability of certain consumption goods.
This turns out to increase moderately the estimated importance of sectoral shocks for certain parameter
configurations, and has no noticable effect for others; see Online Appendix E.

9Horvath (2000) and Kim and Kim (2006) use a more flexible specification regarding the disutility from
supplying labor. In their specification, the second term in the period utility function is replaced by

− εLS
εLS + 1

·
(

N∑
J=1

(LtJ)
τ+1
τ

) τ
τ+1

εLS+1

εLS

.

The idea behind this specification is to "capture some degree of sector specificity to labor while not
deviating from the representative consumer/worker assumption." Horvath (2000, p. 76) As it turns out,
neither the volatility of aggregate economic activity nor the covariances of output across industries are
particularly sensitive to the value of τ (see Table 9 of that paper). Moreover, since wages and hours are not
among the observable variables that I am trying to match, the data that I employ in the following sections
would have trouble identifying τ . For these reasons, I use the simpler specification of the disutility from
labor supply.
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2.2 Production and market clearing

Each industry produces a quantity (QtJ) of good J at date t using capital (KtJ), labor

(LtJ), and intermediate inputs (MtJ) according to the following constant-returns-to-scale

production function:

QtJ = AtJ ·

(1− µJ)
1
εQ

((
KtJ

αJ

)αJ ( LtJ
1− αJ

)1−αJ
) εQ−1

εQ

+ (µJ)
1
εQ (MtJ)

εQ−1
εQ


εQ
εQ−1

. (2)

The parameters µJ and αJ reflect long-run averages in each industry’s usage of

intermediate inputs, labor, and capital. These parameters will eventually be inferred from

the factor cost shares of each industry. AtJ is the factor-neutral of industry J at time t. For

now, these productivity terms can be correlated, across industries, in any arbitrary fashion.

The parameter εQ dictates how easily factors of production are substituted.10

The evolution of capital, for each industry J , is given in Equation 3:

Kt+1,J = (1− δK)KtJ +XtJ . (3)

The capital stock is augmented via an industry-specific investment good, XtJ , and depre-

ciates at a rate δK that is common across industries. The industry-specific investment good

is produced by combining the goods produced by other industries. The ΓXIJ indicate how

important industry I is in the production of the industry J specific investment good, while

εX parameterizes the substitutability of different inputs in the production of each industry’s

investment bundle:

XtJ =

(
N∑
I=1

(
ΓXIJ
) 1
εX (Xt,I→J)

εX−1
εX

) εX
εX−1

. (4)

Analogously, the intermediate input bundle of industry J is produced through a

combination of the goods purchased from other industries:

MtJ =

(
N∑
I=1

(
ΓMIJ
) 1
εM (Mt,I→J)

εM−1
εM

) εM
εM−1

. (5)

In Equation 5, εM parameterizes the substitutability of different goods in the production

10In a robustness check (see column 2 of Table 4), I will consider labor-augmenting instead of TFP shocks.
With εQ equal to 1, shocks to labor-augmenting productivity and TFP cannot be separately identified.
With non-unitary elasticities of substitution, the paper’s main results could a priori be sensitive to how the
exogenous productivity term affects output.
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of each industry’s intermediate input bundle. The ΓMIJ indicate how important industry I is

in the production of the industry J specific intermediate input.

To emphasize, the parameters ΓMIJ , ΓXIJ , αJ , and µJ are time invariant. As such,

movements in the share of J’s expenditures spent on different factors of production are due,

only, to the shocks to industries’productivity.

From the cost-minimization condition of the industry J representative firm, the

relationship between the intermediate input cost share of industry J and the industry J

specific intermediate input price (denoted P in
tJ ) is log-linear, with slope 1− εQ:11

∆ log

(
P in
tJ ·MtJ

PtJ ·QtJ

)
= (1− εQ) ·∆ log

(
P in
tJ

PtJ

)
+ (εQ − 1) ·∆ logAtJ . (6)

A similar set of calculations yields the following relationship that describes changes in an

industry’s purchases of a specific intermediate input:

∆ log

(
PtIMt,I→J

P in
tJMtJ

)
= (1− εM) ·∆ log

(
PtI
P in
tJ

)
. (7)

When εQ = εM = 1, as assumed in previous papers, an industry’s input cost shares are

constant, independent of input prices, a prediction that I will show to be at odds with the

data.

Finally, the market-clearing condition for each industry states that output can be

used for consumption, as an intermediate input, or to increase one of the N capital stocks:

QtI = CtI +
N∑
J=1

(Mt,I→J +Xt,I→J) . (8)

11The equivalence between sales and costs in the denominator of the left-hand side of Equation 6 comes
from the assumption that each industry is perfectly competitive, with a constant returns-to-scale production
function.
To derive Equation 6, take first-order conditions of Equation 2 with respect to intermediate input pur-

chases:

P intJ = PtJ ·
∂QtJ
∂MtJ

= PtJ · (AtJ)
εQ−1
εQ (MtJ)

− 1
εQ (µJ ·QtJ)

1
εQ .(

P intJ
)εQ

= (PtJ)
εQ (AtJ)

εQ−1 (MtJ)
−1
µJ ·QtJ .

Taking logs, re-arranging, and computing the difference across two adjacent periods gives Equation 6.
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2.3 Evolution of the exogenous variables and the model filter

Using At to denote the vector of productivity levels in the N industries, (At1, ..., AtN)′,

I specify the evolution of productivity as a geometric random walk:

logAt+1 = logAt + ωAt+1 . (9)

For now, the productivity shocks’ covariance matrices are left unspecified. I will add

some structure to these matrices in Section 4.

As in Foerster, Sarte, and Watson (2011), in a competitive equilibrium, the vector of

industries’output growth rates admits a VARMA(1, 1) representation. Thus, the evolution

of output can be written as:

∆ logQt+1 = Π1∆ logQt + Π2ω
A
t + Π3ω

A
t+1 . (10)

The N ×N matrices Π1, Π2, and Π3 are functions of the model parameters. I solve for

these matrices in Online Appendix F.

Solving Equation 10 for ωAt+1 yields the filter:

ωAt+1 = (Π3)−1 ∆ logQt+1 − (Π3)−1 Π1∆ logQt − (Π3)−1 Π2ω
A
t . (11)

With some initial condition for the productivity shock (e.g., ωA0 = 0), one could iteratively

use data on sectoral growth rates to infer the productivity shocks at each point in time. I

will apply this procedure in Section 4. But first, I must determine values for the model’s

elasticities of substitution. The example in the following subsection explains why.

2.4 Why do the elasticities matter?12

Before turning to the empirical analysis, I work through a special case of the model.

This special case yields a relatively simple set of expressions for the relationship between the

model parameters, the exogenous productivity shocks, and each industry’s output. With this

relationship in hand, I then discuss the intuition behind why imposing unitary elasticities of

substitution may lead one to understate the role of industry-specific shocks.

Compared to the benchmark model, I make a number of simplifying assumptions.

I assume that a) all goods depreciate fully each period; b) there is no physical capital in

production; c) each industry has identical production functions; d) the consumer’s preference

12This subsection is related to the technical appendix of Carvalho and Gabaix (2013). The main difference,
besides assumptions (a)-(e), is that Carvalho and Gabaix impose that εM = 1 and allow for some adjustment
costs to aggregate labor.
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weight is the same for each of the N goods; and e) the input-output matrix has 1
N
in each

entry. Relaxing these assumptions would not overturn the example’s main message, that

higher elasticities of substitution generate less correlated output for a given set of correlations

among the underlying productivity shocks.

The overall aim of the paper’s model is to use data on industries’output to recover

the degree to which productivity shocks are correlated across industries. If industry output

data indicate that productivity shocks are correlated, then aggregate shocks will be assigned

to play a primary role in generating industries’ output (and, correspondingly, aggregate

output) fluctuations. With this in mind, in Online Appendix F.6, I work out the following

(log-linear, around the point at which AI = 1 for all I) approximation for each industry’s

output as a function of the productivity in each industry:

logQtI ≈ log
1

N
+

1

1− µ log

(
1

1− µ

)
+ (µεM + (1− µ) εD)︸ ︷︷ ︸

1©

logAtI (12)

+
1

N

[(
1

1− µ

)2

− (µεM + (1− µ) εD)

]
︸ ︷︷ ︸

N∑
J=1

2©

logAtJ

Equation 12 is helpful as it allows one to relate the covariance of industries’gross output

as a function of industries’productivity shocks, and thus describes how one could recover

the correlation of productivity shocks from data on gross output. The terms 1© and 2© in

Equation 12 respectively specify the impact of industry-specific and common productivity

changes on industry I’s output level. Term 1© is increasing in the two elasticities of substi-

tution, εD and εM , and is minimized and equal to 0 when εD = εM = 0. In other words,

regardless of the underlying correlation of the productivity terms, when production and pref-

erence elasticities are low, observed output will tend to strongly co-move. In contrast, in

economies with larger production and preference elasticities, output will tend to co-move

less for a given degree of correlation in the A terms.

In sum, the main takeaway from this simple example is that a given amount of

observed output co-movement could arise either from low elasticities of substitution and

correlated shocks or, alternatively, high elasticities of substitution and relatively uncorrelated

shocks. So, to properly assess how important common versus independent shocks are, I must

have reliable estimates parameterizing consumers’and firms’ease of substitution. This is the

task to which I turn in the following section.

Before doing so, with the aim of providing the reader with some intuition, I briefly

address a recurring question that I received while presenting this paper: Is the amplification
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of industry-specific shocks– where amplification is defined, here, as the aggregate output

response following a shock in an individual sector– more severe with complementarities in

production? On the one hand, when inputs are more complementary a (negative) produc-

tivity shock to a supplying industry (e.g., Steel) will lead to larger decreases in output for

downstream industries (e.g., Motor Vehicles, Construction, etc...). On the other hand, the

output decline in the industry experiencing the productivity shock will be smaller when its

output is more complementary to the output of other industries. These two countervailing

effects balance each other out in this simple example. Indeed, this must be the case, as the

simple example of this subsection falls within the class of models studied in Hulten (1978)

and Acemoglu et al. (2012). For this class of models, the aggregate impact of shocks to an

individual sector is only a function of the sector’s gross output share; to a first-order, the

elasticities of substitution do not matter. Instead, the elasticities matter because they alter

the way in which co-movement in fundamental shocks map to co-movement in observable

data.

3 Estimates of the production elasticities

In this section, I estimate the model’s key elasticities of substitution. With this goal in

mind, I will apply industries’cost-minimization conditions, as given in Equations 6 and 7, to

estimate εM and εQ. Recognizing the endogeneity of relative prices on the right-hand sides

of these equations, I follow Shea (1993), Young (2014), and, especially, Acemoglu, Akcigit,

and Kerr (2016) and use short-run industry-specific demand shifters as instruments. These

shifts in demand arise from changes in military spending.

For this section, I use data from the BEA’s GDP by Industry and Input-Output

Accounts data spanning 1997 to 2013. The main variables that I construct from these tables

are changes in i) industry J’s output price index, ∆ logPtJ ; ii) its intermediate input price

index, ∆ logP in
tJ ; iii) its intermediate input cost share, ∆ log

(
P intJMtJ

PtJQtJ

)
; and iv) the fraction

of industry J’s intermediate input cost shares that are due to purchases from industry I,

∆ log
(
PtIMt,I→J
P intJMtJ

)
. So that I may combine production elasticity estimates with Dale Jorgen-

son’s KLEMS data (which will be used in the following section), I collapse the 71 industries

in the BEA data down to 30 industries. Appendix A contains a detailed description of the

construction of the variables used in this section.

For four of the 30 industries, Figure 1 presents the relationship between∆ log
(
PtIMt,I→J
P intJMtJ

)
and ∆ log

(
PtI
P intJ

)
for J’s most important supplier industry. As an example, for the Furniture

industry, which is depicted in the top-right panel, I plot the Furniture industry’s interme-

diate input expenditure share of Lumber on the y-axis, and the price of Lumber relative to
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Figure 1: Relationship between changes in intermediate input purchases and intermediate
input prices.
Notes: For each downstream industry, J , I take the most important (highest average intermediate input

expenditure share) supplier industry, I. The x-axis of each panel gives ∆log
(
PtI
P intJ

)
. The y-axis gives, for

each industry, changes in the fraction of industry J’s intermediate input expenditures that go to industry I.

the price of Furniture’s intermediate input bundle on the x-axis. The numbers on the plot

give the last two digits of the year t. The main takeaway is that the share of a particular

input among total intermediate input expenditures is positively correlated to the price of

that input (relative to other intermediate inputs); this relationship is statistically significant

for three out of the four industries (Non-metallic Minerals being the exception). Absent any

omitted variables, Equation 7 would yield an unbiased estimate of 1 − εM : The slope of

∆ log
(
PtIMt,I→J
P intJMtJ

)
on ∆ log

(
PtI
P intJ

)
, averaging across the four plotted industries, is 0.85, which

would yield an estimate of εM = 0.15.13

Similarly, εQ, the elasticity of substitution between intermediate inputs and value

added, could be identified off of the slope of the relationship between changes in the in-

termediate input cost share, ∆ log
(
P intJMtJ

PtJQtJ

)
, and the relative price of intermediate inputs,

∆ log
(
P intJ
PtJ

)
. Figure 2 plots this. All else equal, when εQ is less than 1, higher intermediate

13These four industries are broadly representative of those throughout the sample. In Online Appendix
D, I depict this same relationship for all 30 industries.
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Figure 2: Relationship between changes in purchases of the intermediate input bundle and
the relative price of the intermediate input bundle.
Notes: For each industry, J , I plot the relationship between changes in its cost share of intermediate inputs
on the y-axis, and changes in the difference between the price of the intermediate input bundle and the
marginal cost of production on the x-axis.

input prices are correlated with larger fractions of expenditures spent on intermediate in-

puts. For many, but certainly not all industries, this seems to be the case. The slope between

∆ log
(
P intJ ·MtJ

PtJ ·QtJ

)
and ∆ log

(
P intJ
PtJ

)
is statistically distinct from zero for 12 of the 30 industries:

negative for three of the commodity-related industries– Petroleum/Gas Extraction, Petro-

leum Refining, and Primary Metal Manufacturing– and positive for nine other industries.

Overall, the slope of this line, for the average industry equals 0.4.

With the aim of more formally estimating εQ and εM , combine the cost-minimization

conditions of each industry given in Equations 6 and 7:

∆ log

(
PtIMt,I→J

PtJQtJ

)
= φt + (εM − 1)

(
∆ logP in

tJ −∆ logPtI
)

(13)

+ (εQ − 1)
(
∆ logPtJ −∆ logP in

tJ

)
+ ηt,IJ

Shifts in relative productivity, which are correlated with changes in relative prices

and enter the error term in Equation 13, may lead to biased estimates of the production
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elasticities. According to the model presented in Section 2, shocks to industries’final demand

would alter industries’demand for specific factors only through their effects on relative prices.

I use a set of instruments from Acemoglu, Akcigit, and Kerr (2016) to capture these shifts

in final demand.14

I define a set of three instruments, which exploit annual variation in military spending

and heterogeneity in the extent to which different industries are suppliers to, either directly

or indirectly, the military. They are defined as:

military spending shocktJ ≡
∑
I′

Output%1997,J→I′ × (14)

S1997,I′→military ·∆ log (Military Spendingt) ,

military spending shocktI ≡
∑
I′

Output%1997,I→I′ × (15)

S1997,I′→military∆ log (Military Spendingt) , and

military spending shocktJ’s suppliers ≡
∑
I

PtIMt,I→J

P in
tJMtJ

·military spending shocktI . (16)

With these three separate instruments, I aim to capture demand shifts which lead, re-

spectively, to changes in PtJ , PtI , and P in
tJ that are conditionally uncorrelated with ηt,IJ . In

these equations, S1997,I→military is the share of industry I’s output that is purchased by the

"Federal National Defense" industries.15 According to Equation 14, demand for an industry

J’s output will vary due to fluctuations in military spending either if it is a direct supplier

to the military, if its main customers are important suppliers to the military, or if its main

customers are indirect suppliers to the military. Among the industries in the sample, the

"Other Transportation Industry"– in which ships, airplanes, and tanks are manufactured–

has the highest S1997,I→military. This industry has the strongest direct relationship with the

military. Industries that are, on the other hand, indirectly reliant on purchases from the

military include "Instruments" and "Petroleum Refining." Equation 15 is identical to Equa-

tion 14 except for the I subscript. And, to construct the military spending shocktJ’s suppliers,

14The other demand shifter used by Acemoglu, Akcigit, and Kerr (2016) focuses on changes in industry
demand resulting from China’s consequential export expansion. Between 1995 and 2011, China’s gross
output exports to the United States, as a share of U.S. GDP, has increased from 0.5 percent to 2.7 percent.
More importantly for the purposes of the current paper, growth in China’s exports to the U.S. dramatically
differ across industries. But, in the first-stage estimates of Equation 13, increased exports from China are
associated with an increase in prices, counter to the motivation for the instrument.
15To define Output%1997,J→I′ , write S1997,J→I′ as the share of industry J’s output that is purchased by

industry I ′ and store these elements in a matrix S. Then, Output%1997,J→I′ is the J ,I ′ element of the matrix
I + S + S2 + S3 + ... = (I− S)

−1.
Note that while Acemoglu, Akcigit, and Kerr (2016) motivate this definition using Cobb-Douglas sec-

toral production functions, the same definition– as a demand shifter– is compatible with CES production
functions as well. See Online Appendix F.7.
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I compute the average military spending shock of industries I, weighting each supplying

industry by the extent to which they supplied intermediate inputs to industry J .

Table 1 presents the coeffi cient estimates from regressions defined by Equation 13.

The first two columns present OLS estimates. In the IV specifications, given in the final two

columns, the instruments have the expected relationship with the relative price variables:

Increased demand from federal spending is positively related with the price of that industry’s

good. In these specifications, the instruments are suffi ciently powerful to yield reliable,

unbiased estimates of εM and εQ. For these specifications, the point estimates are actually

slightly negative εM , around −0.1, though one cannot reject zero (or slightly positive values)

for this elasticity of substitution. The right endpoint of a 90 percent confidence interval

is approximately 0.2. For εQ, the OLS estimates result in an estimate of 1.2-1.3; the IV

specifications produce estimates closer to 0.8-0.9. In these specifications, the standard errors

for εQ are substantially larger: unit elasticities– as used previously in the literature– cannot

be rejected.

In Online Appendix D, I report results from regressions which estimate the slopes

of the relationships between input expenditures and prices for different countries; using

different– either coarser (with 9 industries) or finer (with 67 industries)– industry classifi-

cation schemes; using a longer definition of a time period; and specifications for which these

slopes are separately estimated for different subsamples of industries. The results in the

appendix accord with those presented in Table 1. Here, I summarize the results of these

exercises. First, with more coarsely defined industries, the estimated elasticities are similar,

but the instruments in the IV specifications are now weak. Second, estimates of εM and

εQ are nearly identical to those in Table 1 with samples that include more upstream obser-

vations per downstream observation × year. Third, estimates of εM are somewhat larger,

and estimates of εQ are somewhat smaller, with longer time periods (two years, instead of

one year). Fourth, using the World Input Output Tables (WIOT), I estimate the slopes of

intermediate input cost share versus intermediate input price relationships for a sample of

six developed countries– Denmark, France, Italy, Japan, the Netherlands, and Spain. While,

for these countries, I cannot apply variation in military spending as an instrument, the OLS

estimates for these six countries are similar to those in the first two columns of Table 1: the

estimates of εM are slightly larger (though still significantly smaller than 1), while estimates

of εQ are somewhat smaller. In sum, the results from Table 1 are broadly, but not universally,

robust to different samples and specifications. In all specifications, εM is safely well below 1.

While I am not aware of any previous research aimed at estimating εM , the estimates

of εQ presented in Table 1 accord with the few existing estimates for this parameter.16

16Boehm, Flaaen, and Pandalai-Nayar (2015b) study the impact of the 2011 Tōhoku earthquake on the
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Second stage regression results
εM -0.07 -0.13 -0.13 -0.11

(0.04) (0.04) (0.19) (0.20)
εQ 1.18 1.27 0.84 0.88

(0.06) (0.06) (0.44) (0.35)
First stage: Dependent variable is ∆ logP in

tJ − logPtI
military spending shocktI -0.75 -0.70

(0.06) (0.06)
military spending 0.96 1.11
shocktJ’s suppliers (0.09) (0.12)
military spending shocktJ -0.12 -0.14

(0.07) (0.06)
F-statistic 66.42 17.48
First stage: Dependent variable is ∆ logPtJ − logP in

tJ

military spending shocktI -0.13 0.00
(0.04) (0.04)

military spending -0.30 0.11
shocktJ’s suppliers (0.06) (0.08)
military spending shocktJ 0.38 0.35

(0.04) (0.04)
F-statistic 28.04 12.31
Cragg-Donald Statistic 27.04i 40.54i

Wu-Hausman test p-value 0.66 0.52
Year Fixed Effects No Yes No Yes
N 4800 4800 4592 4592

Table 1: Regression results related to Equation 13.
Notes: The overall sample includes pairs of industries J , and, for each industry J , the top ten supplying
industries, I. In the third and fourth columns, the sample size is reduced because of the exclusion of the
Government industry. In the row labeled "Cragg-Donald Statistic", an "i" indicates that the test for a
weak instrument is rejected at the 10 percent threshold. Within this table, the "military spending shocktJ"
term, the "military spending shocktI" term, and the "military spending shocktJ’s suppliers" term are given by
Equations 14, 15, and 16. These three military shock terms are meant to predict changes in the three price
terms that appear on the right-hand side of Equation 13.
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Rotemberg and Woodford (1996) estimate εQ by running a regression of manufacturing

industries’intermediate input expenditure shares against the relative price of intermediate

inputs, instrumenting the relative price of intermediate inputs using the price of crude oil.

For industries within the manufacturing sector, Rotemberg and Woodford estimate a value

of 0.7 for the elasticity of substitution between the capital-labor and the intermediate input

bundles. More recent papers, using variation in the unit prices that individual plants pay

for different factors, yield estimates of εQ in a similar range. Oberfield and Raval (2015)

regress plants’ intermediate input cost shares against the wages prevailing in their local

labor markets, then combine this plant-level estimate with information on within-industry

dispersion in plants’intermediate input intensities to build an industry-level estimate of εQ.

Their estimates of εQ lie between 0.6 and 0.9. In Online Appendix B, I follow a similar

strategy, exploiting spatial variation in materials prices instead of spatial variation in wages.

I arrive at estimates of εQ in the 0.4 to 0.8 range.

The model’s other elasticities of substitution, in particular εD and εLS, will turn

out to play only a secondary role in determining the importance of aggregate fluctuations.

For these parameters, I will choose a wide range, centered around values that have been

estimated in previous papers. With respect to the estimate of εD, Herrendorf, Rogerson,

and Valentenyi (2013) consider long-run changes in broad sectors’relative prices and final

consumption expenditure shares. Their benchmark estimate of the preference elasticity

of substitution between expenditures on agricultural products, manufactured goods, and

services is 0.9.17,18 Regarding εLS, an extensive literature has estimated the Frisch labor

supply elasticity, with estimates varying between 0.5 and 3; see Prescott (2006) and Chetty

input purchases of U.S. multinational firms which had a presence in Japan. Using exogenous variation
provided by the earthquake, Boehm, Flaaen, and Pandalai-Nayar (2015b) estimate a firm-level elasticity of
substitution between capital/labor and intermediate inputs (their ζ) and a firm-level elasticity of substitu-
tion between intermediate inputs sourced from Japan and everywhere else (their ω). The former elasticity
corresponds to a firm-level version of this paper’s εQ; see Oberfield and Raval (2015) or the current paper’s
Online Appendix B for an explanation on how elasticities of substitution in firm-level and industry-level
production functions can differ. The latter estimate is similar in spirit, but distinct from, a firm-level version
of εM .
17With respect to an industry classification scheme closer to the one used in the current paper, Ngai and

Pissarides (2007) argue that "the observed positive correlation between employment growth and relative price
inflation across two-digit sectors" (p. 430) supports an estimate of εD that is less than 1. Also, Oberfield
and Raval (2015) estimate a preference elasticity of between 0.8 and 1.1 across two-digit manufacturing
industries.
18To emphasize, εD parameterizes how easily the consumer can substitute across coarsely-defined indus-

tries’products (for example, the elasticity of substitution between Motor Vehicles and Furniture, or between
Apparel and Construction). Broda and Weinstein (2006) and Foster, Haltiwanger, and Syverson (2008),
among others, estimate a much larger elasticity of substitution in consumers’preferences. These larger elas-
ticities of substitution are estimated using within-industry variation, and characterize how easily consumers
substitute between, for example, ready-mix concrete produced by two different plants, or between different
varieties of red wine.
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et al. (2011) for two syntheses of this literature.

To summarize, Table 1 suggests that a value for εM close to 0 and one for εQ that

is close to but less than 1 faithfully describe industries’ability to substitute across inputs.

In the following section, I will refer to εM = 0.1, εQ = 1, and εD = 1 as my benchmark set

of parameter values.19 However, since the standard errors of εQ are somewhat large, and

since I have not even attempted to identify εX , εD, or εLS, it will be necessary to apply a

range of values for these parameters. In the following section, I will compute the aggregate

importance of sectoral shocks applying different reasonable combinations of εX , εQ, εM , and

εD to Section 2’s model, and compare this estimated contribution of sectoral shocks to a

calibration in which εX , εQ, εM , and εD are all set equal to 1.

4 Estimates of the importance of sectoral shocks

This section contains the main results of the paper. In this section, I describe the

calibration of certain parameters and the procedure with which I estimate the importance

of common productivity shocks (Section 4.1); present the estimates of the importance of

sectoral shocks for different values of the preference and production elasticities (Section

4.2); and examine the sensitivity of the benchmark results to changes in sample, industry

definition, country, and other details of the estimation procedure (Section 4.3). I discuss

additional robustness checks in Online Appendix E.

4.1 Calibration and estimation details

Besides the preference and production elasticities, the model filter requires data on

industries’ output at each point in time along with information on the long-run-average

relationships across sectors. I discuss these two requirements in turn.

Regarding the data on industries’ output, I combine Dale Jorgenson’s 35-Sector

KLEMS dataset (which spans the 1960 to 2005 period) with the output data from the BEA

Industry Accounts (spanning 1997 to 2013) that were used in the previous section.20 From

19It is true that there is some weak evidence in favor of εQ < 1. However, given the large variability of the
estimates of εQ, I will choose the conventional value of 1 for εQ for the benchmark parameter configuration,
and consider a secondary specification with εQ = 4

5 in many of the other robustness checks.
The confidence intervals for εM in the final columns of Table 1 span both positive and negative values (in

fact the point estimates from the IV regressions are negative.) Negative, statistically distinguishable from
zero estimates of εM would be troublesome, as this would indicate that some component of the Section 2
model is mis-specified. This is not the case here, but the choice of εM = 0.1 does require some justification.
I choose 0.1 as my benchmark value for εM as it lies in the middle of positive portion of the 90 percent
confidence interval for this parameter.
20The Jorgenson data can be found on his home page; see http://scholar.harvard.edu/jorgenson/data .
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these two datasets, I take information on industries’gross output, using industry-specific

price deflators.

The parameters ξJ , µJ , αJ , ΓXIJ , and ΓMIJ are chosen to match the model-predicted

cost shares to the corresponding values in the data. These parameters contain only infor-

mation about the steady-state of the equilibrium allocation. The demand shares, ξJ , are

chosen so that the model’s steady-state consumption choices are proportional to the amount

that the industry sells to consumers or as government consumption expenditures; the ξJ
are restricted to sum to 1. The other parameters are chosen to match factor intensities, for

each industry-factor pair. For instance, µJ is the value that equates the model-predicted

intermediate input cost share with the empirical counterpart.21 The empirical values that

are used to calibrate the factor intensities are described in Appendix A. Online Appendix

F.1 provides additional details on the calibration of the parameters relevant to the steady

state.22

I choose β and δK based on the values used in past analyses. I set the discount factor,

β, to 0.96 and the capital depreciation rate, δK , to 0.10. I set the labor supply elasticity,

εLS, equal to 2, and explore the sensitivity of the main results to this parameter in Table 5.

These calibrated parameters define the Π1, Π2, and Π3 matrices that appear in

Equation 11. This equation– which I reproduce for the reader’s convenience below– can be

used to infer each period’s productivity shocks.

ωAt+1 = (Π3)−1 ∆ logQt+1 − (Π3)−1 Π1∆ logQt − (Π3)−1 Π2ω
A
t .

I apply two procedures to recover estimates of the ωAs. First, following the approach

of Foerster, Sarte, and Watson (2011), I initialize the first-period productivity shocks at 0,

ω0 = 0, and then iteratively apply Equation 11. This procedure is infeasible for certain sets

of parameter values. For particular parameter configurations, some eigenvalues of (Π3)−1 Π2

are greater than 1 in absolute value. In this case, data on output changes alone cannot fully

identify the productivity shocks.23 A second issue arises, as some of the eigenvalues of Π3

continuously pass from positive to negative values (or vice versa) as the chosen calibrated

Jorgenson, Gollop, and Fraumeni (1987) provide an extensive description of this dataset.
21When εQ = 1, the intermediate input cost share and µJ are equal to one another. Alternatively, when

intermediate inputs are gross complements or gross substitutes to other factors of production, the model-
predicted cost share will also depend on the relative prices of the intermediate input bundle and the price of
the other factors of production.
22In Online Appendix E, I examine the sensitivity of Section 4.2’s results to using 1972, instead of 1997,

as the year to which the steady-state allocation is calibrated.
23For parameter combinations for which at least one eigenvalue of (Π3)

−1
Π2 is greater than 1 in absolute

value, the "poor man’s invertibility condition" in Fernández-Villaverde et al. (2007) is violated.
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parameters are continuously modified.24 As a result, the smallest eigenvalue of Π3 is close to

zero for certain combinations of the calibrated parameters. When either of these two issues

arise, as a second approach, I treat the initial productivity shocks as an unknown state, and

apply the Kalman filter, using the output data in each period to iteratively produce estimates

of each date’s productivity innovation. In the parameter configurations for which the largest

eigenvalue of (Π3)−1 Π2 is less than 1, and the smallest eigenvalue of Π3 is suffi ciently large,

the two approaches produce the same estimates of the productivity shocks.

4.2 Results

With the estimates of ω in hand, I present two measures of the importance of sectoral

shocks in shaping aggregate volatility. To compute the first measure, I perform factor analysis

to extract the (single) common component of the ωAs. Then, with the covariance matrices of

the industry-specific and common productivity shocks in hand, I recover the model-implied

covariance matrices for industries’value added that result only from sector-specific shocks

(call this Σind) or from both sector-specific and common shocks (call this Σall).25 With v̄

denoting the N -dimensioinal vector that contains each industry’s value added share, the

fraction of aggregate output volatility that is explained by the independent component of

industries’productivity shocks is given by:

R2 (sectoral shocks) =
v̄′Σindv̄

v̄′Σallv̄
. (17)

The second measure of the relative importance of the common shocks is the average

sample correlation of the productivity shocks,

ρ̄ (ω) =
N∑
I=1

N∑
J=1

correlation (ωi, ωj) . (18)

These two measures were also used by Foerster, Sarte, and Watson (2011) to summarize

the importance of sectoral shocks.

Figure 3 displays these two summary measures for different values of εM and εQ.

According to the left panel of this figure, when εD, εM , and εQ are all equal to 1– as is the

case in almost all previous analyses of multisector real business cycle models– sector-specific

24To give an example, when εD, εM , and εQ equal 0.15, 0.25, and 1, and applying all of the other choices
described in this subsection, the smallest eigenvalue of Π3 is 0.036. Then, decreasing εM from 0.25 to 0.2
yields a minimum eigenvalue of Π3 equal to −0.006. For εM near 0.2, then, the model filter given by Equation
11 will yield unreliable estimates of the ωAt .
25Online Appendix F.5 explains the calculations behind Σind and Σall.
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shocks account for 21 percent of aggregate volatility.26 For these same values of εD, εM , and

εQ, the average correlation of the productivity shocks is 0.19.

A lower calibrated value for the elasticity of substitution among intermediate inputs

yields estimates for industries’productivity shocks that are less correlated with one another.

This relationship, which was the main takeaway of the simple example given in Section 2.4,

is depicted in the left panel of Figure 3. With εM and εD as 1
10
and 1, respectively, the filter

results in productivity shocks that have an average correlation of 0.06. Put differently, the

correlations among industries’output growth rates could arise either through productivity

shocks that are relatively correlated and goods that have relatively high levels of substi-

tutability, or through nearly independent productivity shocks and complementarity across

the goods that industries produce.

With lower estimates of the correlation among productivity shocks, the common

component of these shocks will account for a smaller fraction of aggregate volatility. Indeed,

for εD = 1 and εQ = 1, more than half of aggregate volatility is due to industry-specific shocks

so long as εM ≤ 0.2; see the left panel of Figure 3. With our benchmark configuration–

(εD, εM , εQ) equal to (1, 1
10
, 1)– 83 percent of the variation of aggregate output is due to

sectoral shocks. The right panel of this figure illustrates that R2 (sectoral shocks) is relatively

unresponsive to the chosen value of εQ. This, too, accords with the example in Section 2.4.

With εM = 1 and εD = 1, the fraction of variation explained by industry-specific TFP shocks

is between 13 and 30 percent for εQ ∈ [0.15, 1.45]. In sum, within the range of elasticities that

I have estimated in Section 3, complementarities among intermediate inputs are important

for assessing the role of aggregate fluctuations, but the elasticity of substitution between

value added and intermediate inputs is not.

26Foerster, Sarte, and Watson (2011) also perform a factor analysis on industries’productivity shocks.
They compute the fraction of industrial production growth that is due to the first two factors. The remaining
variation can be considered equivalent to the industry-specific productivity shocks in the current paper. The
two common factors explain 80 percent of the variation in overall industrial production growth in the first
third of the sample (1972 to 1983) and 50 percent in the latter two-thirds (1984 to 2007). Averaging over
these periods, sectoral shocks contribute roughly 40 percent of industrial production volatility.
There are a few potential explanations for why my figures may differ from those in Foerster, Sarte,

and Watson (2011). One important difference is that the Foerster, Sarte, and Watson (2011) analysis is
restricted to the goods-producing sectors of the economy, while I study the entire private economy; Ando
(2014) explores the implications of this difference in coverage on the estimated contribution of industry-
specific shocks. Other differences include a difference in sample period (1960 to 2013 in the current paper,
compared to 1972 to 2008 in Foerster, Sarte, and Watson 2011), and period length (one quarter in Foerster,
Sarte, and Watson 2011 versus one year, here). I show in the Online Appendix that excluding the Great
Recession somewhat increases the assessed role of industry-specific shocks: When εD = εM = εQ = 1,
R2 (sectoral shocks) is 32 percent without the Great Recession, instead of 21 percent when the whole sample
period is included. Decreasing the period length would– on the other hand, with εM = 1 and εD = 1– have
little effect on the relative importance of sectoral shocks; see the fourth and fifth columns of Online Appendix
Table 15.
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Figure 3: R2(sectoral shocks) and ρ̄(ω) for different values of εM and εQ .
Notes: In the left panel, εQ = 1; in the right panel, εM = 1; in both panels εD = 1. Hollow circles denote
figures that result from the model filter, with ω0 fixed at 0, iteratively applying Equation 11. "+" signs
denote the figures that result from the Kalman filter.

Table 2 expands on these results. In this table, I compute the fraction of variation

explained by sectoral shocks for different εD, εM , and εQ combinations. As in Figure 3,

fixing a unit elasticity of substitution across intermediate inputs results in relatively high

correlations among filtered productivity shocks, and a low estimated importance for industry-

specific shocks. Even with improbably high values for εD, industry-specific shocks account

for at least two-fifths of aggregate output volatility using Section 3’s estimate of εM .

Next, I examine whether the choice of elasticities has implications for individual

historical episodes. Figure 4 presents historical decompositions for two choices of εM . In

both panels, εD = εQ = 1. In the left panel, I set εM = 1; and, in the right, εM = 1
10
. With

relatively high elasticities of substitution across inputs, each and every recession between

1960 and the present day is explained almost exclusively by the common shocks. The sole

partial exception is the relatively mild 2001 recession. In 2001 and 2002, Non-Electrical

Machinery, Instruments, F.I.R.E. (Finance, Insurance, and Real Estate), and Electric/Gas

Utilities– together accounting for GDP growth rates that were 2.0 percentage points below

trend.

Table 3, along with the right panel of Figure 4, presents historical decomposi-

tions, now allowing for complementarities across intermediate inputs. Here, industry-specific

shocks are a primary driver, accounting for a larger fraction of most, but certainly not all

of, recent recessions and booms. According to the model-inferred productivity shocks, the

1974-75 and, especially, the early 1980s recessions were driven to a large extent by com-

mon shocks.27 At the same time, the late 90s expansion and the 2008-09 recession are each

27While the common factor played a large role in the 1980s recessions, so too did the Motor Vehicles
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εM , εD, εQ R2(sectoral shocks) ρ̄ (ω)
1, 1, 1 0.21kf 0.19kf

1, 1, 4
5

0.19kf 0.21kf
1
10
, 3

5
, 1 0.98kf 0.04kf

1
10
, 4

5
, 1 0.99kf 0.04kf

1
10
, 1, 1 0.83 0.06

1
10
, 6

5
, 1 0.63 0.07

1
10
, 7

5
, 1 0.56 0.08

1
10
, 8

5
, 1 0.49 0.10

1
10
, 9

5
, 1 0.43 0.11

Table 2: Robustness checks: R2(sectoral shocks) and ρ̄(ω) for different values of εD, εM , and
εQ.
Notes: A "kf" indicates the use of the Kalman filter, as opposed to direct applications of Equation 11 to
infer the ω productivity shocks.
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Figure 4: Historical decompositions.
Notes: The figure presents the percentage point change in each year’s aggregate output (relative to trend)
due to industry-specific and common shocks. In the left panel εD, εM , and εQ are all equal to 1. In the right
panel, εM = 0.1, εD = 1, and εQ = 1.
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1974-75 1980-82
Other Services -1.2% Other Services -1.4%
Construction -1.0% Construction -0.7%
Government 0.4% Motor Vehicles -0.5%
Motor Vehicles -0.3% Warehousing -0.4%
Warehousing -0.3% Wholesale & Retail -0.3%
Common Factor -1.7% Common Factor -4.9%
Total Change -6.9% Total Change -10.2%

1996-2000 2008-09
Other Services 1.7% Other Services -2.1%
Instruments 0.9% Wholesale/Retail -1.8%
F.I.R.E. 0.9% F.I.R.E. -1.1%
Construction 0.8% Construction -1.0%
Wholesale & Retail 0.4% Motor Vehicles -0.6%
Common Factor -1.6% Common Factor -1.4%
Total Change 6.8% Total Change -15.7%

Table 3: Historical decompositions, using εD = 1, εM = 1
10
, and εQ = 1.

Notes: For four points in the sample, I report the five industries with the largest contributions to changes
in aggregate ouput, the contribution of the common productivity shock, and the aggregate change in GDP,
relative to trend.

more closely linked with industry-specific events. Instruments (essentially Computer and

Electronic Products) and F.I.R.E. had an outsize role in the 1996-2000 expansion, while

Wholesale/Retail, Construction, Motor Vehicles, and F.I.R.E. appear to have had a large

role in the most recent recession. (Other Services, due to its large gross output share, appears

as an important industry in most periods.) These model-inferred productivity shocks align

with contemporaneous historical accounts.28

4.3 Sensitivity analysis

In Table 4, I examine the sensitivity of the assessed role of industry-specific shocks to the

specification of productivity shocks, the industry classification scheme, and the calibration

of industries’cost shares. In Online Appendix F, I specify and characterize a model with

labor-augmenting productivity shocks. The first column reiterates the benchmark estimates

industry, especially in the first of the contractions: According to the model’s historical decomposition,
Motor Vehicles accounted for a 0.8 percent drop in aggregate output in 1979 and 1980.
28Related to the early 80s recession, Friedlaender, Winston, and Wang (1983) characterize the auto in-

dustry as "a state in flux. Not only has the Chrysler Corporation been perilously close to bankruptcy, but
Ford and General Motors have suffered unprecedented losses in recent years." (pp. 1-2) Regarding the
1996-2000 expansion, Jorgenson and Stiroh (2000) analyze the role of information-technology-producing and
consuming industries as a source of productivity acceleration during this period. And, finally, regarding the
latest recession, Goolsbee and Krueger (2015) and Boldrin et al. (2016), respectively, chronicle distresses in
Motor Vehicles and Construction.
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with TFP shocks; the second column applies labor-augmenting productivity shocks. With

εQ < 1, sectoral shocks contribute a larger fraction to aggregate volatility when productivity

is assumed to be labor augmenting. In the third column, I establish that the results of

Figure 3 are qualitatively robust to an nine-industry partition of the economy.29 In the

fourth column, I use data from 1972 (instead of 1997, as in the benchmark calculations) to

infer the steady-state relevant parameters ΓMIJ , µJ , αJ , and ξJ .
30

For the fifth column, in the data generating process, I replace factor-neutral produc-

tivity shocks in the government industry with government demand shocks (Online Appendix

F.8 spells out the solution of the model filter with demand shocks; see in particular Equation

73). For all other industries, I retain TFP shocks instead of demand shocks. The rationale

behind this robustness check stems from the application of military spending shocks as a

source of identifying variation for εM and εQ in Section 3. Up to now, our model filter

has precluded these types of shocks. So, the final column of Table 4 checks whether the

misspecification which comes about because of the omission of military spending shocks is

quantitatively important. It is not.

Table 5 presents the relative importance of sectoral shocks for various values of εX
and εLS. In the specifications in which εM and εD both equal 1, industry-specific shocks

contribute between 18 and 23 percent of aggregate volatility. In contrast, so long as εM = 1
10
,

industry-specific shocks account for at least half of GDP volatility with εD ∈
{

2
3
, 1, 4

3

}
.

As a third set of robustness checks, I examine the contribution of sectoral shocks to

aggregate fluctuations in different countries. For this analysis, I employ data from the EU-

KLEMS database, which describes industries’output growth rates for a range of developed

countries between 1970 and 2007 (see Online Appendix C for a description of the dataset).

As I estimate in Online Appendix D, industries’input choices and input prices, using the

World Input Output Tables, suggest the elasticity of substitution among intermediate inputs

may be higher for these six countries than are in Table 1, while the elasticity of substitution

between intermediate inputs and value added may be lower. For this reason, in Table 6,

I choose a somewhat higher value of εM , 1
3
instead of 1

10
. As with the U.S. data, correla-

tions among productivity shocks tend to be lower, and the assessed role of industry-specific

shocks are higher, in specifications with lower values of the preference and production elastic-

29These industries are primary inputs (industries 1 to 3, according to Table 7), Construction (industry 4),
Non-Durable Goods (industries 5 to 7 and 10 to 14), Durable Goods (industries 8, 9, and 15 to 23), Transport
and Communications (industries 24 to 26), Wholesale and Retail (industry 27), F.I.R.E. (industry 28),
Personal and Business Services (industry 29), and Government (industry 30). While it would be interesting to
test the sensitivity of these results to a finer industry classification scheme, the necessary data are unavailable.
30The Capital Flows data necessary to construct ΓXIJ are unavailable for 1972. For this reason, I use the

1997 Capital Flows Table to infer the ΓXIJ for the robustness check corresponding to the penultimate column
of Table 4.
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Benchmark
Labor-Aug.
Productivity

9-Industry
Classification

Use 1972
IO Table

Government
Dem. Shocks

R2 (sectoral shocks)
(εM , εD, εQ) = (1, 1, 1) 0.21kf 0.21kf 0.26 0.18kf 0.22kf

(εM , εD, εQ) =
(
1, 1, 4

5

)
0.19kf 0.22kf 0.23 0.16kf 0.20kf

(εM , εD, εQ) =
(

1
10
, 1, 4

5

)
0.81 0.93 0.85kf 0.98 0.81

(εM , εD,εQ) =
(

1
10
, 2

3
, 1
)

0.99kf 0.99kf 0.95 0.98kf 0.99kf

(εM , εD,εQ) =
(

1
10
, 1, 1

)
0.83 0.83 0.82 1.00 0.83

(εM , εD,εQ) =
(

1
10
, 4

3
, 1
)

0.59 0.59 0.58 1.00 0.58
ρ̄ (ω)
(εM , εD, εQ) = (1, 1, 1) 0.19kf 0.19kf 0.26 0.17kf 0.19kf

(εM , εD, εQ) =
(
1, 1, 4

5

)
0.21kf 0.19kf 0.29 0.19kf 0.21kf

(εM , εD, εQ) =
(

1
10
, 1, 4

5

)
0.06 0.07 0.15kf 0.05 0.06

(εM , εD,εQ) =
(

1
10
, 2

3
, 1
)

0.04kf 0.04kf 0.11 0.01kf 0.04kf

(εM , εD,εQ) =
(

1
10
, 1, 1

)
0.06 0.06 0.13 0.08 0.06

(εM , εD,εQ) =
(

1
10
, 4

3
, 1
)

0.08 0.08 0.18 0.04 0.08

Table 4: Robustness checks: R2(sectoral shocks) and ρ̄(ω) for different values of εD, εM , and
εQ.
Notes: A "kf" indicates the usage of the Kalman filter to infer the ω productivity shocks.

εX 1 1 1 1 3
5

4
5

6
5

εLS 2 1
2

1 4 2 2 2
R2(sectoral shocks)
(εM , εD) = (1, 1) 0.21kf 0.18kf 0.20kf 0.23kf 0.23kf 0.22kf 0.21kf

(εM , εD) =
(

1
10
, 2

3

)
0.99kf 0.99kf 0.99kf 0.99kf 0.96kf 0.98kf 1.00kf

(εM , εD) =
(

1
10
, 1
)

0.83 0.78 0.81 0.92 0.97 0.86 0.81
(εM , εD) =

(
1
10
, 4

3

)
0.59 0.51 0.55 0.62 0.65 0.62 0.56

ρ̄ (ω)
(εM , εD) = (1, 1) 0.19kf 0.22kf 0.21kf 0.18kf 0.18kf 0.19kf 0.20kf

(εM , εD) =
(

1
10
, 2

3

)
0.04kf 0.04kf 0.04kf 0.04kf 0.03kf 0.04kf 0.04kf

(εM , εD) =
(

1
10
, 1
)

0.06 0.06 0.06 0.08 0.05 0.05 0.06
(εM , εD) =

(
1
10
, 4

3

)
0.08 0.09 0.08 0.07 0.07 0.07 0.08

Table 5: Robustness checks: R2(sectoral shocks) and ρ̄(ω) for different values of εD and εM .
Notes: Throughout the table, εQ = 1. A "kf" indicates the usage of the Kalman filter, as opposed to direct
applications of Equation 11, to infer the ω productivity shocks.
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Country Denmark Spain France Italy Japan Netherlands
R2 (sectoral shocks)
(εM , εD) = (1, 1) 0.63kf 0.87kf 0.80 0.47 0.07 0.44
(εM , εD) =

(
1
3
, 2

3

)
0.87 1.00 1.00 0.89 0.61 0.81

(εM , εD) =
(

1
3
, 1
)

0.80 0.98kf 1.00 0.84 0.30 0.72
(εM , εD) =

(
1
3
, 4

3

)
0.76kf 0.96kf 1.00 0.79 0.79 0.64

ρ̄ (ω)
(εM , εD) = (1, 1) 0.08kf 0.08kf 0.10 0.13 0.34 0.11
(εM , εD) =

(
1
3
, 2

3

)
0.02 0.02 0.05 0.06 0.07 0.03

(εM , εD) =
(

1
3
, 1
)

0.02 0.04kf 0.09 0.12 0.17 0.05
(εM , εD) =

(
1
3
, 4

3

)
0.04kf 0.05kf 0.13 0.17 0.07 0.07

Table 6: Robustness checks: R2(sectoral shocks) and ρ̄(ω) for different values of εD and εM .
Notes: Throughout the table, εQ = 1. A "kf" indicates the usage of the Kalman filter, as opposed to direct
application of Equation 11, to infer the ω productivity shocks.

ities of substitution. For five of these six foreign countries, the sole exception being Japan,

industry-specific productivity shocks account for at least half of aggregate volatility with

εM = 1
3
.

In Online Appendix E, I demonstrate that the benchmark results are robust to i)

the de-trending method, ii) the period length, iii) censoring outlier observations, iv) looking

at different parts of the sample separately (excluding the Great Recession, or looking at

the first half and second half of the sample separately), and v) modeling the durability of

consumption goods.

5 Conclusion

In the short run, industries have limited ability to substitute across their inputs. This

paper extends a standard multi-industry real business cycle model to explore the role of

limited substitutability on the assessed role of sectoral shocks. A worked out example of

this elaborate model indicates that observed relationships among industries’output growth

rates could either be rationalized with high elasticities of substitution in production (or

preferences) along with correlated shocks, or with low elasticities and uncorrelated shocks.

Using data on industries’input choices and their input prices, I estimate that production

elasticities of are, on balance, small. As a result, I find that sectoral shocks are more im-

portant than previously thought. Whereas previous assessments of multisector real business

cycle models– based on unitary elasticities of substitution across inputs and consumption

products– have concluded that industry-specific shocks account for less than half of aggre-

gate volatility, the current paper indicates that sectoral shocks are the primary source of
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GDP fluctuations.

A Details of the U.S. data

This section clarifies the sample construction and defines the variables used to estimate

the model’s elasticities of substitution. The main data sources are the 1997 to 2013 "Use"

tables and the 1997 "Make" and Capital Flows tables, all from the Bureau of Economic

Analysis; and Dale Jorgenson’s KLEMS dataset.

Table 7 characterizes the way in which I classify industries. The NAICS codes refer

to those in the Annual IO Tables. The third through fifth columns of Table 7 give the

cost shares of capital, labor, and intermediate inputs. These are computed from the BEA

GDP by Industry dataset. The intermediate input cost share is computed as the ratio of

intermediate input expenditures relative to total gross output. The labor share is the ratio

of labor compensation to total gross output. The remainder defines the capital cost share.

The final column of Table 7 gives the consumption expenditure share of each industry. The

consumption expenditures are taken from the BEA 1997 Input-Output Table, as sales to

the following industry codes: F010 (personal consumption expenditures), F02R (residential

private fixed investment), and F040 (exports). To compute consumption expenditures by the

government sector, I combine F06C (Federal national defense: Consumption expenditures),

F07C (Federal national nondefense: Consumption expenditures), and F10C (State and local:

Consumption expenditures). With the aim of improving the numerical performance of the

model filter, in my calibrations of ξ, I bound the preference weights, from below, at 0.006.

Section 3’s analysis requires information on purchases across industries, the prices

of each industry’s good, and the prices of each industry’s intermediate input bundle. For

each year between 1997 and 2013, the Annual IO Tables contain information on the value of

commodities that are used by different industries. The output price of each industry is taken

from the BEA GDP by Industry dataset, using the Fisher ideal price index to aggregate up

to the classification in Table 7. To compute each industry’s intermediate input price, I follow

a similar procedure: For each downstream industry, I require information on changes in its

intermediate input bundle’s price, for each year (this variable appears on the right-hand side

of Equation 13). I use the Fisher ideal price index to compute change in the intermediate

input prices:

∆ logP in
t+1,J =

30∑
I=1

PtIMt,I→J + Pt+1,IMt+1,I→J∑30
I′=1 PtI′Mt,I′→J + Pt+1,I′Mt+1,I′→J

·∆ logPt+1,I ,
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# Name NAICS Capital Labor
Intermediate
Inputs

Consumption

1 Agriculture, Forestry 11 0.32 0.10 0.58 0.008
2 Mining 212 0.23 0.25 0.52 0.001
3 Oil & Gas Extraction 211, 213 0.40 0.18 0.42 0.000
4 Construction 23 0.16 0.32 0.52 0.036
5 Food & Kindred Products 311, 312 0.14 0.12 0.74 0.043
6 Textile Mill Products 313, 314 0.08 0.23 0.69 0.003
7 Apparel, Leather 315, 316 0.09 0.22 0.69 0.017
8 Lumber 321 0.09 0.22 0.69 0.002
9 Furniture & Fixtures 337 0.13 0.31 0.56 0.004
10 Paper & Allied Products 322 0.16 0.21 0.63 0.003
11 Printing & Publishing 323, 511 0.18 0.29 0.53 0.009
12 Chemicals 325 0.27 0.16 0.58 0.020
13 Petroleum Refining 324 0.21 0.06 0.73 0.009
14 Rubber & Plastics 326 0.15 0.22 0.63 0.004
15 Non-Metallic Minerals 327 0.21 0.26 0.53 0.001
16 Primary Metals 331 0.09 0.19 0.71 0.002
17 Fabric. Metal Products 332 0.16 0.29 0.54 0.003
18 Non-Electrical Machinery 333 0.11 0.27 0.62 0.009
19 Electrical Machinery 335 0.18 0.24 0.58 0.005
20 Motor Vehicles 3361-3363 0.11 0.15 0.74 0.024
21 Other Transport. Equip. 3364-3369 0.10 0.30 0.60 0.008
22 Instruments 334 0.19 0.24 0.56 0.021
23 Misc. Manufacturing 339 0.21 0.32 0.47 0.009
24 Warehousing 48, 49 0.18 0.33 0.49 0.024
25 Communications 512, 513, 514 0.34 0.22 0.44 0.021
26 Electric/Gas Utilities 22 0.51 0.17 0.32 0.019
27 Wholesale & Retail 42, 44, 45 0.32 0.38 0.30 0.117
28 F.I.R.E. 52-53, HS, OR 0.51 0.15 0.33 0.170
29 Other Services 54-56, 60-89 0.18 0.43 0.38 0.250
30 Government G 0.15 0.54 0.31 0.159

Table 7: Industry definitions, factor shares, and preference weights.
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where, as in Section 2, Mt,I→J represents the physical units of intermediate inputs from

industry I to industry J , and PtI denotes the unit price of industry I’s output. For each

downstream industry, J , I compute the change in its intermediate input price– between years

t and t+ 1– as the weighted average in the changes in the prices of the supplying industries,

I, with the weights set at the year t and t+ 1 share of J’s intermediate input purchases that

come from industry I.

To construct ΓM and ΓK , I use data from the 1997 Input Output Table and Capital

Flows Table. I make two adjustments to the 1997 Capital Flows Table when producing ΓK .

First, government investment is not measured in the Capital Flows Table. As a result, I need

to apply information from the Input Output Table, which does contain sales to the govern-

ment investment industry. These are measured as sales to the following industries: F06S,

F06E, and F06N (Investment in Federal Defense); F07S, F07E, and F07N (Investment in

Federal Nondefense); F10S, F10E, and F10N (Investment in State and Local Government).

Second, ones needs to account for maintenance and repair expenditures, which are not in-

cluded in the Capital Flows Table. As McGrattan and Schmitz (1999) report, maintenance

expenditures are sizable, potentially accounting for 50 percent of total physical capital in-

vestment. Foerster, Sarte, and Watson (2011) use this finding as motivation for adding to the

diagonal entries of ΓK . I add a 35 percent share to the diagonal entries of ΓK to account for

these maintenance and repair expenditures. This augmentation presumes that capital-good

repairs draw on within-industry resources (e.g., firms that produce a product use their own

inputs to repair their capital equipment).31

For the robustness check on good durability, performed in Online Table 15, the set

of durable goods are those designated as such by Basu, Fernald, and Kimball (2006), plus

the Construction industry: Construction, Lumber, Furniture and Fixtures, Non-Metallic

Minerals, Primary Metals, Fabricated Metal Products, Non-Electrical Machinery, Electrical

Machinery, Motor Vehicles, Other Transportation Equipment, Instruments, and Miscella-

neous Manufacturing.
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B Cross-sectional estimates

In this section, I will apply plant-level input price variation and materials usage to

provide an alternate set of estimates of εQ. To do so, I pursue the following two-part

strategy. For each industry, I estimate how easily individual plants substitute across their

factors of production, by relating plants’materials purchases to their materials prices. Then,

I apply the methods developed in Oberfield and Raval (2015), which allow me to combine

information on a) the plant-level elasticity of substitution, b) the dispersion of materials

cost shares, and c) the elasticity of plant scale to marginal costs so that I can ascertain the

corroborating estimates of εQ.

To preview the main results of this section, the elasticity of substitution for the plant-

level production function is approximately 0.65. Because within-industry variation in mate-

rials expenditure shares is small for each of the ten industries, the industry level production

function’s elasticity of substitution is only somewhat higher, 0.75. Moreover, across the

industries in the sample, the industry-level elasticities of substitution are similar to one

another.

B.1 Data source and sample

The data source, for this section, is the Census of Manufacturers. This dataset contains

plant-level information for each manufacturer in the United States, and is collected once

every five years, in years ending in a "2" or a "7." For certain industries, plants with greater

than five employees are asked to provide information on each of the material inputs that they

consume and each of the products that they produce. Critically, for the empirical analysis of

this section, the Census Bureau elicits information on both the quantities and values of these

inputs and outputs, allowing me to construct plant-level prices. Additionally, the Census

Bureau records a plant identifier, which will allow me to compare the intermediate input

purchases of the same plant across different time periods.

The sample in this section is identical to that which was used in an earlier paper (see

Atalay 2014). The industries are those for which outputs and inputs are relatively homoge-

neous. This choice reflects a desire to, as much as possible, rule out heterogeneous quality as

a source of input or output price variation. The ten industries that comprise the sample are
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Sample Units of Output Material Inputs N
Boxes, Year≤1987 Short Tons Paper/Paperboard (90%) 1820
Boxes, Year≥1992 Square Feet Paper/Paperboard (89%) 646
Ground Coffee 1000 Pounds Green Coffee Beans (80%) 300

Ready-Mix Concrete 1000 Cubic Yards
Cement (53%),

Sand/Gravel (28%)
3708

White Wheat Flour 50-Pound Sacks Wheat (90%) 503
Gasoline 1000 Barrels Crude Petroleum (84%) 692

Milk, Bulk 1000 Pounds
Unprocessed
Whole Milk (88%)

127

Milk, Packaged 1000 Quarts
Unprocessed
Whole Milk (72%)

2099

Raw Cane Sugar Short Tons Sugar Cane (93%) 177

Carded Cotton Yarn 1000 Pounds
Cotton Fibers (80%),
Polyester Tow (10%)

431

Pooled - - 10,503

Table 8: Description of the 10 industries in the sample.
Notes: This table is a duplicate of Table 1 of Atalay (2014). The percentages that appear in the Material
Inputs column are the fraction of materials expenditures that go to each particular material input. The
Material Inputs column shows the inputs that represent greater than 6% of the average plant’s total material
purchases.

corrugated boxes (with the years 1972-1987 and 1992-1997 analyzed separately. The way in

which material inputs are coded, for this industry, differs in the two parts of the sample),

ground coffee, ready-mix concrete, white wheat flour, gasoline, bulk milk, packaged milk, raw

cane sugar, and grey cotton yarn; see Table 8. For additional details regarding the sample,

see Appendix B of Atalay (2014).

B.2 Environment and assumptions

Each industry, I, comprises a set of plants i ∈ I, who combine capital, labor, material
inputs, and purchased services to produce a single product. The production function is

constant-returns to scale; separable between material inputs, N , and other inputs, O; with

constant elasticity of substitution, ηP :

Qit(Kit, Lit, Sit, Nit) =
[
(Ait ·Oit)

ηP−1
ηP + (Bit ·Nit)

ηP−1
ηP

] ηP
ηP−1 , (19)

where Oit = F (Kit, Lit, Sit)

Also by assumption, F exhibits constant returns to scale. Plants are allowed to flexibly

alter their input choices, including capital, each period. Furthermore, the factor prices that
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each plant faces, both for the material input and for the other input aggregate, are constant

in the amount purchased. These assumptions serve a dual purpose. Not only do these

assumptions greatly simplify the estimation of ηP , they also allow me to apply Oberfield and

Raval (2015)’s methodology to estimate εQ from ηP .

Use P oth
it and Pmat

it to denote the factor prices for a unit of the other input aggregate and

the material input, respectively. Let Ait and Bit represent the two plant-level productivity

measures (other-input-augmenting and materials augmenting).

The demand curve faced by each plant, i, has constant elasticity, εD:

Qit = exp{θit} · (Pit)−ηD (20)

In Equation 20, θit represents a plant-year specific demand shifter. The assumption of a

constant elasticity demand curve, while probably counterfactual, is again useful for multiple

reasons. The constant-demand-elasticity assumption allows me to directly apply the Fos-

ter, Haltiwanger, and Syverson (2008) methodology to estimate ηD. Moreover, the same

assumption is invoked by Oberfield and Raval (2015)– whose work I apply, here– in their

aggregation of plant-level to industry level production functions.

The profit-maximizing levels ofNit andOit yield the following expression for the material-

output ratio:

log

[
Nit

Qit

]
= −ηP · log

[
Pmat
it

Pit

]
+ ηP · log

[
ηD − 1

ηD

]
+ (ηP − 1) logBit (21)

This equation will form the basis of the estimation of ηP , a task to which I now turn.

B.3 The micro elasticity of substitution

In this subsection, I estimate the plant-level elasticity of substitution between purchased

inputs and other inputs. The baseline regression that I run is:

nit − qit = −ηP ·
(
pmatit − pit

)
+ εit . (22)

In Equation 22, and throughout the remainder of the section, I use lower-case letters to denote

the logged, de-meaned values of the variable of interest. In other words, ηP is estimated only

using within industry-year variation. To emphasize, both nit and qit refer to the number

of physical units, and not the values, of the material good that plant i purchases and the

output that it produces.

Ordinary least squares results are presented in the first column of Table 9. For most

industries, the estimate of ηP lies between 0.5 and 0.7, with concrete and flour having two
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of the lower estimates and bulk milk and raw cane sugar with two of the higher estimates.

There are at least two concerns regarding the interpretation of ηP– from an OLS esti-

mate of Equation 22– as an estimate of the micro elasticity of substitution. First, to the

extent that the constant elasticity of demand assumption– embodied in Equation 20– is

violated, Equation 22 suffers from omitted variable bias. A positive correlation between

log
[
ηD−1
ηD

]
and (pmatit − pit) will engender a positive bias in ηP . Second, I have assumed that

the materials supply curve that each i faces is flat. It is likely, however, that each plant’s fac-

tor supply curve is upward sloping. This instance of simultaneity bias– whereby a high-Bit

plant pays a high materials price– will also engender a positive bias in ηP
I offer two different approaches to circumvent these problems. Fist, I append plant-level

fixed effects to Equation 22. These fixed effects aim to capture long-run cross-sectional vari-

ation in the conditions in output and factor markets. As Foster, Haltiwanger, and Syverson

(2008, 2016) argue, the factor market conditions that a plant faces are substantially more

persistent than its productivity.

In a second specification, I instrument plants’ output and materials prices with the

prices paid and charged by competitor plants. Specifically, the two instrumental variables,

for pmatit − pit, are a) the year-t average materials price for plants that are within 50 miles of

plant i, and b) the year-t average output price for plants that are within 50 miles of plant

i. The idea behind these instruments is that the price of materials in nearby markets is

correlated with the price that i pays for its material inputs (if, for example, there is spatial

correlation in the abundance of primary inputs used in the production of i’s intermediate

inputs, or if there is a very productive, low marginal-cost supplier nearby), but should not in

any other way affect the propensity for i have exceptionally high or low materials expenditure

shares.32

Results from the two sets of regressions are given in the second and third columns

of Table 9. In the second column, estimates of ηP range from 0.40 to 0.92, with the two

largest estimates corresponding to two of the smaller-sample industries, coffee and sugar.

The pooled estimate of ηP is 0.68.

The instrumental variables are weak for the six smallest samples. For this reason, the IV

specification is performed only on the samples of plants in the corrugated boxes, ready-mix

concrete, packaged milk, and petroleum industries. In the third specification, the parameter

estimates are smaller and much less precisely estimated. The biggest difference is for the

ready-mix concrete industry, for which the estimate of ηP is essentially 0.

32Results from first-stage regressions indicate that these instruments are relevant, at least for the four
largest subsamples: materials prices and output prices are each spatially correlated.
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B.4 The industry-level elasticity of substitution

The previous subsection provided an estimate for the ease with which individual plants

substitute between material inputs and other inputs. This is related to, but distinct from,

how easily an industry substitutes between material inputs and other inputs.

Changes in the scale, across plants, potentially makes the industry-level elasticity of

substitution larger than the corresponding plant-level elasticity. The difference between the

plant-level and industry-level elasticities of substitution depends on a) the heterogeneity of

materials shares, within the industry, and b) how much inputs shift across plants, in response

to a change in relative factor prices.

Given the assumptions, specified in Section B.2, the industry-level elasticity of substi-

tution has a simple expression:33

εQ = χtI · ηD + (1− χtI) · ηP , where (23)

χtI ≡
1

StI (1− StI)︸ ︷︷ ︸
1©

·
∑
i∈I

(
StI −

MitP
in
it

MitP in
it +OitP oth

it

)2

︸ ︷︷ ︸
2©

· MitP
mat
it +OitP

oth
it∑

j∈IMjtPmat
jt +OjtP oth

jt︸ ︷︷ ︸
3©

, and

StI ≡
∑
i∈I

MitP
mat
it

MitPmat
it +OitP oth

it

In words, the industry-level elasticity of substitution is a convex combination of the plant-

level elasticity of substitution and the plant-level elasticity of demand. The demand elasticity

parameterizes how sensitive the scale of the plant is to changes in its marginal cost of

production. Consider, for example, an increase in the price of the material input. The

marginal cost of production will increase more for plants with relatively large materials

cost shares. As a result, low-materials-share plants will produce relatively more of the

total industry output following the increase of the materials price. The elasticity of demand

determines how much less the high-materials-share plants will produce, following the increase

in the materials price.

The scope for this across-plant factor substitution depends on the dispersion of materials

intensities. According to Equation 23, the appropriate measure of the dispersion of materials

intensity is a weighted, normalized variance of the materials cost shares. The fraction of total

industry expenditures incurred by plant i (given in term 3©) is the appropriate weight for
summing over the within-industry deviation in materials cost shares (given in term 2©). The
normalization, given in term 1©, ensures the χtI lies within the unit interval.

What remains, then, is to provide estimates for the normalized variance of materials

33A proof is given in Oberfield and Raval (2015). See Appendix A of that paper.
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shares, χ, and the elasticity of demand, ηD, for the ten industries in my sample.

The normalized variance of materials shares, χ, ranges from 0.019 (for flour) to 0.065

(for sugar).34 Given these low values, the industry elasticity of substitution will closely track

the micro elasticity of substitution. In other words, the estimate of εQ will be, for the most

part, insensitive to the way in which ηD is estimated.

I estimate ηD via the regression defined by the following equation:

qit = φt + φ1 · log INCOMEΥt + ηD · pit + θit (24)

This specification, and the variable definitions, follow Foster, Haltiwanger, and Syverson

(2008). In Equation 24, INCOMEΥt is the aggregate income in establishment i’s market,

Υ, at time t. This variable is included to account for any differences in establishment scale

that may exist between areas of high and low density of economic activity.

A positive relationship between the demand shifter (θit) and output price (pit) poten-

tially induces a downward bias to the OLS estimates of ηD. Like Foster, Haltiwanger, and

Syverson (2008), I instrument pit with the marginal cost of plant i in year t. This instrumen-

tal variable is certainly relevant: plants with lower marginal costs have significantly lower

output prices. Validity of the instrument rests, then, on the orthogonality of marginal costs

and θit. Foster, Haltiwanger, and Syverson (2008) discuss two potential threats to the va-

lidity of the instrument (measurement error in plants’marginal costs, and a selection bias

that induces a negative relationship between demand shocks and marginal costs), propose

robustness checks to assess the salience of these two threats, and find that their results are

similar across the different robustness checks.

The results of these regressions are presented in the fourth column of Table 9.35 In each

of the ten industries, the estimate for elasticity of demand is greater than 1, reassuringly

indicating that plants are pricing on the elastic portion of their demand curve.

Combining the estimates of ηP , ηD, and χ yields the object of interest: the industry-level

elasticity of substitution, εQ. Since there are three sets of estimates of ηP , there are also three

sets of estimates of εQ. For the estimates corresponding to the fixed effects regression, εQ
is 0.75 for the pooled sample.36 Except for sugar and coffee (two of the smallest industries,

34To give the reader some idea, the (unnormalized) standard deviations of materials shares range from 4.3
percent to 11.4 percent across the ten industries, again lowest for bulk milk and highest for raw cane sugar.
35The results reported here are slightly different from those in Foster, Haltiwanger, and Syverson (2008):

I restrict my sample to those plants for which I can observe materials prices, while Foster, Haltiwanger, and
Syverson make no such restriction. Their estimate of ηD is lower for petroleum (η̂D = 1.42) and higher for
ready-mix concrete (η̂D = 5.93). Again, because the normalized variances of materials shares are so small,
these differences have will have only a moderate impact on the estimates of εQ.
36One dissimilarity between the analysis of the current section and that of Sections 2 to 4 concerns the

industry definitions that I have used: to credibly compare the material purchases and material prices, I
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representing only 5 percent of the sample), the industry-level elasticities of substitution range

between 0.46 (for gasoline) and 0.82 (for corrugated boxes). For seven of the ten industries

in the sample (with the exceptions being the smallest three subsamples), the data would

reject a null hypothesis of εQ = 1.

The estimates of εQ that correspond to the instrumental-variables-based estimate of ηP
are smaller, though again much less precisely estimated. The point estimate for εQ is 0.1 for

the ready-mix concrete subsample, and is somewhat higher (between 0.40 and 0.55) for the

other three industries.

In summation, micro data on plants’materials usage patterns indicate that material

inputs are gross complements to other factors of production. For most specifications (all

except for the IV specification for the ready-mix concrete subsample, or the fixed effects

specification for the smaller industries), the data indicate that εQ ranges between 0.4 and

0.8.

C Details of the data from outside the U.S.

The data from other countries come from two sources. The flows of intermediate inputs,

flows of goods output into final consumption expenditures, and industry-level prices are

collected in the World Input Output Tables (WIOT). The data on industries’output are

compiled in the European Union KLEMSGrowth and Productivity Accounts (EUKLEMS).37

The EUKLEMS data are reviewed, in detail, in Timmer et al. (2007) and O’Mahony and

Timmer (2009). Flows of investment goods across industries are not available for other

countries. For this set of variables, I imputed values using data from the U.S.

Of the thirty countries that are included in the EUKLEMS dataset, I restrict my analysis

to six: Denmark, France, Italy, Japan, the Netherlands, and Spain. Many of the countries

that I discarded are Eastern Bloc countries– such as Latvia, Lithuania, and Poland– for

which pre-1990 data are unavailable. There are other countries, such as England, for which–

for at least half of the sample period– intermediate input purchases and gross output are

imputed from value added data. Data from all countries span 1970 to 2007, with the excep-

define products narrowly in this section. At the same time, limitations of the dataset necessitate a rather
coarse industry definition in Sections 2 to 4. Going from a narrow to coarse industry classification should
not systematically alter the estimates of ηP or ηD, but will cause an increase in the estimate for the within-
industry variation in materials cost shares, χ. For this reason, a coarser industry classification would, in
turn, lead to a larger estimate of εQ. As it turns out, the overall estimate of εQ is not particularly sensitive
to the value of χ: Doubling the value of χ increases the OLS-based estimate of εQ from 0.61 to 0.67, and
increases the fixed-effects-based estimate from 0.75 to 0.80.
37The data can be downloaded at http://www.euklems.net/ . In this section I use the ISIC Rev. 3 edition

of the data.
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# Name Denmark France Italy Japan Netherlands Spain U.S. Ind.
1 Agriculture 0.027 0.029 0.022 0.010 0.036 0.039 1
2 Mining 0.007 0.002 0.001 0.000 0.010 0.001 2,3
3 Food and Tobacco 0.103 0.061 0.065 0.069 0.098 0.085 5
4 Textiles and Leather 0.018 0.025 0.069 0.019 0.020 0.039 6, 7
5 Wood Products 0.007 0.002 0.003 0.002 0.004 0.002 8, 9
6 Paper and Publishing 0.017 0.014 0.015 0.002 0.022 0.015 10, 11
7 Petroleum Refining 0.012 0.011 0.013 0.010 0.024 0.016 13
8 Chemicals 0.040 0.047 0.037 0.016 0.073 0.038 12
9 Rubber and Plastics 0.013 0.009 0.012 0.005 0.012 0.008 14
10 Stone, Clay, and Glass 0.007 0.005 0.010 0.002 0.006 0.008 15
11 Metal products 0.021 0.018 0.024 0.015 0.029 0.020 16, 17
12 Non-Electrical Machinery 0.047 0.024 0.048 0.028 0.026 0.018 18
13 Electrical Machinery 0.038 0.039 0.027 0.042 0.040 0.024 19, 22
14 Transportation Equipment 0.026 0.065 0.040 0.040 0.034 0.074 20, 21
15 Misc. Manufacturing 0.024 0.013 0.024 0.007 0.018 0.020 23
16 Utilities 0.021 0.037 0.016 0.017 0.017 0.015 26
17 Construction 0.010 0.006 0.008 0.000 0.006 0.006 4
18 Wholesale and Retail 0.073 0.078 0.109 0.137 0.070 0.075 27
19 Hotels and Restaurants 0.020 0.031 0.051 0.048 0.021 0.106 28
20 Transport and Warehousing 0.060 0.038 0.048 0.043 0.062 0.037 24
21 Communications 0.010 0.010 0.012 0.014 0.012 0.012 25
22 Finance and Insurance 0.021 0.032 0.026 0.032 0.032 0.015 28
23 Real Estate 0.086 0.100 0.072 0.127 0.060 0.069 28
24 Business Services 0.015 0.030 0.018 0.009 0.052 0.017 29
25 Government 0.071 0.096 0.079 0.105 0.079 0.076 30
26 Education 0.058 0.056 0.053 0.060 0.035 0.052 29
27 Health and Social Work 0.111 0.087 0.065 0.082 0.070 0.066 29
28 Other Personal Services 0.038 0.035 0.032 0.058 0.030 0.048 29

Table 10: Industry definitions and consumption shares in the EUKLEMS dataset.
Notes: The final column shows the correspondence between the EUKLEMS industry definitions and the
industry definitions for the U.S. data.
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Figure 5: Relationship between changes in intermediate input purchases and intermediate
input prices.
Notes: For each downstream industry, J , I take the most important (highest average intermediate input

expenditure share) supplier industry, I. The x-axis of each panel gives ∆log
(
PtI
P intJ

)
. The y-axis gives, for

each industry, changes in the fraction of industry J’s intermediate input expenditures that go to industry I.
I compute and plot a local polynomial curve of this relationship, for each industry.

tion of Japan, whose sample begins in 1973.

The industry definitions in the EUKLEMS database differ from those in the U.S. dataset.

Service industries are more finely defined. For example, F.I.R.E. is now broken out between

finance and insurance on the one hand and real estate on the other. Mining and manufac-

turing industries are more coarse. Table 10 describes the EUKLEMS industry classification,

in addition to the consumption shares of each of the 28 industries. The main takeaway from

this table is that the six countries are broadly similar in their industry compositions.

D Sensitivity analysis related to Section 3

D.1 Additional Plots

Figure 5 depicts the smoothed relationship between ∆ log
(
PtIMt,I→J
P intJMtJ

)
and ∆ log

(
PtI
P intJ

)
,

for each industry J and J’s most important supplier industry. The takeaway from this figure
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Figure 6: Relationship between changes in purchases of the intermediate input bundle and
the relative price of the intermediate input bundle.
Notes: For each industry, J , I plot the relationship between changes in its cost share of intermediate inputs
on the y-axis, and changes in the difference between the price of the intermediate input bundle and the
marginal cost of production on the x-axis. I compute and plot a local polynomial curve of this relationship
for each industry.

is that the relationships depicted in Figure 1 are broadly consistent with of the relationships

within all 30 industries.

Figure 6 depicts the smoothed relationship between ∆ log
(
P intJMtJ

PtJQtJ

)
and ∆ log

(
P intJ
PtJ

)
.

Here, the relationship between intermediate input cost shares and the price of intermediate

inputs is positive for some industries, negative for others.

D.2 Different samples, changing the period length and industry

classification

In this section, I re-estimate Equation 13 using different samples. First, in Table 11,

I examine whether the estimates of the production elasticities, εQ and εM , differ according

to the industry classification scheme or the period length. In the first four columns, the

economy is broken up into nine industries; in the next four columns, a 67-industry classi-

fication is applied. The main takeaway from this table is that the estimates of εM , as in
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the original specifications, are close to 0, independent of how industries are defined. For

longer period lengths, the estimated elasticity of substitution among intermediate inputs is

somewhat higher; the elasticity of substitution between value added and intermediate inputs

is somewhat lower. The IV results are unreported for this last robustness check, since the

instruments are both weak and lead one to reject the Wu-Hausman test.

Next, in Table 12, I estimate the production elasticities separately for different broad

sectors. The Primary sector consists of the first three industries in Table 7. The Manufactur-

ing sector consists of the Construction and all manufacturing industries, the fourth through

twenty-third industries according to Table 7. The remaining industries are in the Services

sector. Estimates of εM are similar across sectors. Estimates of εQ, though less precisely

estimated, are somewhat larger for the Primary sector and lower for the Services sector.

As a third set of robustness checks, I assess in Table 13 whether the number of upstream

industries used in the sample alters the estimates of εM and εQ. In the benchmark regressions,

in Table 1, the sample included the top ten upstream industries for each downstream industry

J . There are no clear patterns, regarding the relationship between estimates of εQ and εM
and the broadness of the sample.

D.3 Production elasticities of substitution in other countries

In this subsection, I report on results from other countries. I apply data from the World

Input Output Tables, taking data from 1997 to 2011. The industry definitions, similar those

used for the U.S. data, are given in Table 10. In Table 14, I report on regressions that relate

changes in the inputs’cost shares with changes in the prices of individual inputs and prices

of the intermediate input bundles. Unfortunately, for these countries, changes in military

expenditures are not a suffi ciently powerful source of variation to permit an IV regression.

In this table, the slope of the relationship of changes in the intermediate input cost share

on ∆ logP in
tJ − ∆ logPtI is approximately 0.3 for France and between 0.6 and 0.8 for all

other countries. In addition, the slope of the relationship of intermediate input purchases

on ∆ logPtJ −∆ logP in
tJ is 0.10 for Denmark and between 0.4 and 0.8 for all other countries.

While the coeffi cient estimates reported in 14 cannot identify εQ or εM on their own, they

accord with the OLS estimates for the United States.

E Sensitivity analysis related to Section 4

In the first columns of Table 15, I re-estimate the correlations among shocks for different

parts of the sample period. For the most part, the correlations among the ω productivity
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Second stage regression results
εM 0.17 0.13 0.20 0.22 0.16 0.12 -0.06 -0.03 0.29 0.29

(0.05) (0.05) (0.28) (0.27) (0.03) (0.03) (0.22) (0.24) (0.07) (0.07)
εQ 1.08 1.13 0.55 1.19 1.03 1.13 1.03 1.09 0.95 0.95

(0.08) (0.08) (0.55) (0.38) (0.05) (0.05) (0.66) (1.04) (0.12) (0.12)
First stage: Dependent variable is ∆ logP in

tJ −∆ logPtI
military spending -0.56 -0.55 -0.44 -0.37
shocktI (0.06) (0.06) (0.03) (0.03)
military spending 0.62 0.69 0.53 0.76
shocktJ’s suppliers (0.09) (0.12) (0.04) (0.06)
military spending -0.05 -0.06 0.01 -0.02
shocktJ (0.07) (0.07) (0.03) (0.03)
F-statistic 32.29 14.92 88.57 29.78
First stage: Dependent variable is ∆ logPtJ −∆ logP in

tJ

military spending -0.11 0.01 -0.07 -0.05
shocktI (0.04) (0.04) (0.02) (0.02)
military spending -0.18 0.19 -0.09 0.00
shocktJ’s suppliers (0.07) (0.08) (0.03) (0.04)
military spending 0.30 0.27 0.11 0.09
shocktJ (0.05) (0.05) (0.02) (0.02)
F-statistic 17.83 13.36 21.37 26.92
Cragg-Donald
Statistic

15.34i 27.60i 21.37i 8.35

Wu-Hausman
test p-value

0.59 0.90 0.70 0.87

Sample Coarse Industries Fine Industries
Period Length
= 2 Years

Year Fixed
Effects

No Yes No Yes No Yes No Yes No Yes

N 2400 2400 2296 2296 10720 10720 10496 10496 1296 1296

Table 11: Regression results related to Equation 13.
Notes: The overall sample includes pairs of industries J , and, for each industry J , the top ten supplying
industries, I. In the row labeled "Cragg-Donald Statistic", an "i" indicates that the test for a weak instrument
is rejected at the 10 percent threshold. The "military spending shocktJ’s suppliers" term refers to the cost-
weighted average of the "military spending shocktI" term, averaging over industry J’s suppliers.
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Second stage regression results
εM 0.02 -0.38 -0.35 -0.27 -0.27 -0.04 0.26 0.39 0.35

(0.11) (0.36) (0.35) (0.05) (0.28) (0.36) (0.08) (0.48) (0.43)
εQ 1.41 1.44 1.64 1.35 1.55 0.49 0.02 0.93 0.90

(0.10) (0.36) (0.42) (0.09) (1.15) (0.74) (0.15) (0.91) (0.89)
First stage: Dependent variable is ∆ logP in

tJ −∆ logPtI
military spending -1.39 -1.43 -0.58 -0.48 -0.76 -0.77
shocktI (0.20) (0.21) (0.07) (0.08) (0.13) (0.13)
military spending 1.55 -0.06 0.97 1.21 0.92 0.93
shocktJ’s suppliers (0.49) (1.41) (0.11) (0.13) (0.22) (0.26)
military spending -0.09 0.46 -0.25 -0.25 -0.22 -0.26
shocktJ (0.27) (0.52) (0.08) (0.08) (0.27) (0.31)
F-statistic 16.78 4.59 38.36 11.41 13.13 3.20
First stage: Dependent variable is ∆ logPtJ −∆ logP in

tJ

military spending 0.01 0.02 -0.16 0.03 0.03 -0.03
shocktI (0.22) (0.19) (0.04) (0.04) (0.07) (0.06)
military spending -0.59 -3.03 0.12 0.55 -0.46 -0.73
shocktJ’s suppliers (0.52) (1.31) (0.06) (0.07) (0.12) (0.12)
military spending 0.94 1.81 -0.04 -0.03 0.27 0.00
shocktJ (0.29) (0.49) (0.04) (0.04) (0.15) (0.14)
F-statistic 15.36 13.36 7.99 21.98 12.15 26.54
Cragg-Donald
Statistic

15.25i 12.79 6.02 11.42 11.39 12.73

Wu-Hausman
test p-value

0.49 0.50 0.98 0.37 0.53 0.99

Sector Primary Manufacturing Services
Year Fixed Effects No No Yes No No Yes No No Yes
N 480 480 480 3200 3200 3200 1120 912 912

Table 12: Regression results related to Equation 13.
Notes: The overall sample includes pairs of industries I-J that, for each industry J , I include J’s top ten
supplying industries, I. In the row labeled "Cragg-Donald Statistic", an "i" indicates that the test for a weak
instrument is rejected at the 10 percent threshold. The "military spending shocktJ’s suppliers" term refers to
the cost-weighted average of the "military spending shocktI" term, averaging over industry J’s suppliers.
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Second stage regression results
εM -0.14 -0.09 -0.05 -0.06 -0.10 -0.08

(0.23) (0.25) (0.19) (0.19) (0.16) (0.16)
εQ 0.82 0.42 0.73 0.88 0.98 0.88

(0.56) (0.46) (0.45) (0.36) (0.41) (0.33)
First stage: Dependent variable is ∆ logP in

tJ −∆ logPtI
military spending shocktI -0.89 -0.86 -0.86 -0.80 -0.81 -0.74

(0.09) (0.09) (0.07) (0.07) (0.05) (0.06)
military spending 0.82 0.95 1.02 1.22 1.15 1.35
shocktJ’s suppliers (0.13) (0.17) (0.10) (0.13) (0.09) 0.12)
military spending shocktJ 0.11 0.11 -0.12 -0.13 -0.20 -0.22

(0.09) (0.09) (0.07) (0.07) (0.06) 0.06)
F-statistic 41.09 10.84 63.80 15.01 95.92 20.11
First stage: Dependent variable is ∆ logPtJ −∆ logP in

tJ

military spending shocktI -0.17 -0.10 -0.14 -0.03 -0.12 0.02
(0.07) (0.07) (0.05) (0.05) (0.03) 0.03)

military spending -0.28 0.14 -0.29 0.11 -0.30 0.10
shocktJ’s suppliers (0.10) (0.13) (0.07) (0.09) (0.05) 0.07)
military spending shocktJ 0.40 0.36 0.38 0.35 0.38 0.35

(0.07) (0.07) (0.05) (0.05) (0.04) 0.04)
F-statistic 12.38 5.11 22.81 9.80 43.52 18.17
Cragg-Donald Statistic 9.43 13.55i 21.57i 32.33i 42.18i 62.21i

Wu-Hausman test p-value 0.85 0.32 0.56 0.56 0.37 0.16
Year Fixed Effects No Yes No Yes No Yes
Upstream Industries per
downstream industry×year 4 4 8 8 15 15

N 1856 1856 3680 3680 6832 6832

Table 13: Regression results related to Equation 13.
Notes: The overall sample includes pairs of industries J , and, for each industry J , the top two supplying
industries, I in the first four columns, and the top four supplying industries in the final four columns. In the
row labeled "Cragg-Donald Statistic", an "i" indicates that the test for a weak instrument is rejected at the
10 percent threshold. The "military spending shocktJ’s suppliers" term refers to the cost-weighted average of
the "military spending shocktI" term, averaging over industry J’s suppliers.

εM 0.28 0.36 0.70 0.19 0.42 0.30
(0.05) (0.05) (0.05) (0.05) (0.04) (0.04)

εQ 0.11 0.56 0.71 0.81 0.79 0.47
(0.06) (0.05) (0.04) (0.05) (0.04) (0.05)

Year Fixed Effects Yes Yes Yes Yes Yes Yes
N 3920 3920 3920 3920 3920 3920
Country DNK ESP FRA ITA JPN NLD

Table 14: Regression results related to Equation 13.
Notes: This table contains OLS specifications, using ten input-supplying industries per downstream industry.
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Bench
-mark

1960-
1983

1984-
2012

1960-
2007

Period Length
is 2 years

Durable
Goods

R2 (sectoral shocks)
(εM , εD, εQ) = (1, 1, 1) 0.21kf 0.32kf 0.21
(εM , εD, εQ) =

(
1, 1, 4

5

)
0.19kf 0.29kf 0.19

(εM , εD, εQ) =
(

1
10
, 1, 4

5

)
0.81 0.81 0.97kf

(εM , εD,εQ) =
(

1
10
, 2

3
, 1
)

0.99kf 1.00kf 0.91kf

(εM , εD,εQ) =
(

1
10
, 1, 1

)
0.83 0.94 0.98kf

(εM , εD,εQ) =
(

1
10
, 4

3
, 1
)

0.59 0.71 0.92kf

ρ̄ (ω)
(εM , εD, εQ) = (1, 1, 1) 0.19kf 0.19kf 0.19kf 0.17kf 0.18 0.20
(εM , εD, εQ) =

(
1, 1, 4

5

)
0.21kf 0.21kf 0.20kf 0.18kf 0.19 0.22

(εM , εD, εQ) =
(

1
10
, 1, 4

5

)
0.06 0.06 0.09 0.06 0.05kf 0.06kf

(εM , εD,εQ) =
(

1
10
, 2

3
, 1
)

0.04kf 0.03kf 0.04kf 0.03kf 0.04kf 0.05kf

(εM , εD,εQ) =
(

1
10
, 1, 1

)
0.06 0.05 0.07 0.05 0.06kf 0.06kf

(εM , εD,εQ) =
(

1
10
, 4

3
, 1
)

0.08 0.07 0.07 0.07 0.08 0.06kf

Table 15: Robustness checks: R2(sectoral shocks) and ρ̄(ω) for different values of εD, εM ,
and εQ.
Notes: I could not compute R2(sectoral shocks) in the second, third, and fifth columns, as there are fewer
time periods than there are industries in these samples. A "kf" indicates the use of the Kalman filter, as
opposed to direct applications of Equation 11, to infer the ω productivity shocks.

shocks are similar in the first half and the second half of the sample. (Unfortunately, since

there are fewer time periods in either of the two halves of the sample than there are indus-

tries, I cannot compute the first factor of the industries’productivity shocks to assess the

contribution of common productivity shocks to aggregate volatility.) In the fourth column,

I exclude the Great-Recession period from the sample. Here, the assessed role of industry-

specific shocks is somewhat larger. The fifth column applies biennial data. The final column

incorporates good durability, in which I allow for certain industries’outputs to depreciate

over a number of periods. In this column, I set δCJ = 1 for all nondurable industries and

δCJ = 0.4 for durable industries. In this column, sectoral shocks now constitute a larger

fraction of aggregate volatility when εM = 1
10
.38

A final set of robustness check considers the sensitivity of the main results to the

de-trending procedure.39 In the benchmark calculations, I had linearly de-trended each

38These depreciation rates are considerably larger than have been estimated elsewhere by, for example,
Hulten and Wykoff (1981). Unfortunately, applying lower depreciation rates would lead to exceedingly large
eigenvalues of (Π3)

−1
Π2.

39In estimations of dynamic general equilibrium models, the choice of the de-trending procedure is poten-
tially important; see Canova (2014). An alternative– intuitively appealing but unfortunately infeasible– way
to deal with trends would be to include both transitory and permanent shocks in the model. This would obvi-
ate the need to de-trend the data before estimation; the parameters governing the permanent and transitory
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De-trending Method Benchmark None
Hodrick-
Prescott

Linear, Break
in 1983

Linear, Censor
Outliers

R2 (sectoral shocks)
(εM , εD, εQ) = (1, 1, 1) 0.21kf 0.22kf 0.22kf 0.20kf 0.22kf

(εM , εD, εQ) =
(
1, 1, 4

5

)
0.19kf 0.20kf 0.19kf 0.18kf 0.20kf

(εM , εD, εQ) =
(

1
10
, 1, 4

5

)
0.81 0.80 0.70 0.79 0.85

(εM , εD,εQ) =
(

1
10
, 2

3
, 1
)

0.99kf 0.99kf 0.99kf 0.99kf 1.00kf

(εM , εD,εQ) =
(

1
10
, 1, 1

)
0.83 0.83 0.76 0.82 0.77

(εM , εD,εQ) =
(

1
10
, 4

3
, 1
)

0.59 0.58 0.53 0.57 0.60
ρ̄ (ω)
(εM , εD, εQ) = (1, 1, 1) 0.19kf 0.19kf 0.20kf 0.20kf 0.20kf

(εM , εD, εQ) =
(
1, 1, 4

5

)
0.21kf 0.21kf 0.21kf 0.21kf 0.21kf

(εM , εD, εQ) =
(

1
10
, 1, 4

5

)
0.06 0.05 0.05 0.06 0.06

(εM , εD,εQ) =
(

1
10
, 2

3
, 1
)

0.04kf 0.04kf 0.04kf 0.04kf 0.03kf

(εM , εD,εQ) =
(

1
10
, 1, 1

)
0.06 0.05 0.06 0.06 0.05

(εM , εD,εQ) =
(

1
10
, 4

3
, 1
)

0.08 0.08 0.07 0.08 0.07

Table 16: Robustness checks: R2(sectoral shocks) and ρ̄(ω) for different values of εD, εM ,
and εQ.
Notes: A "kf" indicates the use of the Kalman filter, as opposed to direct applications of Equation 11, to
infer the ω productivity shocks.

industry-level observable before performing the filtering exercise. In Table 16, I consider

three alternate de-trending procedures: not de-trending the data, a Hodrick-Prescott filter,

and a linear trend with a break in the trend at 1983. These de-trending procedures have

almost no quantitative impact on the relative contribution of sectoral vs. common shocks

to aggregate volatility. Finally, censoring outlier observations (those industry-year output

growth rates in the top or bottom centile) does not alter the estimated importance of sectoral

shocks.

F Solution of the model filter

This section spells out the solution of the model. First, I write out the constrained max-
imization problem of a social planner. I take first-order conditions, write out the conditions
that characterize the steady state, log-linearize around the steady state, solve for the policy
functions, and then for the model filter. We allow not only for factor neutral productivity
shocks (as used throughout the paper), but also labor-augmenting productivity shocks, as

shock processes would be jointly estimated in a single stage. I do not pursue this approach, mainly because
of the diffi culty of scaling the model by the permanent shocks. Doing so requires a clean characterization of
the changes in the industry-level observable variables as functions of the permanent shocks, something that
exists only for a few special cases of the model (such special cases can be found in, for example, Ngai and
Pissarides 2007 and Acemoglu and Guerreri 2008).
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in the specification in Table 4.

F.1 First order conditions and steady-state shares

Since this economy satisfies the welfare theorems, it will suffi ce to solve the social plan-
ner’s problem. Begin with the Lagrangian:

L = E0

∞∑
t=0

βt

log

[ N∑
J=1

(ξJ)
1
εD (δCJ · CtJ)

εD−1
εD

] εD
εD−1


− εLS
εLS + 1

(
N∑
J=1

LtJ

) εLS+1

εLS

+

N∑
J=1

P inv
tJ [XtJ + (1− δK)KtJ −Kt+1,J ]

+
N∑
J=1

PtJ

[
QtJ + (1− δCJ )CtJ − Ct+1,J −

N∑
I=1

[Mt,J→I +Xt,J→I ]

]}
. (25)

Here, P inv
tJ is the Lagrange multiplier on a unit of capital, and PtJ is the Lagrange multiplier

on the good-J market-clearing condition.
This Lagrangian incorporates durability for some consumption goods, something that

was ignored in the body of the paper. The Lagrangian reflects a representative consumer
who has preferences given by the following utility function:

U =
∞∑
t=0

βt log

[ N∑
J=1

(ξJ)
1
εD (δCJ · CtJ)

εD−1
εD

] εD
εD−1

− εLS
εLS + 1

(
N∑
J=1

LtJ

) εLS+1

εLS

The demand parameters, ξJ , again reflect time-invariant differences in the importance of
industries’goods in the consumer’s preferences. Now, CtJ equals the stock of durable goods
when J is a durable-good-producing industry and equals the expenditures on good/service
J otherwise. For durable goods, J , the evolution of the stock of each consumption good CtJ
is given by

Ct+1,J = CtJ (1− δCJ ) + C̃tJ ,

where C̃tJ equals the consumer’s new purchases on good J at time t and δCJ parameterizes
the depreciation rate of good J .

I re-state the expression for QtJ :

QtJ = AtJ ·

(1− µJ)
1
εQ

((
KtJ

αJ

)αJ (LtJ ·BtJ

1− αJ

)1−αJ
) εQ−1

εQ

+ (µJ)
1
εQ (MtJ)

εQ−1
εQ


εQ
εQ−1

.

(26)
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The first-order conditions for the planner are:

Kt+1,J = XtJ + (1− δK) ·KtJ

[CtJ ] : Pt−1,J − βPtJ (1− δCJ ) = β (ξJ)
1
εD (δCJ )

εD−1
εD × (27)

(CtJ)
− 1
εD

(
N∑
I=1

(ξI)
1
εD (δCI · CtI)

εD−1
εD

)−1

. (28)

[Mt,I→J ] :
PtI
PtJ

= (AtJ)
εQ−1
εQ

(
QtJ · µJ
MtJ

) 1
εQ

(
MtJ · ΓMIJ
Mt,I→J

) 1
εM

. (29)

[Xt,I→J ] : PtI = P inv
tJ

(
XtJ · ΓXIJ
Xt,I→J

) 1
εX

. (30)

[LtJ ] :

(
N∑

J ′=1

LtJ ′

) 1
εLS

= PtJ · (AtJ)
εQ−1
εQ BtJ (QtJ (1− µJ))

1
εQ × (31)

(
KtJ

αJ

)αJ εQ−1εQ

(
LtJ ·BtJ

1− αJ

)αJ−1−αJεQ
εQ

.

[Kt+1,J ] : P inv
tJ = β · Et

[
Pt+1,J (Qt+1,J (1− µJ))

1
εQ (At+1,J)

εQ−1
εQ (32)

×
(
Kt+1,J

αJ

)−1+αJ ·
εQ−1
εQ

(
Lt+1,J ·Bt+1,J

1− αJ

)(1−αJ )·
εQ−1
εQ


+β(1− δK)Et

[
P inv
t+1,J

]
.

Towards the goal of solving for the steady-state, drop time subscripts and re-arrange.
Also, employ the normalization that steady-state labor is the numeraire good (so that

51



∑N
J ′=1 L

1
εLS

J ′ = 1) :

δKKJ = XJ

1− β (1− δCJ )

β
PJ = (ξJ)

1
εD · (δCJ )

εD−1
εD (CJ)

− 1
εD

(
N∑
I=1

(ξI)
1
εD (δCI · CI)

εD−1
εD

)−1

PI
PJ

=

(
QJ · µJ
MJ

) 1
εQ

(
MJ · ΓMIJ
MI→J

) 1
εM

P inv
J = PI

(
XJ · ΓXIJ
XI→J

)− 1
εX

1 = PJ (QJ (1− µJ))
1
εQ

(
KJ

αJ

)αJ · εQ−1εQ

(
LJ

1− αJ

)(1−αJ )·
εQ−1
εQ
−1

QJ =

(1− µJ)
1
εQ

((
KJ

αJ

)αJ ( LJ
1− αJ

)1−αJ
) εQ−1

εQ

+ (µJ)
1
εQ (MJ)

εQ−1
εQ


εQ
εQ−1

(33)

First, I will solve for the prices of each industry’s good, in the steady state, PJ . This
will follow from each industry’s cost-minimization condition.

Take the cost-minimization condition for capital, which equates the rental price of a
unit of capital to the marginal revenue product of capital:

1− β(1− δK)

β

[∑
ΓXIJ (PI)

1−εX
]1/(1−εX)

= PJ (QJ (1− µJ))
1
εQ

(
KJ

αJ

)αJ · εQ−1εQ
−1(

LJ
1− αJ

)(1−αJ )·
εQ−1
εQ

(34)
Second, take cost-minimizing condition for industry J’s intermediate input purchases:

(µJ)
1
εQ (MJ)

εQ−1
εQ = µJ (QJ)

εQ−1
εQ

(
P in
J

PJ

)1−εQ
(35)

And, third, the following equation takes the cost-minimizing choice of the capital-labor
aggregate.

(1− µJ)
1
εQ

((
KJ

αJ

)αJ ( LJ
1− αJ

)1−αJ
) εQ−1

εQ

= (1− µJ) (QJ)
εQ−1
εQ × (36)


(

1−β(1−δK)
β

)αJ [∑
ΓXIJ (PI)

1−εX]αJ/(1−εX)

PJ

1−εQ
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Plug Equations 34-36 into Equation 33.

(PJ)1−εQ = (1− µJ)
(
β−1 − (1− δK)

)αJ(1−εQ)
[∑

I

ΓXIJ (PI)
1−εX

]αJ 1−εQ1−εX

(37)

+ µJ

[∑
I

ΓMIJ (PI)
1−εM

] 1−εQ
1−εM

Equation 37 describes and N×N system of equations for the N steady-state price levels.
This completes the first part of the characterization of the steady state.

For the second part, consider the market clearing condition for good J :

QJ = δCJCJ +
N∑
I=1

(MJ→I +XJ→I) (38)

Below, I will write out the terms on the right-hand-side of Equation 38 in terms of the
steady state prices (which have just been solved for):

First, write out the consumption of good J .

(1− β (1− δCJ ))

β
PJ = (ξJ)

1
εD · (δCJ )

εD−1
εD (CJ)

− 1
εD

(
N∑
I=1

(ξI)
1
εD (δCI · CI)

εD−1
εD

)−1

δCJCJ = ξJ (δCJ )εD
(

1− β (1− δCJ )

β

)−εD
(PJ)−εD C̄1−εD , (39)

where C̄ is the aggregate consumption bundle, defined as the final term in parentheses on
the first line raised to the 1/ (1− εD) power.

Then write out the intermediate input purchases from industry J to industry I

MJ→I = (QIµI)
εM
εQ · (MI)

εQ−εM
εM ΓMJI ·

(
PI
PJ

)εM
= QIµIΓ

M
JI (PJ)−εM

(
P in
I

)εM−εQ (PI)
εQ

= QIµIΓ
M
JI (PJ)−εM

(∑
J ′

ΓMJ ′I (PJ ′)
1−εM

) εM−εQ
1−εM

(PI)
εQ (40)

And, finally, write out the investment input purchases from industry J sold to industry
I. Begin by writing out the total investment purchases of industry J .(

KJ

αJ

)
=

(
1− β(1− δK)

β

[∑
ΓXIJ (PI)

1−εX
] 1
1−εX

)−1+αJ(1−εQ)
(1− µJ)QJ (PJ)εQ

XJ = (1− µJ)QJαJδK

(
1− β(1− δK)

β

[∑
ΓXIJ (PI)

1−εX
] 1
1−εX

)−1+αJ(1−εQ)
(PJ)εQ
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So:

XJ→I = XI · ΓXJI ·
(
PJ
P inv
I

)−εX
= XI · ΓXJI · (PJ)−εX

(
P inv
I

)εX
= QI (1− µI)αIδK

(
1− β(1− δK)

β

)−1+αI(1−εQ)
ΓXJI×

[∑
J ′

ΓXJ ′I (PJ ′)
1−εX

] εX−1+αI(1−εQ)
1−εX

(PJ)−εX (PI)
εQ (41)

Plug in the expressions (Equations 39-41) into the market clearing condition (Equation
38):

QJ −
N∑
I=1

Γ̃JIQI = ξJ (δCJ )εD
(

1− β (1− δCJ )

β

)−εD
(PJ)−εD C̄1−εD

where

Γ̃JI = (PI)
εQ ×

µIΓMJI
[∑

J ′

ΓMJ ′I (PJ ′)
1−εM

] εM−εQ
1−εM

(PJ)−εM

+ (1− µI)αIδK
(

1− β(1− δK)

β

)−1+αI(1−εQ)
ΓXJI

[∑
J ′

ΓXJ ′I (PJ ′)
1−εX

]−1+αI
1−εQ
1−εX

(PJ)−εX


We can solve for the Q vector using linear algebra. From here, we can solve for the
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steady state shares:

LJ = QJ (1− αJ) (1− µJ) (PJ)εQ
(

1− β (1− δK)

β
P inv
J

)αJ(1−εQ)
(42)

CJ = ξJδ
εD−1
CJ

C̄1−εD
(

1− β (1− δCJ )

β

)−εD
(PJ)−εD

SCI =
(ξI)

1
εD (δCI · CI)

εD−1
εD∑

(ξI′)
1
εD

(
δCI′CI′

) εD−1
εD

(43)

MJ→I

QJ

= (QJ)−1QIµIΓ
M
JI

(
P in
I

)εM−εQ (PJ)−εM (PI)
εQ

XJ→I

QJ

= (QJ)−1QI (1− µI)αIδK
(

1− β(1− δK)

β

)−1+αI(1−εQ)
ΓXJI×

[∑
J ′

ΓXJ ′I (PJ ′)
1−εX

] εX−1+αJ(1−εQ)
1−εX

(PJ)−εX (PI)
εQ

[
S1
X

]
IJ

= ΓXIJ

(
P inv
J

PI

)εX−1

(44)

[
S1
M

]
IJ

= ΓMIJ

(
P in
J

PI

)εM−1

(45)

Clearly, these equations depend on QJ and the steady-state prices. Note that, however,
these figures have already been solved for. For future reference, define S̃QM as the matrix that
has, in its J , I entry, the fraction of good J that is sold to industry I as an intermediate
input:

[
S̃QM

]
JI
≡ MJ→I

QJ
. Similarly, define

[
S̃QX

]
JI
≡ XJ→I

QJ
. Equation 42 characterizes the

share of labor that is employed in industry J , in the steady state. Use S̃L as the N × N
matrix that has, in its J th column, this steady-state share. Also for future reference, define
S̃CI as the matrix that has SCI (as given in Equation 43) in its I th column. And, finally,

use
[
S̃QC

]
J
to denote the share of good J that is consumed (which can be computed by

subtracting the sum of the
[
S̃QM

]
IJ
and

[
S̃QX

]
IJ
from 1.)

F.2 Log linearization

The log linearization of the first order conditions are rather straightforward to derive.
Below, I will derive Equations 46 and 47. In all of these equations, a lower-case letter with
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the circumflex (^) denotes log-deviation from the steady state.

x̂tJ = δ−1
K k̂t+1,J + (1− δ−1

K )k̂tJ

q̂tJ = δ−1
CJ
SQCJ ĉt+1J +

(
1− δ−1

CJ

)
SQCJ ĉtJ (46)

+

N∑
I=1

(
SQM,J→Im̂tJ→I + SQX,J→I x̂tJ→I

)
1

1− β (1− δCJ )
p̂tJ −

β (1− δCJ )

1− β (1− δCJ )
p̂t+1,J ≈ −

1

εD
ĉt+1J (47)

−
∑
I

(ξI)
1
εD (δCI · CI)

εD−1
εD∑

I′ (ξI′)
1
εD

(
δCI′CI′

) εD−1
εD

[
εD − 1

εD
ĉt+1,I

]

p̂tI − p̂tJ =
εQ − 1

εQ
âtJ +

1

εQ
q̂tJ +

(
1

εM
− 1

εQ

)
m̂tJ −

1

εM
m̂t,I→J

p̂tI = p̂invtJ +
1

εX
(x̂tJ − x̂t,I→J)

1

εLS

N∑
J ′=1

SLJ l̂tJ = p̂tJ +
εQ − 1

εQ
âtJ +

(εQ − 1) (1− αJ)

εQ
b̂tJ

+
1

εQ
q̂tJ + αJ

εQ − 1

εQ
k̂tJ +

αJ − 1− αJ · εQ
εQ

l̂tJ

1

1− β (1− δK)
p̂invtJ −

β (1− δK)

1− β (1− δK)
p̂invt+1J = p̂t+1,J +

1

εQ
q̂t+1,J

+
εQ − 1

εQ
ât+1,J +

(εQ − 1) (1− αJ)

εQ
b̂t+1,J

+
(εQ − 1) (1− αJ)

εQ
l̂t+1,J +

[
−1 + αJ ·

εQ − 1

εQ

]
k̂t+1,J

q̂tJ = âtJ + αJ (1− SMJ
) k̂tJ + (1− αJ) (1− SMJ

) b̂tJ

+ (1− αJ) (1− SMJ
) l̂tJ + SMJ

m̂tJ

To derive Equation 46, take the market clearing condition for good J ,

log [exp q̂tJ ] = log

[
− (1− δCJ )SQCJ exp ĉt,J + SQCJ exp ĉt+1,J +

N∑
I=1

SQM,J→I exp m̂tJ→I + SQX,J→I exp x̂tJ→I

]

≈ SQCJδ
−1
CJ
ĉt+1,J + SQCJ

(
1− δ−1

CJ

)
ĉtJ +

N∑
I=1

SQM,J→Im̂tJ→I + SQX,J→I x̂tJ→I
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The following set of calculations yield Equation 47:

PJ

[
1

β

Pt−1,J

PJ
− PtJ
PJ

(1− δCJ )

]
= (ξJ)

1
εD (δCJ )

εD−1
εD (CJ)

− 1
εD (exp {ĉtJ})−

1
εD ×(

N∑
I=1

(ξI)
1
εD (δCI · CtI)

εD−1
εD

)−1

1

1− β (1− δCJ )
exp p̂t−1,J −

β (1− δCJ )

1− β (1− δCJ )
exp p̂tJ = (exp ĉtJ)

− 1
εD × N∑

I=1

(ξI)
1
εD (δCI · CI)

εD−1
εD∑

(ξI′)
1
εD

(
δCI′CI′

) εD−1
εD

exp {ĉtI}
εD−1
εD

−1

1

1− β (1− δCJ )
p̂t−1J −

β (1− δCJ )

1− β (1− δCJ )
p̂tJ ≈ −

1

εD
ĉtJ

−
∑ (ξI)

1
εD (δCI · CI)

εD−1
εD∑

(ξI′)
1
εD

(
δCI′CI′

) εD−1
εD

[
εD − 1

εD
ĉtI

]

Write the log-linearized equations, as given in the beginning of the subsection, in matrix
form.

k̂t+1 = δKX̂t + (1− δK) k̂t

q̂t = δ−1
C S̃QC ĉt+1 +

(
I− δ−1

C

)
S̃QC ĉt + S̃QX x̂t + S̃QMm̂t

p̂t = β (I− δC) p̂t+1 −
1

εD
(I− β (I− δC))

[
I + SCI (εD − 1)

]
ĉt+1

m̂t =
εM
εQ

(εQ − 1)T1ât +
εM
εQ
T1q̂t +

(
1− εM

εQ

)
T1M̂t + εM [T1 − T2] p̂t

x̂t = T1X̂t + εXT1p̂
inv
t − εXT2p̂t

1

εLS
SLl̂t = p̂t +

εQ − 1

εQ
ât +

(εQ − 1) (I− α)

εQ
b̂t +

1

εQ
q̂t +

εQ − 1

εQ
αk̂t +

α− I− αεQ
εQ

l̂t

p̂invt = β(1− δK)p̂invt+1 + (1− β(1− δK))

[
p̂t+1 +

1

εQ
q̂t+1 +

εQ − 1

εQ
ât+1

+

(
−I + α

εQ − 1

εQ

)
k̂t+1 + (I− α)

εQ − 1

εQ

(
l̂t+1 + b̂t+1

)]
q̂t = ât + (I− α) (I− SM) b̂t + α (I− SM) k̂t + (I− α) (I− SM) l̂t + SMM̂t

In these equations T1 refers to the N2 ×N matrix equal to 1⊗ I, where 1 is an N × 1
vector of 1s and ⊗ is the Kronecker product. Similarly, T2 equals I ⊗ 1. Also, SM is a
diagonal matrix with the steady-state intermediate cost shares along the diagonal; δC is a
matrix with δCJ s along the diagonal; and α is a diagonal matrix with the αJs along the
diagonal. Finally, M̂t and X̂t are the N × 1 vectors which contain the intermediate input
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bundles and investment input bundles employed by each industry, whereas m̂t and x̂t refer
to the N2 × 1 vectors which contain the flows of intermediate and investment inputs across
pairs of industries.

F.3 System reduction

Step 1: Substitute out x̂t and m̂t:

m̂t =
εM
εQ

(εQ − 1)T1ât +
εM
εQ
T1q̂t +

(
1− εM

εQ

)
T1M̂t + εM [T1 − T2] p̂t

x̂t = T1X̂t + εXT1p̂
inv
t − εXT2p̂t

to get:

k̂t+1 = δKX̂t + (1− δK) k̂t(
I− εM

εQ
S̃QMT1

)
q̂t = δ−1

C S̃QC ĉt+1 +
(
I− δ−1

C

)
S̃QC ĉt + S̃QXT1X̂t +

εM
εQ

(εQ − 1) S̃QMT1ât

+

(
1− εM

εQ

)
S̃QMT1M̂t + εX S̃

Q
XT1p̂

inv
t +

[
εM S̃

Q
M [T1 − T2]− εX S̃QXT2

]
p̂t

p̂t = β (I− δC) p̂t+1 −
1

εD
(I− β (I− δC))

[
I + SCI (εD − 1)

]
ĉt+1

1

εLS
SLl̂t = p̂t +

εQ − 1

εQ
ât +

(εQ − 1) (I− α)

εQ
b̂t +

1

εQ
q̂t +

εQ − 1

εQ
αk̂t +

α− I− αεQ
εQ

l̂t

p̂invt = β(1− δK)p̂invt+1 + (1− β(1− δK))

[
p̂t+1 +

1

εQ
q̂t+1 +

εQ − 1

εQ
ât+1

+

(
−I + α

εQ − 1

εQ

)
k̂t+1 + (I− α)

εQ − 1

εQ

(
l̂t+1 + b̂t+1

)]
q̂t = ât + (I− α) (I− SM) b̂t + α (I− SM) k̂t + (I− α) (I− SM) l̂t + SMM̂t

Step 2: Use SX1 p̂t = p̂invt (SX1 is the matrix that gives the share of different industries’outputs
in the investment input bundle) and X̂t = δ−1

K k̂t+1+
(
1− δ−1

K

)
k̂t; and define β̃ ≡ 1−β (1− δK)
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to get:(
I− εM

εQ
S̃QMT1

)
q̂t = δ−1

C S̃QC ĉt+1 +
(
I− δ−1

C

)
S̃QC ĉt +

εM
εQ

(εQ − 1) S̃QMT1ât +

(
1− εM

εQ

)
S̃QMT1M̂t

+
[
εX S̃

Q
XT1S

X
1 + εM S̃

Q
M [T1 − T2]− εX S̃QXT2

]
p̂t + S̃QXT1δ

−1
K k̂t+1 + S̃QXT1

(
1− δ−1

K

)
k̂t

p̂t = β (I− δC) p̂t+1 −
1

εD
(I− β (I− δC))

[
I + SCI (εD − 1)

]
ĉt+1

1

εLS
SLl̂t = p̂t +

εQ − 1

εQ
ât +

(εQ − 1) (I− α)

εQ
b̂t +

1

εQ
q̂t +

εQ − 1

εQ
αk̂t +

α− I− αεQ
εQ

l̂t

SX1 p̂t =
[
β̃I + β(1− δK)SX1

]
p̂t+1 + β̃

[
1

εQ
q̂t+1 +

εQ − 1

εQ
ât+1

+

(
−I + α

εQ − 1

εQ

)
k̂t+1 + (I− α)

εQ − 1

εQ

(
l̂t+1 + b̂t+1

)]
q̂t = ât + (I− α) (I− SM) b̂t + α (I− SM) k̂t + (I− α) (I− SM) l̂t + SMM̂t

Step 3: Use

M̂t = (εQ − 1) ât + q̂t + εQ
(
I− SM1

)
p̂t

where SM1 p̂t = p̂int

(
I− S̃QMT1

)
q̂t = δ−1

C S̃QC ĉt+1 +
(
I− δ−1

C

)
S̃QC ĉt + (εQ − 1) S̃QMT1ât

+ S̃QXT1δ
−1
K k̂t+1 + S̃QXT1

(
1− δ−1

K

)
k̂t

+
[
εQS̃

Q
MT1

(
I− SM1

)
+ εM S̃

Q
M

[
T1S

M
1 − T2

]
+ εX S̃

Q
X

[
T1S

X
1 − T2

]]
p̂t

p̂t = β (I− δC) p̂t+1 −
1

εD
(I− β (I− δC))

[
I + SCI (εD − 1)

]
ĉt+1

1

εLS
SLl̂t = p̂t +

εQ − 1

εQ
ât +

(εQ − 1) (I− α)

εQ
b̂t +

1

εQ
q̂t +

εQ − 1

εQ
αk̂t +

α− I− αεQ
εQ

l̂t

(48)

SX1 p̂t =
[
β̃I + β(1− δK)SX1

]
p̂t+1 + β̃

1

εQ
q̂t+1

+ β̃
εQ − 1

εQ
ât+1 + β̃

(
−I + α

εQ − 1

εQ

)
k̂t+1 + β̃ (I− α)

εQ − 1

εQ

(
l̂t+1 + b̂t+1

)
q̂t = (I− SM)−1 (I + SM (εQ − 1)) ât + (I− α) b̂t + αk̂t (49)

+ (I− α) l̂t + (I− SM)−1 SMεQ
(
I− SM1

)
p̂t

Step 4: Use the production function, given in Equation 49, to substitute q̂t out of the first,
third, and fourth equations:
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1

εQ
q̂t =

1

εQ
(I− SM)−1 (I + SM (εQ − 1)) ât +

1

εQ
(I− α) b̂t +

1

εQ
αk̂t (50)

+
1

εQ
(I− α) l̂t + (I− SM)−1 SM

(
I− SM1

)
p̂t(

I− S̃QMT1

)
q̂t =

(
I− S̃QMT1

)
(I− SM)−1 (I + SM (εQ − 1)) ât +

(
I− S̃QMT1

)
(I− α) b̂t

+
(
I− S̃QMT1

)
αk̂t +

(
I− S̃QMT1

)
(I− α) l̂t

+
(
I− S̃QMT1

)
(I− SM)−1 SM

(
I− SM1

)
εQp̂t

to get

0 = δ−1
C S̃QC ĉt+1 +

(
I− δ−1

C

)
S̃QC ĉt

+
[
(εQ − 1) S̃QMT1 −

(
I− S̃QMT1

)
(I− SM)−1 (I + SM (εQ − 1))

]
ât

+ S̃QXT1δ
−1
K k̂t+1 +

[
S̃QXT1

(
1− δ−1

K

)
−
(
I− S̃QMT1

)
α
]
k̂t

−
(
I− S̃QMT1

)
(I− α) b̂t −

(
I− S̃QMT1

)
(I− α) l̂t

+
[
εX S̃

Q
X

[
T1S

X
1 − T2

]
−
(
I− S̃QMT1

)
εQ (I− SM)−1 SM

(
I− SM1

)]
p̂t

+
[
εQS̃

Q
MT1

(
I− SM1

)
+ εM S̃

Q
M

[
T1S

M
1 − T2

]]
p̂t

p̂t = β (I− δC) p̂t+1 −
1

εD
(I− β (I− δC))

[
I + SCI (εD − 1)

]
ĉt+1

SX1 p̂t =
[
β̃I + β(1− δK)SX1 + β̃ (I − SM)−1 SM

(
I− SM1

)]
p̂t+1

+ β̃

[
1

εQ
(I− SM)−1 (I + SM (εQ − 1)) +

εQ − 1

εQ
I

]
ât+1

+ β̃ (I− α) b̂t+1 + β̃ (−I + α) k̂t+1 + β̃ (I− α) l̂t+1

Step 5: Use the following equation:

(I− α) l̂t = ϑ (I− α) b̂t + ϑαk̂t + ϑ

[
εQ − 1

εQ
I +

1

εQ
(I− SM)−1 (I + SM (εQ − 1))

]
ât (51)

+ ϑ
[
(I− SM)−1 SM

(
I− SM1

)
+ I
]
p̂t

where ϑ = (I− α)

[
1

εLS
SL + α

]−1
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(this equation comes from plugging Equation 49 into Equation 48 and re-arranging) to get

0 = δ−1
C S̃QC ĉt+1 +

(
I− δ−1

C

)
S̃QC ĉt (52)

+
[
(εQ − 1) S̃QMT1 −

(
I− S̃QMT1

) (
I + ϑε−1

Q

)
(I− SM)−1 (I + SM (εQ − 1))

]
ât

−
(
I− S̃QMT1

)
ϑ
εQ − 1

εQ
ât + S̃QXT1δ

−1
K k̂t+1

+
[
S̃QXT1

(
1− δ−1

K

)
−
(
I− S̃QMT1

)
(I + ϑ)α

]
k̂t −

(
I− S̃QMT1

)
(I + ϑ) (I− α) b̂t

+
[
εQS̃

Q
MT1

(
I− SM1

)
+ εM S̃

Q
M

[
T1S

M
1 − T2

]
+ εX S̃

Q
X

[
T1S

X
1 − T2

]]
p̂t

+
[
−
(
I− S̃QMT1

) [
εQ (I− SM)−1 SM

(
I− SM1

)
+ ϑ

[
(I− SM)−1 SM

(
I− SM1

)
+ I
]]]

p̂t

p̂t = β (I− δC) p̂t+1 −
1

εD
(I− β (I− δC))

[
I + SCI (εD − 1)

]
ĉt+1

SX1 p̂t =
[
β(1− δK)SX1 + β̃ (I + ϑ)

(
I + (I− SM)−1 SM

(
I− SM1

))]
p̂t+1

+ β̃ (I + ϑ)

[
1

εQ
(I− SM)−1 (I + SM (εQ − 1)) +

εQ − 1

εQ
I

]
ât+1 + β̃ (I + ϑ) (I− α) b̂t+1

+ β̃ (−I + α + ϑα) k̂t+1

So now we are down to three equations and three sets of endogenous unknowns (p̂t, k̂t, and
ĉt). How we proceed will depend on whether we allow for consumption to be durable or not.
Case 1: No Durables
Plug

ĉt = −εD
[
I + SCI (εD − 1)

]−1
p̂t

in to the other two equations, above, to substitute out the ĉt vector.

0 =

[
(εQ − 1) S̃QMT1 −

(
I− S̃QMT1

) (
I + ϑε−1

Q

)
(I− SM)−1 (I + SM (εQ − 1))−

(
I− S̃QMT1

)
ϑ
εQ − 1

εQ

]
ât

+ S̃QXT1δ
−1
K k̂t+1 +

[
S̃QXT1

(
1− δ−1

K

)
−
(
I− S̃QMT1

)
(I + ϑ)α

]
k̂t −

(
I− S̃QMT1

)
(I + ϑ) (I− α) b̂t

+
[
−εDS̃QC

[
I + SCI (εD − 1)

]−1
+ εQS̃

Q
MT1

(
I− SM1

)
+ εM S̃

Q
M

[
T1S

M
1 − T2

]
+ εX S̃

Q
X

[
T1S

X
1 − T2

]]
p̂t

−
(
I− S̃QMT1

) [
εQ (I− SM)−1 SM

(
I− SM1

)
+ ϑ

[
(I− SM)−1 SM

(
I− SM1

)
+ I
]]
p̂t

0 = −SX1 p̂t +
[
β(1− δK)SX1 + β̃ (I + ϑ)

(
I + (I − SM)−1 SM

(
I− SM1

))]
p̂t+1

+ β̃ (I + ϑ)

[
1

εQ
(I − SM)−1 (I + SM (εQ − 1)) +

εQ − 1

εQ
I

]
ât+1

+ β̃ (I + ϑ) (I− α) b̂t+1 + β̃ (−I + α + ϑα) k̂t+1

Case 2: Durables
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Combine the final two equations in the line before "So now..."

− SX1
1

εD
(I− β (I− δC))

×
[
I + SCI (εD − 1)

]
ĉt+1 =

[
β̃ (I + ϑ)

(
I + (I− SM)−1 SM

(
I− SM1

))
+ SX1 β (δC − δKI)

]
p̂t+1

+ β̃ (I + ϑ)

[
1

εQ
(I− SM)−1 (I + SM (εQ − 1)) +

εQ − 1

εQ
I

]
ât+1

+ β̃ (I + ϑ) (I− α) b̂t+1 + β̃ (−I + α + ϑα) k̂t+1

to get.

ĉt = ϑ̃
[
β̃ (I + ϑ)

(
I + (I− SM)−1 SM

(
I− SM1

))
+ SX1 β (δC − IδK)

]
p̂t

+ ϑ̃β̃ (I + ϑ)

[
1

εQ
(I− SM)−1 (I + SM (εQ − 1)) +

εQ − 1

εQ
I

]
ât

+ ϑ̃β̃ (I + ϑ) (I− α) b̂t + β̃ϑ̃ (−I + α + ϑα) k̂t

where

ϑ̃ ≡
[
−SX1

1

εD
(I− β (I− δC))

[
I + SCI (εD − 1)

]]−1

Plug this in:
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0 = S̃QC ϑ̃β̃ (I + ϑ)

[
1

εQ
(I− SM)−1 (I + SM (εQ − 1)) +

εQ − 1

εQ
I

]
ât (53)

+

[
(εQ − 1) S̃QMT1 −

(
I− S̃QMT1

) (
I + ϑε−1

Q

)
(I− SM)−1 (I + SM (εQ − 1))−

(
I− S̃QMT1

)
ϑ
εQ − 1

εQ

]
ât

+ δ−1
C S̃QC ϑ̃

[
β̃ (I + ϑ)

(
I + (I− SM)−1 SM

(
I− SM1

))
+ SX1 β (δC − IδK)

]
p̂t+1

+
(
I− δ−1

C

)
S̃QC ϑ̃

[
β̃ (I + ϑ)

(
I + (I− SM)−1 SM

(
I− SM1

))
+ SX1 β (δC − IδK)

]
p̂t

+
[
εQS̃

Q
MT1

(
I− SM1

)
+ εM S̃

Q
M

[
T1S

M
1 − T2

]
+ εX S̃

Q
X

[
T1S

X
1 − T2

]]
p̂t

+
[
−
(
I− S̃QMT1

) [
(I− SM)−1 SM

(
I− SM1

)
εQ + ϑ

[
(I− SM)−1 SM

(
I − SM1

)
+ I
]]]

p̂t

+
[
S̃QXT1δ

−1
K + δ−1

C S̃QC β̃ϑ̃ (−I + α + ϑα)
]
k̂t+1

+
[
S̃QXT1

(
1− δ−1

K

)
−
(
I− S̃QMT1

)
(I + ϑ)α +

(
I− δ−1

C

)
S̃QC β̃ϑ̃ (−I + α + ϑα)

]
k̂t

+
[
S̃QC ϑ̃β̃ (I + ϑ) (I− α)−

(
I− S̃QMT1

)
(I + ϑ) (I− α)

]
b̂t

0 = −SX1 p̂t +
[
β(1− δK)SX1 + β̃ (I + ϑ)

(
I + (I− SM)−1 SM

(
I− SM1

))]
p̂t+1 (54)

+ β̃ (I + ϑ)

[
1

εQ
(I − SM)−1 (I + SM (εQ − 1)) + I

εQ − 1

εQ

]
ât+1 + β̃ (I + ϑ) (I− α) b̂t+1

+ β̃ (−I + α + ϑα) k̂t+1

F.4 Blanchard-Kahn

In Equations 53 and 54, we have expressed the reduced system as[
Et[p̂t+1]

k̂t+1

]
= Ψ

[
p̂t
k̂t

]
+ Φ

[
ât
b̂t

]

Here, Ψ has N stable and N unstable eigenvalues.
Using a Jordan decomposition, write Ψ = VDV−1 where D is diagonal and is ordered

such that the N explosive eigenvalues are ordered first and the N stable eigenvalues are
ordered last. Re-write:

Υt+1 ≡ V−1

[
Et[p̂t+1]

k̂t+1

]
= DV−1

[
p̂t
k̂t

]
+ V−1Φ

[
ât
b̂t

]
≡ DΥt + Φ̃

[
ât
b̂t

]

Partition Υt into the first N × 1 block, Υ1t, and the lower N × 1 block, Υ2t. Similarly
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partition Φ̃ and D.

Υ1,t = D−1
1 Et[Υ1,t+1]−D−1

1 Φ̃

[
ât
b̂t

]
Substitute recursively

Υ1,t = −D−1
1

∞∑
s=0

D−s1 Φ̃1

[
ât
b̂t

]
= −D−1

1 (I −D−1
1 )−1Φ̃1

[
ât
b̂t

]
(55)

For Y2,t:

Υ2,t = D2Υ2,t−1 + Φ̃2 ·
[
ât
b̂t

]
Remember that [

Υ1,t

Υ2,t

]
= V−1

[
p̂t
k̂t

]
,

and therefore, from Equation 55

p̂t = −(V−1
11 )−1V−1

12 k̂t + (V−1
11 )−1Υ1t (56)

= −(V−1
11 )−1V−1

12 k̂t − (V−1
11 )−1D−1

1 (I−D−1
1 )−1Φ̃1

[
ât
b̂t

]
The endogenous state evolves as follows:

k̂t+1 = Ψ22k̂t + Ψ21p̂t + Φ2

[
ât
b̂t

]
= (Ψ22 −Ψ21(V−1

11 )−1V−1
12 )︸ ︷︷ ︸

≡Mkk

k̂t +
(
−Ψ21(V−1

11 )−1D−1
1 (I−D−1

1 )−1Φ̃1 + Φ2

)
︸ ︷︷ ︸

≡[Mka, Mkb]

[
ât
b̂t

]
(57)

For future reference:

p̂t = Ψ−1
21 k̂t+1 −Ψ−1

21 Ψ22k̂t −Ψ−1
21 Φ2

[
ât
b̂t

]
(58)

F.5 Obtaining the model filter

Combine Equations 50 and 51 to write q̂t as a function of the exogenous variables, k̂,
and p̂

q̂t = (I + ϑ) (I− α) b̂t + (I + ϑ)αk̂t (59)

+

[
εQ − 1

εQ
ϑ+

(
ϑ

εQ
+ I

)
(I− SM)−1 (I + SM (εQ − 1))

]
ât

+
[
(ϑ+ εQI) (I− SM)−1 SM

(
I− SM1

)
+ ϑ
]
p̂t
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Plug Equation 57 and 58 in so that we may write:

q̂t = Φkqk̂t + Φbq b̂t + Φaqât, (60)

where the Φkq, Φbq, and Φaq are matrices that collect the appropriate terms.40

So long as Φkq is invertible, Equation 60 is equivalent to

k̂t = Φ−1
kq q̂t − Φ−1

kq Φbq b̂t − Φ−1
kq Φaqât

Equation 60, one period ahead, is

q̂t+1 = Φkqk̂t+1 + Φbq b̂t+1 + Φaqât+1

Apply Equation 57 to this previous equation

q̂t+1 = Φbq b̂t+1 + Φaqât+1

+Φkq

(
Mkkk̂t +Mkaât +Mkbb̂t

)
= Φbq b̂t+1 + Φaqât+1

+ΦkqMkaât + ΦkqMkbb̂t

+ΦkqMkkΦ
−1
kq q̂t − ΦkqMkkΦ

−1
kq Φbq b̂t − ΦkqMkkΦ

−1
kq Φaqât

= Φbq b̂t+1 + Φaqât+1 + ΦkqMkkΦ
−1
kq q̂t

+
[
ΦkqMka − ΦkqMkkΦ

−1
kq Φaq

]
ât +

[
ΦkqMkb − ΦkqMkkΦ

−1
kq Φbq

]
b̂t

Finally, take two adjacent periods, and use the definitions of ωAt+1 (≡ ât+1 − ât) and
40Combine Equations 57 and 58:

p̂t = Ψ−121 k̂t+1 −Ψ−121 Ψ22k̂t −Ψ−121 Φ2

[
ât
b̂t

]
= Ψ−121

[
Ψ22 −Ψ21(V

−1
11 )−1V−112

]
k̂t −Ψ−121 Ψ22k̂t

−Ψ−121 Φ2

[
ât
b̂t

]
+ Ψ−121

[(
−Ψ21(V

−1
11 )−1D−11 (I−D−11 )−1Φ̃1 + Φ2

)] [ât
b̂t

]
= −(V−111 )−1V−112 k̂t − (V−111 )−1D−11 (I−D−11 )−1Φ̃1

[
ât
b̂t

]
So:

q̂t =
{

(I + ϑ)α−
[
(ϑ+ εQI) (I− SM )

−1
SM

(
I− SM1

)
+ ϑ

]
(V−111 )−1V−112

}
k̂t

+

[
εQ − 1

εQ
ϑ+

(
ϑ

εQ
+ I

)
(I− SM )

−1
(I + SM (εQ − 1))

]
ât + (I + ϑ) (I− α) b̂t

−
[
(ϑ+ εQI) (I− SM )

−1
SM

(
I− SM1

)
+ ϑ

]
(V−111 )−1D−11 (I−D−11 )−1Φ̃1

[
ât
b̂t

]
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ωBt+1

(
≡ b̂t+1 − b̂t

)
so that

∆q̂t+1 = ΦkqMkkΦ
−1
kq ∆q̂t + Φbqω

B
t+1 + Φaqω

A
t+1 +

+
[
ΦkqMka − ΦkqMkkΦ

−1
kq Φaq

]
ωAt +

[
ΦkqMkb − ΦkqMkkΦ

−1
kq Φbq

]
ωBt

Parsing out the factor-neutral productivity shocks yields Equation 10 of the paper. This
equation also describes how one can recover labor-augmenting productivity shocks using data
on industries’output growth rates.

In the remainder of this subsection, we work out the expression for industries’value
added growth rates. Begin with the first-order condition for industries’intermediate input
purchases

MtJP
in
tJ = µJA

εQ−1
tJ

(
P in
tJ

PtJ

)1−εQ
PtJQtJ

V AtJ = PtJQtJ −MtJP
in
tJ

= PtJQtJ

[
1− µAεQ−1

tJ

(
P in
tJ

PtJ

)1−εQ
]

V AtJ
PtJ

= QtJ ·
[

1− µAεQ−1
tJ

(
P in
tJ

PtJ

)1−εQ
]

So, the log-linearized expression for real value added is

v̂t = q̂t − SM · (εQ − 1) · ât − SM · (εQ − 1) ·
(
I− SM1

)
p̂t

Substituting out the expression for q̂t:

v̂t = Φkqk̂t + Φbq b̂t +
[
Φaq − SM · (εQ − 1)

]
ât

−SM · (εQ − 1) ·
(
I− SM1

)
p̂t

And then substituting out the expression for p̂t:

∆v̂t =
[
Φkq + SM · (εQ − 1) ·

(
I− SM1

)
· (V−1

11 )−1V−1
12

]
∆k̂t

+Φbqω
B
t +

[
Φaq − SM · (εQ − 1)

]
ωAt

+SM · (εQ − 1) ·
(
I− SM1

)
· (V−1

11 )−1D−1
1 (I−D−1

1 )−1Φ̃1

[
ωAt
ωBt

]
Equation 57 allows one to recursively compute the variance-covariance matrix of ∆k̂t.

From here, in combination with the last equation, one can write the covariance matrix of
value added as a function of the covariance matrix of sectoral productivity shocks.
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F.6 Calculations related to Section 2.4

In this section, I solve for covariance of industries’output as functions of the model
parameters and the exogenous TFP terms. The solution involves three steps. First, I solve
for the wage. Second, I solve for the relative prices and intermediate input cost shares. Third,
I solve for real sales. As there is no capital or durable goods, the decisions within each period
are independent of those made in other periods. As such, I will omit time subscripts in this
section.

Step 1: For later use, I will first solve for the wage in each period. For this portion of
the analysis, it will be suffi cient to examine how much the consumer wants to work and how
much she wants to consume. Since the consumer’s problems are separable across periods,
the objective function for the consumer is

U = logC − εLS
εLS + 1

L
εLS+1

εLS subject to

P · C = W · L .

The solution to this constrained optimization problem is:

W = L
1

εLS and C =
1

P
. (61)

Invoking the budget constraint of the representative consumer:

L
εLS+1

εLS = 1,

implying W = 1.
Step 2: Now consider the cost-minimization problem of the representative firm in indus-

try J . As I argued in the text, the cost-minimization problem implies the following recursive
equation for the marginal cost (equivalently, price) of industry J’s good:

PJ =
1

AJ

1− µ+ µ

[
N∑
I=1

1

N
(PI)

1−εM

] 1−εQ
1−εM


1

1−εQ

for J = {1, ...N}. (62)

The log-linear approximation to the previous equation is:

logPJ ≈ − logAJ +
µ

N

N∑
I=1

logPI . (63)

for all pairs of industries, so that Equation 63 implies:

logPJ ≈ − logAJ +
µ

N

N∑
I=1

[logPJ + logAJ − logAI ] .
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Re-arranging:

logPJ ≈ − logAJ −
µ

N (1− µ)

N∑
I=1

logAI .

Because all industries’cost shares are identical (both in the consumer’s preferences and
in the production of each industry’s intermediate input bundle):

logP in
J ≈ logP ≈ − 1

N (1− µ)

N∑
J=1

logAJ .

Step 3: The last task is to solve for QJ . To do so, apply the market clearing condition
for good I, plug in the intermediate input demand by customers of I, then re-arrange:

QI = CI +
N∑
J=1

MI→J .

QI = CI +
µ

N
(PI)

−εM
N∑
J=1

QJ (PJ)εQ−1 (P in
J

)εM−εQ
Next, take the log-linear approximation around the point at which all of the A’s equal 1:

logQI ≈ log

(
1

1− µ

)
+ (1− µ) logCI − µεM logPI +

µ

N

∑
J

logQJ

+
µ

N

N∑
J=1

(εQ − 1) logPJ + (εM − εQ) logP in
J .

logQI −
µ

N

∑
J

logQJ ≈ log

(
1

1− µ

)
+ (1− µ) logCI − µεM logPI +

µ

N

N∑
J=1

(εM − 1) logPJ

≈ log

(
1

1− µ

)
+ (1− µ) logCI (64)

+µεM logAI +
µ [εM (µ− 1) + 1]

N (1− µ)

N∑
I=1

logAJ

Given the preferences of the representative consumer, the demand function for good I
is:

logCI = log
1

N
− εD log

(
PI
P

)
− logP .

≈ log
1

N
+ εD

1

N

N∑
J=1

log

(
AI
AJ

)
+

1

N (1− µ)

N∑
J=1

logAJ

≈ log
1

N
+ εD logAI +

1− (1− µ) εD
N (1− µ)

N∑
J=1

logAJ
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Plug this expression back into Equation 64 and combine terms:

logQI −
µ

N

∑
J

logQJ ≈ (1− µ) log
1

N
+ log

(
1

1− µ

)
+ (µεM + (1− µ) εD) logAI

+

[
(1− µ) (1− (1− µ) εD) + µ [εM (µ− 1) + 1]

N

] N∑
J=1

logAJ
1− µ

≈ (1− µ) log
1

N
+ log

(
1

1− µ

)
+ (µεM + (1− µ) εD) logAI

+
1− (1− µ) (µεM + (1− µ) εD)

N

N∑
J=1

logAJ
1− µ (65)

Equation 65 is a system of N linear equations. The solution to these equations are

logQI ≈ log
1

N
+

1

1− µ log

(
1

1− µ

)
+ (µεM + (1− µ) εD) logAI

+
1

N

[(
1

1− µ

)2

− (µεM + (1− µ) εD)

]
N∑
J=1

logAJ (66)

Equation 66 is equivalent to the expression given in the body of the paper.

F.7 Calculations related to Section 3

In this appendix, I demonstrate that the instrumental variable strategy outlined in Ace-
moglu, Akcigit, and Kerr (2016) extends to a set-up in which sectoral production functions
are CES rather than Cobb-Douglas. To do so, I will extend the benchmark model to explic-
itly accommodate demand shocks. As in Acemoglu, Akcigit, and Kerr (2016), the model will
be static, with neither capital nor durable consumption goods. Also as in Acemoglu, Akcigit,
and Kerr (2016), I impose that the logarithm of productivity equals zero: logAI = logBI = 0
for all industries, I.

The goal of this exercise is to examine how a demand shock in one industry– in particular
the Government industry, which would be directly affected by an exogenous increase in
military spending– impacts output in other industries. In particular, I wish to show that a
linear relationship exists irrespective of the values of εM and εQ.

Begin with the Lagrangian of the social planner’s problem, dropping t subscripts:

L =
∑
I′

(DI′ξI′)
1
εD · log

[ N∑
J=1

(DJξJ)
1
εD (CtJ)

εD−1
εD

] εD
εD−1


− εLS
εLS + 1

(
N∑
J=1

LJ

) εLS+1

εLS

+ PJ

[
QJ − CJ −

N∑
I=1

MJ→I

]
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The production function is, as before:

QJ = AJ ·
[
(1− µJ)

1
εQ (LJ ·BtJ)

εQ−1
εQ + (µJ)

1
εQ (MJ)

εQ−1
εQ

] εQ
εQ−1

, where

MJ ≡
[∑

I

(
ΓMIJ
) 1
εM (MIJ)

εM−1
εM

] εM
εM−1

The first-order conditions associated with the planner’s problem are:

PJ = (DJξJ)
1
εD (CJ)

− 1
εD

(
N∑
I=1

(ξIDI)
1
εD∑

I′ (DI′ξI′)
1
εD

(CI)
εD−1
εD

)−1

(67)

PI
PJ

= (AJ)
εQ−1
εQ

(
QJ · µJ
MJ

) 1
εQ

(
MJ · ΓMIJ
MI→J

) 1
εM

.(
N∑

J ′=1

LJ ′

) 1
εLS

= PJ (AJ)
εQ−1
εQ BJ (QJ (1− µJ))

1
εQ (LJ ·BJ)

− 1
εQ .

(1− µJ)
1
εQ (LJ ·BJ)

εQ−1
εQ = (PJ)εQ−1 (AJ)

(εQ−1)
2

εQ (BJ)εQ−1 (QJ)
εQ−1
εQ (1− µJ)

(
N∑

J ′=1

LJ ′

) 1−εQ
εLS

µ
1
εQ

J (MJ)
εQ−1
εQ = (PJ)εQ−1 (AJ)

(εQ−1)
2

εQ (QJ)
εQ−1
εQ µJ

(
P in
J

)1−εQ

Combining the appropriate first-order conditions, and setting labor as the numeraire

good (so that
(∑N

J ′=1 LJ ′
) 1
εLS = 1) yields the following expression for industries’prices:

P
1−εQ
J = A

εQ−1
J ·

(1− µJ)B
εQ−1
J + µJ

(∑
I

ΓMIJP
1−εM
I

) 1−εQ
1−εM


Importantly, sectoral prices do not depend on the demand shocks. Also, with logAI =

logBI = 0, all sectoral prices equal 1.
As a second step, manipulating Equation 67 and invoking the fact that sectoral prices

are all equal 1, yields
CI = DIξI

Plugging this expression into the market clearing condition

QI = DIξI +
∑
J

MI→J
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Since prices are constant, d logQI = d(QIPI)
QIPI

= dQI
QI

and

QIPI = DIξIPI +
∑
J

MI→JPI

= DIξIPI +
∑
J

PJΓIJQJµJ

So

d (QIPI)

QIPI
= ξI

dDI

QI

+
∑
J

ΓIJµJ
d (QJPJ)

QIPI

= ξI
dDI

QI

+
∑
J

ΓIJµJQJPJ
QIPI

d (QJPJ)

QJPJ

In matrix form, industries’output levels are given by:

d log Q =
(
I− Γ̃

)−1

dD, (68)

where the elements of Γ̃ are given by ΓIJµJQJPJ
QIPI

. Equation 68 is equivalent to Equation A8
from Acemoglu, Akcigit, and Kerr (2016).41 Briefly, the reason why the result from Ace-
moglu, Akcigit, and Kerr (2016) extends to the current environment is that i) the impact of a
demand shock on industries’sales depends on the production elasticities of substitution only
if industries’prices react to demand shocks, but ii) demand shocks do not alter industries’
prices.

F.8 Solution of the model filter with government demand shocks

In this subsection I work through a version of the model filter in which the government
industry is not subject to productivity shocks. Instead, there are demand shocks in the
government industry. For this robustness check, I assume that all goods are nondurable. I
begin with the first-order condition from Equation 67

PtJ = (DtJξtJ)
1
εD (CtJ)

− 1
εD

(
N∑
I=1

(DtIξI)
1
εD∑

I′ (DtI′ξI′)
1
εD

(CtI)
εD−1
εD

)−1

Notice that demand shocks do not appear in any of the other first-order conditions. Nor
do they enter in the market-clearing conditions. To compute the log-linear approximation

41A parameter, λ, from Acemoglu, Akcigit, and Kerr (2016) describes the labor supply response from a
change in government spending. The equation, here, is consistent with λ→∞.
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(around the point at which all productivity and demand shocks equals 1), begin with

PtJ
PJ
· PJ = (DtJξJ)

1
εD (CJ)

− 1
εD (exp {ĉtJ})−

1
εD ×(

N∑
I=1

(DtIξI)
1
εD∑

I′ (DtI′ξI′)
1
εD

(
CtI
CI

) εD−1
εD

(CI)
εD−1
εD

)−1

and substitute in the steady-state relationship between consumption and prices

exp {p̂tJ} = exp
{
d̂tJ

} 1
εD exp {ĉtJ}−

1
εD × N∑

I=1

exp
{
d̂tI

} 1
εD

∑
I′ exp

{
d̂tI′
} 1
εD (ξI′)

1
εD

(ξI)
1
εD (CI)

εD−1
εD∑N

I′=1 (ξ′I)
1
εD (CI′)

εD−1
εD

exp {ĉtI}
εD−1
εD


−1

Taking derivatives of the logarithm of each side of the previous equation, around the point
at which p̂tJ = 0, d̂tJ = 0, and ĉtJ = 0 yields:

p̂tJ =
1

εD
d̂tJ −

1

εD
ĉtJ +

∑
I

(ξI)
1
εD (CI)

εD−1
εD∑N

I′=1 (ξ′I)
1
εD (CI′)

εD−1
εD

[1− εD]
[
ĉtI − d̂tI

]
In vector form, the log-linearized equation for consumption as a function of prices and
demand shocks is:

p̂t =
[
I + SCI (εD − 1)

] [
− 1

εD
ĉt +

1

εD
d̂t

]
⇒

ĉt = d̂t − εD
[
I + SCI (εD − 1)

]−1
p̂t

Plug this log-linearized equation into Equation 52 to substitute out the ĉt vector.

0 =

[
(εQ − 1) S̃QMT1 −

(
I− S̃QMT1

) (
I + ϑε−1

Q

)
(I− SM)−1 (I + SM (εQ − 1))−

(
I− S̃QMT1

)
ϑ
εQ − 1

εQ

]
ât

+ S̃QXT1δ
−1
K k̂t+1 +

[
S̃QXT1

(
1− δ−1

K

)
−
(
I− S̃QMT1

)
(I + ϑ)α

]
k̂t −

(
I− S̃QMT1

)
(I + ϑ) (I− α) b̂t + S̃QC d̂t

+
[
−εDS̃QC

[
I + SCI (εD − 1)

]−1
+ εQS̃

Q
MT1

(
I− SM1

)
+ εM S̃

Q
M

[
T1S

M
1 − T2

]
+ εX S̃

Q
X

[
T1S

X
1 − T2

]]
p̂t

−
(
I− S̃QMT1

) [
εQ (I− SM)−1 SM

(
I− SM1

)
+ ϑ

[
(I− SM)−1 SM

(
I− SM1

)
+ I
]]
p̂t

0 = −SX1 p̂t +
[
β(1− δK)SX1 + β̃ (I + ϑ)

(
I + (I − SM)−1 SM

(
I− SM1

))]
p̂t+1

+ β̃ (I + ϑ)

[
1

εQ
(I − SM)−1 (I + SM (εQ − 1)) +

εQ − 1

εQ
I

]
ât+1

+ β̃ (I + ϑ) (I− α) b̂t+1 + β̃ (−I + α + ϑα) k̂t+1
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Again, now with demand shocks, we have expressed the reduced system as

[
Et[p̂t+1]

k̂t+1

]
= Ψ

[
p̂t
k̂t

]
+

d

Φ

âtb̂t
d̂t


As in Appendix F.4, Ψ has N stable and N unstable eigenvalues. Here, the "d" in

d

Φ
refers to the modification of Φ to allow for demand shocks. Using a similar set of calculations
as in Appendix F.4, we arrive at the following equation for the evolution of the endogenous
state:

k̂t+1 = (Ψ22 −Ψ21(V−1
11 )−1V−1

12 )︸ ︷︷ ︸
≡Mkk

k̂t (69)

+

(
−Ψ21(V−1

11 )−1D−1
1 (I−D−1

1 )−1
d

Φ̃1 +
d

Φ2

)
︸ ︷︷ ︸

≡
[
d
Mka,

d
Mkb,

d
Mkd

]

âtb̂t
d̂t



As before

p̂t = Ψ−1
21 k̂t+1 −Ψ−1

21 Ψ22k̂t −Ψ−1
21

d

Φ2

âtb̂t
d̂t

 (70)

As before, the following equation describes q̂ as a function of the exogenous variables,
k̂, and p̂ :

q̂t = (I + ϑ) (I− α) b̂t + (I + ϑ)αk̂t (71)

+

[
εQ − 1

εQ
ϑ+

(
ϑ

εQ
+ I

)
(I− SM)−1 (I + SM (εQ − 1))

]
ât

+
[
(ϑ+ εQI) (I− SM)−1 SM

(
I− SM1

)
+ ϑ
]
p̂t

Plug Equation 69 and 70 in to 71 so that we may write:

q̂t = Φkqk̂t + Φbq b̂t + Φaqât + Φdqd̂t, (72)
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where the Φkq, Φbq,Φaq, and Φdq are matrices that collect the appropriate terms.42

So long as Φkq is invertible, Equation 72 is equivalent to

k̂t = Φ−1
kq q̂t − Φ−1

kq Φbq b̂t − Φ−1
kq Φaqât − Φ−1

kq Φdqd̂t

Equation 72, one period ahead, is

q̂t+1 = Φkqk̂t+1 + Φbq b̂t+1 + Φaqât+1 + Φdqd̂t+1

Apply Equation 69 to this previous equation

q̂t+1 = Φbq b̂t+1 + Φaqât+1 + Φdqd̂t+1

+Φkq

(
Mkkk̂t +

d

Mkaât +
d

Mkbb̂t +
d

Mkdd̂t

)
= Φbq b̂t+1 + Φaqât+1 + Φdqd̂t+1

+Φkq

d

Mkaât + Φkq

d

Mkbb̂t + ΦkqMkdd̂t + ΦkqMkkΦ
−1
kq q̂t

−ΦkqMkkΦ
−1
kq Φbq b̂t − ΦkqMkkΦ

−1
kq Φaqât − ΦkqMkkΦ

−1
kq Φdqd̂t

= Φdqd̂t+1 + Φbq b̂t+1 + Φaqât+1 + ΦkqMkkΦ
−1
kq q̂t +

[
Φkq

d

Mka − ΦkqMkkΦ
−1
kq Φaq

]
ât

+

[
Φkq

d

Mkb − ΦkqMkkΦ
−1
kq Φbq

]
b̂t +

[
Φkq

d

Mkd − ΦkqMkkΦ
−1
kq Φdq

]
d̂t

42Combine Equations 69 and 70:

p̂t = Ψ−121 k̂t+1 −Ψ−121 Ψ22k̂t −Ψ−121
d

Φ2

âtb̂t
d̂t


= Ψ−121

[
Ψ22 −Ψ21(V

−1
11 )−1V−112

]
k̂t −Ψ−121 Ψ22k̂t

−Ψ−121
d

Φ2

âtb̂t
d̂t

+ Ψ−121

[(
−Ψ21(V

−1
11 )−1D−11 (I−D−11 )−1

d

Φ̃1 +
d

Φ2

)]âtb̂t
d̂t


= −(V−111 )−1V−112 k̂t − (V−111 )−1D−11 (I−D−11 )−1

d

Φ̃1

âtb̂t
d̂t


So:

q̂t =
{

(I + ϑ)α−
[
(ϑ+ εQI) (I− SM )

−1
SM

(
I− SM1

)
+ ϑ

]
(V−111 )−1V−112

}
k̂t

+

[
εQ − 1

εQ
ϑ+

(
ϑ

εQ
+ I

)
(I− SM )

−1
(I + SM (εQ − 1))

]
ât + (I + ϑ) (I− α) b̂t

−
[
(ϑ+ εQI) (I− SM )

−1
SM

(
I− SM1

)
+ ϑ

]
(V−111 )−1D−11 (I−D−11 )−1

d

Φ̃1

âtb̂t
d̂t
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Finally, take two adjacent periods, and use the definitions of ωAt+1 (≡ ât+1 − ât), ωBt+1

(
≡ b̂t+1 − b̂t

)
,

and ωDt+1

(
≡ d̂t+1 − d̂t

)
so that

∆q̂t+1 = ΦkqMkkΦ
−1
kq ∆q̂t + Φdqω

D
t+1 + Φbqω

B
t+1 + Φaqω

A
t+1 +

+

[
Φkq

d

Mka − ΦkqMkkΦ
−1
kq Φaq

]
ωAt +

[
Φkq

d

Mkb − ΦkqMkkΦ
−1
kq Φbq

]
ωBt

+

[
Φkq

d

Mkd − ΦkqMkkΦ
−1
kq Φdq

]
ωDt

In the robustness check with productivity shocks in all non-government industries in
combination with demand shocks in the government sector, the filter is given by inverting
the following equation:

∆q̂t+1 = ΦkqMkkΦ
−1
kq ∆q̂t (73)

+

[
[Φaq][1:N,1:N−1]

... Φdq[1:N,N ]

]
·
[ [

ωAt+1

]
[1:N−1][

ωDt+1

]
N

]
+

[[
Φkq

d

Mka − ΦkqMkkΦ
−1
kq Φaq

]
[1:N,1:N−1]

...
[
Φkq

d

Mkd − ΦkqMkkΦ
−1
kq Φdq

]
[1:N,N ]

]

·
[ [

ωAt
]

[1:N−1][
ωDt
]
N

]
Since the government sector is the final (N th) industry, the filter recovers an N − 1 dimen-
sional productivity vector along with a single, final element of the demand shock vector.
In Equation 73, a [1 : N − 1] subscript refers to the first N − 1 elements of a vector;
a [1 : N, 1 : N − 1] subscript refers to the first N − 1 columns of a given matrix; and a
[1 : N,N ] subscript refers to the final column. Here, we have removed labor-augmenting
productivity shocks and factor-neutral productivity shocks in the N th (governmental) sector
as a source of output fluctuations.
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