
Econ 711 – Fall 2017 – First Half Final Exam – Solutions

1. Aggregating Demand (15 points)

Let X = R4
+. There are two consumers, with utility functions
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(a) Show that for each consumer i, at a given price level p, there is a wealth level wi(p) such

that the Marshallian demand for good 1 is positive if and only if wi > wi(p).

(b) Suppose that at various price levels p, and various individual wealth levels w1 > w1(p)
and w2 > w2(p), the two consumers’ Marshallian demand is observed. Will consumer
1’s observed choices satisfy GARP? Will consumer 2’s?

(c) Suppose that at these various price and wealth levels described in part (b), only the
combined demand x∗1 + x∗2 of the two consumers is observed. Will the aggregate demand
observations satisfy GARP? Why or why not?

For part (a), first note that any monotonic transformation of a consumer’s utility function leaves
their preferences, and therefore the solution to their consumer problem, unchanged. Thus, for
consumer 1, we can rewrite the Marshallian problem as
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subject to p · x ≤ w

Note that for i > 1, ∂u
∂xi
→∞ as xi → 0, so with positive wealth, consumer 1 will always consume

a strictly positive amount of goods 2, 3, and 4.
Since preferences are LNS, we know that p · x = w, or x1 = 1

p1
(w − p2x2 − p3x3 − p4x4). Let

(x̃2, x̃3, x̃4) be the solution to the problem

max
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which would be the consumer’s problem if there were no nonnegativity constraint x1 ≥ 0 on the
first good. This “unconstrained” problem has a unique solution, since we can rewrite it as
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and each of the three small maximization problems is strictly concave and therefore has a unique
maximizer.

If w − p2x̃2 − p3x̃3 − p4x̃4 ≥ 0, then the solution to the (“constrained”) consumer problem is
the same as the unconstrained,

x∗(p, w) =

(
1
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as the non-negativity constraint on x1 does not bind. On the other hand, if w−p2x̃2−p3x̃3−p4x̃4 <
0, then w is not high enough for consumer 1 to afford his “unconstrained-optimal” quantities of
the last three goods; since the marginal utility of each good is strictly decreasing, when this is the
case, the consumer will spend all his income on the last three goods and set x∗1 = 0. The same
argument holds for consumer 2.

For part (b), the answer is yes, and yes; any choices which are based on optimization according
to rational preferences will satisfy GARP.

For part (c), the answer is yes again. The key is to note again that a monotonic transformation
of a utility function does not change a consumer’s Marshallian demand. Thus, these two consumers
behave exactly like consumers with utility functions

u1(x) = x1 + x
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We showed earlier that this implies indirect utility functions v1(p, w1) and v2(p, w2) of the form
ai(p) + b(p)wi, which is the sufficient condition for aggregate demand to be consistent with choices
of a single rational consumer, which must therefore satisfy GARP. (It’s important that the obser-
vations are all from price/wealth combinations where wi ≥ wi(p) for both consumers, since without
that, the indirect utility function would not be linear in wealth and the argument would break
down.)

(To see that vi(p, wi) = ai(p)+ b(p)wi, we can note that for wi ≥ wi(p), the consumer optimally
chooses

x∗(p, w) =
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and therefore

v1(p, w1) = u1(x
∗(p, w1)) =
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which is a1(p) + b(p)w1 if we let b(p) = 1
p1

and

a1(p) = −p2x̃2 + p3x̃3 + p4x̃4
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and similarly for v2.)
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2. The Law of Demand (30 points)

Throughout, assume that preferences are locally non-satiated, X = Rk
+, p� 0, and w > 0.

(a) (Compensated Law of Demand.) Suppose there is a price change from p to p′. Let
x ∈ x(p, w) and x′ ∈ x(p′, w′), where the new wealth w′ is compensated such that the
consumer is as happy as before, i.e., v(p′, w′) = v(p, w). Show that (p′−p) · (x′−x) ≤ 0.

(b) (“Overcompensated Law of Demand.”) Suppose there is a price change from p to p′.
Let x ∈ x(p, w) and x′ ∈ x(p′, w′) where the new wealth w′ is compensated such that the
consumer can just afford the original bundle at the new prices, i.e., w′ = p′ · x. Show
that (i) v(p′, w′) ≥ v(p, w) and (ii) (p′ − p) · (x′ − x) ≤ 0.

(c) (“Undercompensated Law of Demand.”) Suppose there is a price change from p to p′.
Let x ∈ x(p, w) and x′ ∈ x(p′, w′), where the new wealth w′ is compensated such that
the cost of the new bundle, evaluated at the old prices, is the same as the initial wealth,
w = p · x′. Show that (i) v(p′, w′) ≤ v(p, w) and (ii) (p′ − p) · (x′ − x) ≤ 0.

For part (a), we know that v(p′, w′) = v(p, w); since v(p, w) = u(x) and v(p′, w′) = u(x′), this
means u(x) = u(x′). Since preferences are locally non-satiated, this means that since x is optimal
at prices p and wealth w,

p · x ≤ p · x′

(If p · x′ < p · x = w, given LNS preferences, there would be another bundle close to x′ which was
strictly preferred to x′ (and therefore x), contradicting x being optimal.) By the same logic,

p′ · x′ ≤ p′ · x

since x′ was chosen at p′. Thus,

p′ · (x′ − x) ≤ 0 ≤ p · (x′ − x)

and therefore
(p′ − p) · (x′ − x) ≤ 0

For part (b), since x ∈ B(p′, w′) but x′ is chosen instead, we know u(x′) ≥ u(x), and therefore
v(p′, w′) = u(x′) ≥ u(x) = v(p, w).

In addition, since u(x′) ≥ u(x) and x is chosen at prices (p, w), we know that p · x′ ≥ w. (If
not, then since preferences are LNS, there would be a bundle near x′ still inside the budget set that
dominated x.) Thus, p · x′ ≥ p · x, or p · (x′ − x) ≥ 0. On the other hand, p′ · x = w′ = p′ · x′, or
p′ · (x′ − x) = 0; so

(p′ − p) · (x′ − x) ≤ 0

For part (c), it’s basically the same argument as part (b), but with (p′, w′, x′) and (p, w, x)
switched. First of all, since w = p·x′, x was chosen when x′ was available, establishing u(x) ≥ u(x′).
Since v(p, w) = u(x) and v(p′, w′) = u(x′), this proves v(p, w) ≥ v(p′, w′).

Second, since u(x) ≥ u(x′) and x′ is chosen at (p′, w′), it must be that p′ · x ≥ w = p′ · x′, or
p′ · (x′ − x) ≤ 0. We know that p · x′ = w = p · x, or p · (x′ − x) = 0; so (p′ − p) · (x′ − x) ≤ 0,
completing the proof.
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3. Topkis and the Consumer Problem (15 points)

Let X = R2
+; fix a target utility level ū, and for x1 ≥ 0, define

x2(x1) = min{x2 : u(x1, x2) ≥ ū}

or as +∞ if the set on the right is empty. We can write the Hicksian expenditure minimization
problem as

min
x≥0

p · x subject to u(x) ≥ ū

= min
x1,x2≥0

p · x subject to x2 ≥ x2(x1)

= min
x1≥0
{p1x1 + p2x2(x1)}

Since we’re used to maximizing rather than minimizing to apply Topkis, we can write this as

max
x1≥0
{−p1x1 − p2x2(x1)}

(a) Show that when X = R2
+ and Hicksian demand is single-valued, this approach yields an

alternate proof that Hicksian demand is downward-sloping in own price.

(b) Show that when X = R2
+ and Hicksian demand is single-valued, this approach yields an

alternate proof that with only two goods, the goods must be substitutes.

(c) We could extend this approach to X = R3
+ by defining

x3(x1, x2) = min{x3 : u(x1, x2, x3) ≥ ū}

and solving
max

x1,x2≥0
{−p1x1 − p2x2 − p3x3(x1, x2)}

Would the Topkis-based proof that h1 is decreasing in p1 go through? Why or why not?

For part (a), the objective function g(x1, p1) = −p1x1−p2x2(x1) has increasing differences in x1 and
−p1, so Topkis’ Theorem applies, telling us that x∗1 (in this case, Hicksian demand) is decreasing
in p1 if the problem has a unique solution.

For part (b), we can calculate ∂g
∂p2

= −x2(x1), and note that as long as x2 is weakly decreasing in

x1,
∂g
∂p2

is increasing in x1 and therefore g has increasing differences in x1 (the decision variable)
and p2. Thus, x∗1 is increasing in p2, so the goods must be substitutes.

To show that x2 is weakly decreasing in x1, it’s easiest to assume that u(x1, x2) is weakly
increasing in x1. In that case, the set {x2 : u(x1, x2) ≥ ū} is getting larger as x1 increases, so its
minimum is falling; so x2(x1) must be weakly decreasing in x1.

(Even if we do not assume that u is everywhere weakly increasing in x1, it must be weakly
increasing in x1 at the optimum, i.e., at the solution to the consumer’s expenditure minimization
problem. If u were strictly decreasing in x1 at a point x with u(x) ≥ ū, then x′ = (x1− ε, x2) would
also satisfy u(x′) ≥ ū for ε sufficiently small, and would be strictly cheaper than x. Thus, even if
u were non-monotone, it would still be weakly increasing in x1 at the “relevant” points. However,
we only proved Topkis’ Theorem for objective functions which satisfy single crossing globally, not
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just at select points, so the “simple” proof I had in mind would require the assumption that u is
weakly increasing in x1.)

For part (c), the main complication would be that we would now be maximizing over two choice vari-
ables, and we would need to ensure that the objective function was supermodular. Given the objec-

tive function, this would require that −p3 ∂
2x3(x1,x2)
∂x1∂x2

≥ 0 everywhere; or else that −p3 ∂
2x3(x1,x2)
∂x1∂x2

≤ 0
everywhere, since then we could flip the sign one of the two choice variables. If one of these two
conditions could be shown – which would depend on the properties of the utility function – then
the proof would extend.
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4. Monotone Selection Theorems (20 points)

(a) For a one-dimensional choice set X ⊆ R, prove the extension to Topkis’ Theorem we
stated (without proof) in class, commonly known as the Monotone Selection Theorem:

Theorem. Let X ⊆ R and T ⊆ R, let g : X × T → R, and let

x∗(t) = arg max
x∈X

g(x, t)

Suppose that g has strictly increasing differences – that is, that x′ > x implies
g(x′, t)−g(x, t) is strictly increasing in t. Then for any t′ > t and any selection x ∈ x∗(t)
and x′ ∈ x∗(t′), it must be that x′ ≥ x.

(b) Prove the following multi-dimensional version of the Monotone Selection Theorem:

Theorem. Let X = X1 ×X2 × · · · ×Xm be a product set, with Xi ⊆ R for each i. Let
T ⊆ R, let g : X × T → R, and let

x∗(t) = arg max
x∈X

g(x, t)

Suppose that g is supermodular in X, has increasing differences in X and t, and has
strictly increasing differences in x1 and t. Then for any t′ > t and any x ∈ x∗(t) and
x′ ∈ x∗(t′), it must be that x′1 ≥ x1.

For part (a), it’s easiest to prove this by contradiction. Let t′ > t, suppose g has strictly increasing
differences, let x ∈ x∗(t) and x′ ∈ x∗(t′), and suppose x′ < x.

Since x′ ∈ x∗(t′), we know that g(x′, t′) ≥ g(x, t′), or

g(x, t′)− g(x′, t′) ≤ 0

Similarly, since x ∈ x∗(t), we know g(x, t) ≥ g(x′, t), or

g(x, t)− g(x′, t) ≥ 0

But since we’re assuming x > x′ and g has strictly increasing differences, this means that since
t′ > t

g(x, t′)− g(x′, t′) > g(x, t)− g(x′, t) ≥ 0

which gives us a contradiction since we had already seen this must be weakly negative. Thus, it
must be that x′ ≥ x to avoid the contradiction.

For part (b), it’s again easiest to use proof by contradiction. Let t′ > t, let x ∈ x∗(t) and
x′ ∈ x∗(t′), and suppose x′1 < x1.

Since x ∈ x∗(t), we know that g(x, t) ≥ g(y, t) for any y ∈ X, so

g(x, t)− g(x ∧ x′, t) ≥ 0

Next, we want to show that if g has increasing differences in X and t, and strictly increasing
differences in x1 and t, then

g(x, t′)− g(x ∧ x′, t′) > g(x, t)− g(x ∧ x′, t)
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Let’s let y = x ∧ x′, and define zj to be a vector consisting of the first j elements of x followed by
the last j elements of y, that is,

zm = (x1, x2, x3, . . . , xm−1, xm)

zm−1 = (x1, x2, x3, . . . , xm−1, ym)

zm−2 = (x1, x2, x3, . . . , ym−1, ym)
...

z2 = (x1, x2, y3, . . . , ym−1, ym)

z1 = (x1, y2, y3, . . . , ym−1, ym)

z0 = (y1, y2, y3, . . . , ym−1, ym)

Then we can write

g(x, t)− g(y, t) = g(zm, t)− g(z0, t) = g(zm, t)− g(zm−1, t)

+ g(zm−1, t)− g(zm−2, t)
...

+ g(z2, t)− g(z1, t)

+ g(z1, t)− g(z0, t)

Next, note that since y = x ∧ x′, and the ith element of x ∧ x′ is the min of xi and x′i and
is therefore weakly lower than xi, each difference g(zj , t) − g(zj−1, t) is the effect on g of a weak
increase in the jth element of its argument, holding the other m − 1 elements constant. This
means that if g has increasing differences in each xj and t, then each of these differences is weakly
increasing in t. Finally, note that in the last one, g(z1, t)−g(z0, t), x1 > y1, because by assumption
x1 > x′1 = min{x1, x′1}; so if g has strictly increasing differences in x1 and t, this last difference is
strictly increasing in t. This means that for t′ > t, we’ve proved that

g(x, t′)− g(x ∧ x′, t′) > g(x, t)− g(x ∧ x′, t) ≥ 0

and therefore
g(x, t′)− g(x ∧ x′, t′) > 0

To complete the proof, we note that since x′ is optimal at t′,

g(x′, t′)− g(x ∨ x′, t′) ≥ 0

and so adding the two,

g(x, t′)− g(x ∧ x′, t′) + g(x′, t′)− g(x ∨ x′, t′) > 0

or
g(x, t′) + g(x′, t′) > g(x ∧ x′, t′) + g(x ∨ x′, t′)

which contradicts g being supermodular in x.
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5. A Two-Factory Firm (20 points)

Consider a company with one output, and production function f : Rm
+ → R+. Suppose f is

such that the firm’s cost minimization problem always has a unique solution.

(a) Recall that f is homothetic if it is a monotonic transformation of a function which is
homogeneous of degree 1, that is, if f(z) = h(g(z)) with g(λz) = λg(z) and h strictly
increasing.

i. Show that if f is homothetic, then the firm’s conditional factor demand

z(q, w) = arg min
z∈Rm

+

w · z subject to f(z) ≥ q

is increasing in q for every input good.

ii. Show therefore that if f is homothetic, the firm’s cost function

c(q, w) = min
z∈Rm

+

w · z subject to f(z) ≥ q

has increasing differences in q and wi for every input price wi.

(b) Now suppose the firm sells its output in City A, but has two plants that can produce it,
one in City A and one in Town B. The two plants use the same technology, represented
by the homothetic production function f , but the inputs for each plant are purchased
locally, and their prices vary in the two locations. Town B input prices tend to be lower,
but the firm must also pay a transportation cost t to transport each unit of the good from
Town B to City A. Thus, the cost of producing qA units in the City A plant is

cA = c(qA, wA)

and the cost of producting qB units in the Town B plant is

cB = c(qB, wB) + tqB

i. Show that if the firm is a price taker in both input and output markets, its production
in the City A plant is independent of Town B input prices and the transportation
cost.

ii. Suppose now that the firm is a price taker in input markets but not in the output
market, and therefore chooses output levels to maximize the objective function

(qA + qB)P (qA + qB)− c(qA, wA)− c(qB, wB)− tqB

where P (·) is strictly decreasing. Suppose that P (q) is differentiable and concave in
q, and that the firm’s problem has a unique solution at each price level. Prove what
happens to qA and qB as wB

i (the price of one of the input goods in Town B) rises.
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For part (a)i, consider the firm’s cost minimization problem

z(q, w) = arg min
z∈Rm

+

w · z subject to f(z) ≥ q

= arg min
z∈Rm

+

w · z subject to h(g(z)) ≥ q

= arg min
z∈Rm

+

w · z subject to g(z) ≥ h−1(q)

= arg min
z∈Rm

+

w · z subject to g

(
z

h−1(q)

)
≥ 1

Changing variables to z̃ = z
h−1(q)

,

z̃(q, w) = arg min
z̃∈Rm

+

w ·
(
h−1(q)z̃

)
subject to g(z̃) ≥ 1

= arg min
z̃∈Rm

+

h−1(q) (w · z̃) subject to g(z̃) ≥ 1

whose solution does not depend on q. Thus,

z̃(q, w) =
1

h−1(q)
z(q, w)

is the same for all q; since h is strictly increasing, h−1 is strictly increasing, so

z(q, w) = h−1(q)z̃(w)

is increasing in q in every dimension.

For part (a)ii, we can use Shepard’s Lemma, which gives

∂c(q, w)

∂wi
= zi(q, w)

which we just showed was increasing in q, so c has increasing differences in q and wi for each i.

For part (b)i, if the firm is a price taker, we can write its problem as

max
qA,qB≥0

{
p(qA + qB)− c(qA, wA)− c(qB, wB)− tqB

}
= max

qA≥0

{
pqA − c(qA, wA)

}
+ max

qB≥0

{
pqB − c(qB, wB)− tqB

}
so the firm’s optimal production from each plant is independent of the problem it faces at the other
plant, hence qA is independent of wB and t.
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For part (b)ii, let g(qA, qB, wB
i ) denote the firm’s objective function, holding the other input

prices (including t) fixed. Note that

∂g

∂qA
= P (qA + qB) + (qA + qB)P ′(qA + qB)− c′(qA, wA)

and therefore

∂2g

∂qA∂qB
= P ′(qA + qB) + P ′(qA + qB) + (qA + qB)P ′′(qA + qB)

Since P is decreasing and concave, P ′ ≤ 0 and P ′′ ≤ 0, so this is everywhere weakly negative. Thus,
to make the problem supermodular, we’ll “flip the sign” of qA, and consider the firm choosing −qA
and qB, knowing the objective function is now supermodular.

(If P is not twice-differentiable, this still works, because ∂g
∂qA

given above is decreasing in qB,

since P is decreasing, P ′ is negative, and P ′ is decreasing since P is concave.)
Now,

∂g

∂qB
= P (qA + qB) + (qA + qB)P ′(qA + qB)− ∂c(qB, wB)

∂qB

and so
∂2g

∂qB∂wB
i

= −∂
2c(qB, wB)

∂qB∂wB
i

We showed in part a.ii above that the cost function for each plant has increasing differences in

quantity and input prices, so ∂2c(qB ,wB)

∂qB∂wB
i
≥ 0 and therefore ∂2g

∂qB∂wB
i
≤ 0, and we will therefore want

to think of the parameter in question as −wB
i .

From above, ∂g
∂(−qA)

= − ∂g
∂qA

does not depend on wB
i , we can say that ∂g

∂(−qA)
is weakly increasing

in −wB
i .

So if we think of the firm’s objective function as a function of the choice variables −qA and qB

and the parameter −wB
i , the problem is supermodular and has increasing differences, so Topkis’

Theorem applies. Topkis tells us that (−qA, qB) is increasing in −wB
i . Since the firm’s problem

has a unique solution, this means that as wB
i rises, −wB

i falls, so −qA and qB fall – meaning that
qA goes up and qB goes down in response to an increase in wB

i .
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