
1. Aggregate Hicksian Demand (30 points)

Suppose there are n ≥ 2 consumers, and consumer i ∈ {1, 2, . . . , n} has indirect utility

vi(p, wi) = ai(p) +
wi

c(p)

This is the same formulation you’ve seen before, just with c(p) = 1/b(p), because this will

simplify algebra later in the problem. You’ve seen that this implies the combined Marshallian

demand
∑

i x
i(p, wi) of the n consumers is the same as the demand of a single “representative

consumer” with indirect utility

V (p,W ) = A(p) +
W

c(p)

where A(p) =
∑

i ai(p) and W =
∑

iwi.

(a) Calculate the expenditure function ei(p, ui) for consumer i, and the expenditure function

E(p, U) for the representative consumer, and show that
∑

i ei(p, ui) = E(p,
∑

i ui).

Since we know that for any valid indirect utility function and expenditure function,

v(p, e(p, u)) = u

we can plug in and find

ui = vi(p, ei(p, ui)) = ai(p) +
ei(p, ui)

c(p)
−→ ei(p, ui) = c(p) (ui − ai(p))

and similarly

E(p, U) = c(p)(U −A(p))

Then

∑
i

ei(p, ui) =
∑
i

c(p)(ui − ai(p)) = c(p)

(∑
i

ui −
∑
i

ai(p)

)

= c(p)

(∑
i

ui −A(p)

)
= E

(
p,
∑
i

ui

)
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(b) Calculate consumer i’s Hicksian demand hi1(p, ui) for good 1, and the representative

consumer’s H1(p, U), and show that
∑

i h
i
1(p, ui) = H1(p,

∑
i ui).

We can calculate i’s Hicksian demand for good 1 as

hi1(p, ui) =
∂ei

∂p1
(p, ui) =

∂c(p)

∂p1
ui −

∂c(p)

∂p1
ai(p)− c(p)

∂ai(p)

∂p1

and similarly

H1(p, U) =
∂E

∂p1
(p, U) =

∂c(p)

∂p1
U − ∂c(p)

∂p1
A(p)− c(p)∂A(p)

∂p1

We can then calculate∑
i

hi1(p, ui) =
∂c(p)

∂p1

∑
i

ui −
∂c(p)

∂p1

∑
i

ai(p)− c(p)
∂(
∑

i ai(p))

∂p1

= H1 (p,
∑

i ui)

(c) Show that if the price of good 1 falls from p01 to p11, the sum of the Compensating Variation

of the n consumers is the same as the CV of the representative consumer.

Compensating Variation is calculated as

CV =

∫ p01

p11

h1(p, u
0)dp1

where u0 = v(p0, w), so if we let u0i = vi(p
0, wi),

∑
i

CVi =
∑
i

∫ p01

p11

hi1(p, u
0
i )dp1 =

∫ p01

p11

(∑
i

hi1(p, u
0
i )

)
dp1 =

∫ p01

p11

H i
1

(
p,
∑
i

u0i

)
dp1

Now, since V (p0,
∑

iwi) =
∑

i vi(p
0, wi) =

∑
i u

0
i ,∫ p01

p11

H i
1

(
p,
∑
i

u0i

)
dp1 = CVrepresentative consumer

giving the result.

Alternatively, we can use the definition

CV = e(p0, u0)− e(p1, u0)
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where u0 = v(p0, w). Given the answer to 1(a) above,∑
i

CVi =
∑
i

(
c(p0)(u0i − ai(p0))− c(p1)(u1i − ai(p1))

)

= c(p0)

(∑
i

u0i −A(p0)

)
− c(p1)

(∑
i

u0i −A(p1)

)

= E

(
p0,
∑
i

u0i

)
− E

(
p1,
∑
i

u0i

)

Since

U0 =
∑
i

u0i =
∑
i

vi(p
0, wi) = V

(
p0,
∑
i

wi

)
is the initial indirect utility of the representative consumer, E(p0, U0) − E(p1, U0) =∑

iCVi is the CV of the representative consumer.
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2. Zero Demand (20 points)

Suppose preferences are locally non-satiated. Show that if Marshallian demand for good i is

0 at prices p, it can’t become positive when the price of good i rises.

(Formally, if p′i > pi and p′j = pj for all j 6= i, show that if there’s any x ∈ x(p, w) such that

xi = 0, then at every x′ ∈ x(p′, w), x′i = 0.)

This is easiest to prove by contradiction. Suppose this were false – that there were some

x ∈ x(p, w) with xi = 0, and some x′ ∈ x(p′, w) with x′i > 0. Since preferences are LNS,

Walras’ Law implies p · x = p′ · x′ = w.

The key thing to notice is that since xi = 0 and p′j = pj for every j 6= i, p′ · x = p · x = w;

and since x′i > 0 and p′i > pi, p · x′ < p′ · x′ = w. We can then argue it a few different ways:

� First, we can argue directly: since x ∈ B(p′, w) and x′ ∈ x(p′, w), x′ % x; then since

x′ ∈ B(p, w) and x ∈ x(p, w), x′ ∈ x(p, w) as well; but since p · x′ < w, this would

contradict Walras’ Law.

� Alternatively, we could make basically the same argument using WARP: since x and x′

are both in both B(p, w) and B(p′, w), with x ∈ C(B(p, w)) and x′ ∈ C(B(p′, w)), we

must have x′ ∈ C(B(p, w)), which would again contradict Walras’ Law.

� Finally, we could make basically the same argument using GARP: since x ∈ x(p, w) and

p ·x′ ≤ w, x %D x′ and therefore x %R x′; but since x′ ∈ x(p′, w) and p′ ·x < w, x′ �D x,

which would contradict GARP.

I would give partial credit for someone who tried to argue using the Slutsky Equation. One

could note that
∂xi
∂pi

=
∂hi
∂pi
− xi

∂xi
∂w

and that ∂hi
∂pi
≤ 0 (always) and the second term is zero when xi = 0, so ∂xi

∂pi
≤ 0 whenever

xi = 0. However, this is not worth full credit, because (a) the problem didn’t specify that

demand was single-valued or differentiable, and (b) having derivative zero doesn’t imply

something is not increasing. (The function f(z) = z2 has derivative zero whenever it’s equal

to zero, and yet is strictly increasing on <+.)
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3. The Slutsky Equation (20 points)

Suppose demand is single-valued and differentiable. Write the Slutsky equation for the change

in demand for good 1 when the price of good 2 changes. For each of the following cases,

explain whether you can predict the sign of ∂x1
∂p2

, and why or why not:

(a) goods 1 and 2 are complements, good 1 is a normal good and good 2 is an inferior good

(b) goods 1 and 2 are substitutes, and goods 1 and 2 are both normal goods

(c) there are only two goods and good 2 is a Giffen good

The Slutsky equation is
∂x1
∂p2

=
∂h1
∂p2
− x2

∂x1
∂w

For the three cases:

(a) If 1 and 2 are complements, ∂h1
∂p2

< 0, and if good 1 is normal, ∂x1
∂w > 0, so ∂x1

∂p2
< 0

(b) If 1 and 2 are substitutes, ∂h1
∂p2

> 0, and if 1 is normal, ∂x1
∂w > 0; so ∂x1

∂p2
could be either

positive or negative, depending on which effect (substitution or wealth) dominates

(c) It’s not apparent from the Slutsky equation, but when good 2 is a Giffen good, ∂x1
∂p2

< 0.

This is because by ∂x2
∂p2

> 0 (the definition of a Giffen good), and (assuming preferences

are LNS) p1x1 + p2x2 = w must continue to hold as p2 increases.

(With two goods, they must be substitutes, so ∂h1
∂p2

> 0; if good 2 is a Giffen good, then

it is inferior, and with only two goods, this means good 1 must be normal, so ∂x1
∂w > 0

as well, which is why the result isn’t obvious from the Slutsky equation.)

(Please note that the solution to this part was originally incorrect.)
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4. Intertemporal Choice (30 points)

Consider a simple model of intertemporal choice, within our static utility-maximization frame-

work. The “goods” 1 through k represent consumption in each of k different time periods, and

for x ∈ <k
+,

u(x) =

k∑
i=1

βi−1v(xi)

where β ∈ (0, 1) and v : <+ → < is strictly increasing, strictly concave, differentiable, and

satisfies an “Inada condition” limz→0 v
′(z) = +∞. The current “price” of good i is

pi =
1

(1 + r)i−1

reflecting the fact that the consumption good costs the same in each period, but that money

saved today grows at an interest rate r until it is used to purchase the consumption good in

period i.

(a) If w > 0, show that Marshallian demand for every good is strictly positive, x(p, w)� 0.

Briefly, when ∂u
∂xi

= ∞ whenever xi = 0, it will never be optimal to consume none of

good i given positive wealth, because the first small amount gives unboundedly large

marginal utility per dollar.

More formally, we know the Kuhn-Tucker conditions are

∂u

∂xi
(x) = λpi − µi

With positive wealth and LNS preferences, we’ll definitely consume something, so there’s

some good j where xj > 0 and therefore µj = 0, so

λ =
1

pj

∂u

∂xj
(x) =

1

pj
βj−1v′(xj)

which, since xj > 0, is finite. Thus, if there was any good consumed at zero quantity, it

would require
∂u

∂xi
(x) = βi−1v′(0) = λpi − µi

which is impossible since v′(0) =∞ but λpi − µi is finite.
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(b) Show that if β(1+r) > 1, consumption increases from period to period (xi+1 > xi), while

if β(1 + r) < 1, consumption decreases from period to period.

Knowing that x � 0, we therefore know that µi = 0 for all i, so the Kuhn-Tucker

conditions are now

∂u

∂xi
(x) = λpi −→ βi−1v′(xi) =

1

(1 + r)i−1
λ

or

(β(1 + r))i−1 v′(xi) = λ

for every i. If β(1+r) > 1, then (β(1 + r))i−1 is increasing in i, and v′(xi) must therefore

decrease in i; since v is strictly concave, this means xi must increase in i. If β(1+r) < 1,

then (β(1 + r))i−1 is decreasing in i, and v′(xi) must therefore increase in i, meaning xi

must decrease in i.

(Alternatively, one could divide consecutive Kuhn-Tucker conditions and find

β(1 + r) =
v′(xi)

v′(xi+1)

and reach the same conclusion: if β(1 + r) > 1, this requires v′(xi) > v′(xi+1) and

therefore xi < xi+1, and vice versa.

(c) Now suppose one period has passed, and the consumer has consumed x1(p, w) according

to plan. Show that his choices are time-consistent: that if he were to take his remaining

budget w̄ = (1 + r)(w− p1x1) and the current prices p′i = 1
(1+r)i−2 and solve his forward-

looking consumer problem

max

k∑
i=2

βi−2v(xi) subject to

k∑
i=2

p′ixi ≤ w̄

his new choices would match the original solution to his consumer problem.

One way to do this is to consider the original problem as two nested optimization prob-

lems: in the inner problem, optimally choose (x2, . . . , xk) given a fixed choice of x1, and

in the outer problem, choose x1 optimally. That is, we can restate the original consumer

problem as

max
x1∈[0, w

p1
]

{
v(x1) +

(
max

x2,...,xk

k∑
i=2

βi−1v(xi) subject to
k∑

i=2

pixi ≤ w − p1x1

)}

If we let y denote the last k − 1 goods, and y(x1) as the solution to the inner problem

given the outer problem, then x∗ = (x∗1, x
∗
2, . . . , x

∗
k) = (x∗1, y(x∗1)). (At the time all of the
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xi are being chosen, the last k− 1 must be the optimal choice given the first one, or the

whole bundle would not be optimal.) Thus, we know that

(x∗2, . . . , x
∗
k) solves max

x2,...,xk

k∑
i=2

βi−1v(xi) subject to
k∑

i=2

pixi ≤ w − p1x∗1

Now, let (z2, . . . , zk) be the solution to the “one-period-later problem” described in the

question. By definition,

(z2, . . . , zk) solves max
z2,...,zk

k∑
i=2

βi−2v(zi) subject to
k∑

i=2

p′izi ≤ (1 + r)(w − p1x∗1)

where p′i = 1
(1+r)i−2 and pi = 1

(1+r)i−1 . But we can rewrite the latter problem as

1

β
max

z2,...,zk

k∑
i=2

βi−1v(zi) subject to
k∑

i=2

pizi ≤ w − p1x∗1

making it clear that it’s exactly equivalent to the original “inner” problem of choosing

{x2, . . . , xk} given x1, and therefore has the same solution.

Alternatively, one could focus on the first-order (Kuhn-Tucker) conditions the solutions

to each must satisfy. As noted above, the first problem is characterized by the conditions

(β(1 + r))i−1v′(xi) = λ

for each i = 1, 2, . . . , k, along with the budget constraint
∑

i pixi = w. The new problem

is characterized by

(β(1 + r))i−2v′(xi) = λ

for each i = 2, . . . , k, along with the new budget constraint. The two are equivalent

(up to having a different value of λ), so if the budget constraints are the same, the two

problems will have the same solution. We can write the two budget constraints as

k∑
i=2

xi
(1 + r)i−1

≤ w − x1 and

k∑
i=2

xi
(1 + r)i−2

≤ (1 + r)(w − x1)

respectively, showing they really are identical, so the two problems have the same solu-

tion.
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