1. Aggregate Hicksian Demand (30 points)

Suppose there are n > 2 consumers, and consumer i € {1,2,...,n} has indirect utility
wj
v; (p, w; = a; +
l(p ’L) l(p) C(p)

This is the same formulation you’ve seen before, just with c(p) = 1/b(p), because this will
simplify algebra later in the problem. You’ve seen that this implies the combined Marshallian
demand ", x'(p,w;) of the n consumers is the same as the demand of a single “representative

consumer” with indirect utility
Vip.W) = Alp)+

where A(p) =Y, ai(p) and W =", w;.

(a) Calculate the expenditure function e;(p,u;) for consumer i, and the expenditure function

E(p,U) for the representative consumer, and show that ), e;(p,u;) = E(p, Y, u;).

Since we know that for any valid indirect utility function and expenditure function,

v(p,elp,u)) = w
we can plug in and find
w = uen)) = a@)+ P ) = ) - @)
and similarly
E(pU) = cp)(U—Ap)

Then

Yoelpu) = Y cp)(ui—ailp) = cp) (Zm—Z%(@)

7 )

= p) (Zm—A@)) = E(pZu)

%



(b) Calculate consumer i’s Hicksian demand h(p,u;) for good 1, and the representative
consumer’s Hi(p,U), and show that _; b (p,u;) = H1(p, >, u;).

We can calculate i’s Hicksian demand for good 1 as

iy oe o de(p) - delp) o Dai(p)
hl (p, Uz) = 8p1 (p, Uz) = 8}91 Uy 8}91 Qa; (p) C(p) 8}?1
and similarly
OF dc(p) dc(p) OA(p)
H = _— g — A —
1(p7 U) 8])1 (p7 U) 8p1 U 8p1 (p) C(p) 8]?1

We can then calculate

i) = 2Oy KW S ) o P le)

Op1 Op1 Op1

= Hi(p,X;w)

(c) Show that if the price of good 1 falls from p{ to pl, the sum of the Compensating Variation

of the n consumers is the same as the C'V of the representative consumer.

Compensating Variation is calculated as

2
cv = / ha(p, u®)dp:
p

1
1

0

where u® = v(p°, w), so if we let u) = v;(p°, w;),
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Now, since V (p?, Yowi) =, vi (%, w;) = iu?,

Py
‘ 0 _
/ Hy (p:E Uz) dpr = C'Vreplresemtative consumer
p i

1
1
giving the result.

Alternatively, we can use the definition

cv = e(po’uo) - e(plauo)



0

where u® = v(p®, w). Given the answer to 1(a) above,

Z CVi = Y (et”)(uf — ai@”) — e(p")(uf —ai(p")))

7

= ") <Z uf — A(p°)> —c(p") (Z uf — A(p1)>

i

ez
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Since
S YT (55
is the initial indirect utility of the representative consumer, E(p°, U?) — E(p',U°%) =
>.; CV; is the CV of the representative consumer.



2. Zero Demand (20 points)

Suppose preferences are locally non-satiated. Show that if Marshallian demand for good i is

0 at prices p, it can’t become positive when the price of good i rises.

(Formally, if p; > p; and p;- = pj for all j # i, show that if there’s any « € x(p,w) such that

z; =0, then at every 2’ € z(p',w), 2} =0.)

This is easiest to prove by contradiction. Suppose this were false — that there were some
z € z(p,w) with z; = 0, and some 2’ € x(p/,w) with 2} > 0. Since preferences are LNS,
Walras’ Law implies p-x =p' - 2/ = w.

The key thing to notice is that since z; = 0 and p}; = p; for every j # i, p' -2 =p -z = w;

and since 2, > 0 and p, > p;, p- 2’ < p' -2/ = w. We can then argue it a few different ways:

e First, we can argue directly: since x € B(p/,w) and 2’ € z(p/,w), 2’ 7 z; then since
2’ € B(p,w) and z € z(p,w), ' € x(p,w) as well; but since p - 2’ < w, this would

contradict Walras’ Law.

e Alternatively, we could make basically the same argument using WARP: since z and z’
are both in both B(p,w) and B(p',w), with x € C(B(p,w)) and 2’ € C(B(p',w)), we
must have 2’ € C(B(p,w)), which would again contradict Walras’ Law.

e Finally, we could make basically the same argument using GARP: since = € z(p, w) and
p-2’ <w, x =P 2" and therefore x = 2/; but since 2’ € z(p/,w) and p' -z < w, 2’ =P x,
which would contradict GARP.

I would give partial credit for someone who tried to argue using the Slutsky Equation. One
could note that

_ g
Op; Op; " Ow
and that gZ? < 0 (always) and the second term is zero when z; = 0, so gﬁ? < 0 whenever

x; = 0. However, this is not worth full credit, because (a) the problem didn’t specify that
demand was single-valued or differentiable, and (b) having derivative zero doesn’t imply
something is not increasing. (The function f(z) = 22 has derivative zero whenever it’s equal

to zero, and yet is strictly increasing on R.)



3. The Slutsky Equation (20 points)

Suppose demand is single-valued and differentiable. Write the Slutsky equation for the change
in demand for good 1 when the price of good 2 changes. For each of the following cases,

explain whether you can predict the sign of 83”1, and why or why not:

(a) goods 1 and 2 are complements, good 1 is a normal good and good 2 is an inferior good
(b) goods 1 and 2 are substitutes, and goods 1 and 2 are both normal goods

(c) there are only two goods and good 2 is a Giffen good

The Slutsky equation is
0 O 00

Ops Ops 2 ow

For the three cases:

(a) If 1 and 2 are complements, 3 ahl < 0, and if good 1 is normal, 811 > 0, so axl <0

b) If 1 and 2 are substitutes, 8h1 > 0, and if 1 is normal, ULINES 0; so 9z, Could be either
ow Op2

positive or negative, dependlng on which effect (substitution or wealth) dominates

8x1

This is because by g% > 0 (the definition of a Giffen good), and (assuming preferences

(c) It’s not apparent from the Slutsky equation, but when good 2 is a Giffen good

are LNS) p1z1 4+ pare = w must continue to hold as py increases.

(With two goods, they must be substitutes, so 52 > 0; if good 2 is a Giffen good, then
it is inferior, and with only two goods, this means good 1 must be normal, so %fﬂl >0

as well, which is why the result isn’t obvious from the Slutsky equation.)

(Please note that the solution to this part was originally incorrect.)



4. Intertemporal Choice (30 points)

Consider a simple model of intertemporal choice, within our static utility-mazximization frame-
work. The “goods” 1 through k represent consumption in each of k different time periods, and

for x € RE
k

e = 3 o)

=1
where B € (0,1) and v : Ry — R is strictly increasing, strictly concave, differentiable, and

satisfies an “Inada condition” lim,_0v'(z) = +00. The current “price” of good i is

1

# = (14 7)1

reflecting the fact that the consumption good costs the same in each period, but that money
saved today grows at an interest rate r until it s used to purchase the consumption good in

period i.
(a) If w > 0, show that Marshallian demand for every good is strictly positive, x(p,w) > 0.

Briefly, when % = oo whenever z; = 0, it will never be optimal to consume none of

good 7 given positive wealth, because the first small amount gives unboundedly large

marginal utility per dollar.

More formally, we know the Kuhn-Tucker conditions are

ou
8.%'2'

() = Api—

With positive wealth and LNS preferences, we’ll definitely consume something, so there’s

some good j where x; > 0 and therefore p; = 0, so

Vo= St@) = WG

pj 0; pj
which, since z; > 0, is finite. Thus, if there was any good consumed at zero quantity, it

would require

ou
Bxl-

which is impossible since v'(0) = co but A\p; — p; is finite.

(z) = B7W0) = Api—p




(b)

Show that if B(1+71) > 1, consumption increases from period to period (z;t1 > x;), while

if B(14+7) < 1, consumption decreases from period to period.

Knowing that x > 0, we therefore know that p; = 0 for all 4, so the Kuhn-Tucker

conditions are now

ou
axi

1

() = Ap — BN (z) = WA

or

BA+7r)"W (@) = A

for every . If B(1+7) > 1, then (8(1 +r))" " is increasing in 4, and v/(z;) must therefore
decrease in 4; since v is strictly concave, this means x; must increase in i. If 5(1+7r) < 1,
then (8(1+ 1)) ! is decreasing in 4, and v/(z;) must therefore increase in i, meaning x;

must decrease in 7.

(Alternatively, one could divide consecutive Kuhn-Tucker conditions and find

V' ()

V' (@iq1)

Bi+r) =

and reach the same conclusion: if 8(1 + r) > 1, this requires v'(z;) > v'(z;+1) and

therefore x; < x;4+1, and vice versa.

Now suppose one period has passed, and the consumer has consumed x1(p,w) according
to plan. Show that his choices are time-consistent: that if he were to take his remaining
budget w = (1+7)(w — p1x1) and the current prices p; = W and solve his forward-

looking consumer problem
k k
max Z B2 (z) subject to Zpixl <w
i=2 =2

his mew choices would match the original solution to his consumer problem.

One way to do this is to consider the original problem as two nested optimization prob-
lems: in the inner problem, optimally choose (z2,...,z)) given a fixed choice of x1, and
in the outer problem, choose x; optimally. That is, we can restate the original consumer

problem as

k k
max {U($1) + (xgnaigk Zﬁzflv(aji) subject to Zpixi <w —p1x1> }

w
21€[0,7] i=2 i=2

If we let y denote the last & — 1 goods, and y(x1) as the solution to the inner problem
given the outer problem, then o* = (27, 23,...,2}) = (z7,y(27)). (At the time all of the



x; are being chosen, the last kK — 1 must be the optimal choice given the first one, or the

whole bundle would not be optimal.) Thus, we know that

k k
(x3,...,x}) solves _max ZBZ 1 v(x;) subject to szxl <w—pi1x]
PARRIET 9 i—2
Now, let (z2,...,z2) be the solution to the “one-period-later problem” described in the
question. By definition,
k
(22,...,2k) solves Jnax Zﬂ’ 2u(z;) subject to szzz <A +7)(w—pia))
b b Z 2
where p, = —1_ and p; = —L—. But we can rewrite the latter problem as
i (1+T) (I+7)
1 k k
B zgnauz{k Zﬁ’ ! v(z;) subject to Zplz2 <w-—pz]
e =2

making it clear that it’s exactly equivalent to the original “inner” problem of choosing

{zg,...,x} given x1, and therefore has the same solution.

Alternatively, one could focus on the first-order (Kuhn-Tucker) conditions the solutions

to each must satisfy. As noted above, the first problem is characterized by the conditions
BA+r) " () = A

for each i =1,2,..., k, along with the budget constraint )", p;z; = w. The new problem

is characterized by

BA+r) "2 (2) = A

for each i = 2,...,k, along with the new budget constraint. The two are equivalent
(up to having a different value of \), so if the budget constraints are the same, the two

problems will have the same solution. We can write the two budget constraints as

k k
X xT;
Z (1+T)i_1 S w-1 and Z (1+T)i_2 < (1+T)(w_$1>
=2 =2

respectively, showing they really are identical, so the two problems have the same solu-

tion.



