
Lecture 10: Lagrangians (cont’d) and

Expenditure Minimization

1 Where are we?

• Last time, we stated the consumer problem,

maxu(x) subject to p · x ≤ w and x ≥ 0

and introduced an auxiliary function, the Lagrangian,

L(x, λ, µ) = u(x) + λ(w − p · x) + µ · x

defined for x ∈ Rk and λ, µ ≥ 0;

• And we showed that if (x∗, λ∗, µ∗) is a saddle point of the Lagrangian –

L(x, λ∗, µ∗) ≤ L(x∗, λ∗, µ∗) ≤ L(x∗, λ, µ)

for every x ∈ Rk and every λ, µ ≥ 0 –

then x∗ is a solution to the Consumer Problem;

and vice versa if u is differentiable and concave

• Today, we’ll see how to actually use this stuff –

the Kuhn-Tucker Conditions, examples, and onward

• First... any questions?
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2 The Kuhn-Tucker Conditions

• So, we know that the solutions to the Consumer Problem

pretty much correspond to the saddle points of the Lagrangian

• Next, let’s think about what conditions (x∗, λ∗, µ∗) must satisfy to be a saddle point,

and therefore for x∗ to solve the consumer problem

• First, we need x∗ to be a solution to

max
x∈Rk

L(x, λ∗, µ∗) = max
x∈Rk

{u(x) + λ∗(w − p · x) + µ∗ · x}

• We’re thinking of L as defined for all x in Rk, not just Rk+,

so x∗ must be an interior point;

if u is differentiable, L is differentiable w.r.t. x, so we’ll need the FOC to hold:

∂L
∂xi

(x∗, λ∗, µ∗) = 0 −→ ∂u

∂xi
(x∗)− λ∗pi + µ∗i = 0

• (If this was either positive or negative, x∗ couldn’t be maximizing L)

• And second, we need (λ∗, µ∗) to solve

min
λ,µ≥0

L(x∗, λ, µ) = min
λ,µ≥0

{u(x∗) + λ(w − p · x∗) + µ · x∗}

• This means we need w − p · x∗ ≥ 0 – otherwise, we could always reduce L by increasing λ –

and we need λ∗ = 0 if w − p · x∗ > 0, otherwise we could reduce L by reducing λ

• And similarly, we need x∗ ≥ 0 – if x∗i < 0, we could reduce L by increasing µi –

and we need µ∗i = 0 if x∗i > 0, or else we could reduce L by reducing µi

• So basically, for (λ∗, µ∗) to minimize L,

we need for x∗ to be feasible, and we need complementary slackness to hold
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• And of course, we defined L for non-negative values of the Lagrange multipliers,

so we can think of λ ≥ 0 and µ ≥ 0 as additional constraints

• That gives us a bunch of necessary conditions for (x∗, λ∗, µ∗) to be a saddle point:

1. ∂u
∂xi

(x∗)− λ∗pi + µ∗i = 0 for each i (FOC w.r.t. x)

2. p · x∗ ≤ w, x∗i ≥ 0 for each i (original constraints on x)

3. λ∗ ≥ 0 and µ∗i ≥ 0 for each i (non-negative Lagrange multipliers)

4. λ∗(w − p · x∗) = 0 and µ∗ix
∗
i = 0 for each i (complementary slackness)

• These are collectively known as the Kuhn-Tucker Conditions

• As expected, these are necessary conditions for a solution to the consumer problem,

and also sufficient under some additional assumptions:

Theorem 1. Assume u is differentiable and (p, w) � 0. If x∗ > 0 solves the Consumer

Problem, then there exist λ∗ ≥ 0 and µ∗ ≥ 0 such that (x∗, λ∗, µ∗) satisfy the Kuhn-Tucker

conditions.1

Theorem 2. Suppose u is differentiable and concave.2 Then if (x∗, λ∗, µ∗) satisfies the Kuhn-

Tucker conditions, x∗ solves the Consumer Problem.

• Putting these results together with what we saw last time,

if we let CP mean “x∗ solves the consumer problem,”

L mean “(x∗, λ∗, µ∗) is a saddlepoint of L for some λ∗ and µ∗,

and KT mean “(x∗, λ∗, µ∗) satisfy the Kuhn-Tucker conditions for some λ∗ and µ∗,”

we have that if (p, w)� 0...

– L → CP with no further restrictions

– CP → L if u is differentiable and concave

– CP → KT if u is differentiable

– KT → CP if u is differentiable and concave

1For a more general constrained optimization problem, there is one additional restriction which would have to
hold at x∗, in order to guarantee the Kuhn-Tucker conditions can be satisfied. This is called constraint qualification,
and it basically says that whichever of the constraints of the problem bind at x∗, their gradients need to be linearly
independent, i.e., there can’t be any locally “redundant” constraints. Given the constraints in our problem (budget
and non-negativity), this condition automatically holds whenever p� 0 and w > 0, so I don’t state it in the theorem;
this is just something you need to know if you want to extend these techniques to other problems. See MWG page
956-964 for the more general treatment of constrained optimization.

2We can weaken concavity to (i) quasi-concavity and (ii) for any x, x′ ∈ X, u(x′) > u(x) implies∇u(x)·(x′−x) > 0,
both of which hold when u is concave.
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3 What’s this good for?

• So, if u is differentiable,

the Kuhn-Tucker conditions will find all the solutions to the Consumer Problem,

although if u is not concave, it may find some points that aren’t solutions too

• But, even if u is not concave

(so the KT conditions aren’t automatically sufficient),

the KT conditions will often have a unique solution;

since the CP must have a solution, and it must satisfy KT,

if the KT conditions have a unique solution, we know it’s the unique solution to the CP

• Let’s use this to solve one example

• Let X = R3
+, u(x1, x2, x3) = xα1

1 xα2
2 xα3

3 , a generic price vector (p1, p2, p3)� 0, and w > 0

• First, it’s helpful to try to eliminate some constraints

• Note that if any consumption quantity is 0, then u = 0, so this can’t be optimal –

so x∗ � 0, which means (for complementary slackness) µ∗ = 0,

so we can ignore the non-negativity constraints

• (For many utility functions,

the marginal utility of each good is infinite when you’re consuming none of it –

the first little bit of each good is extremely valuable –

and in this case, it’s never optimal to consume 0 of anything given positive wealth,

and you can just solve the problem without the nonnegativity constraints)
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• Next, rather than u = xα1
1 xα2

2 xα3
3 , let’s maximize lnu, since this is another utility function

representing the same preferences, so we’ll use

ũ(x, y, z) = α1 log x1 + α2 log x2 + α3 log x3

• The Lagrangian is therefore

L = α1 log x1 + α2 log x2 + α3 log x3 + λ(w − p · x)

and the Kuhn-Tucker FOC are therefore

∂L
∂xi

= 0 −→ αi
xi
− λpi = 0 → xi =

αi
λpi

for each good i

• Next, since u is strictly increasing everywhere, the budget constraint will hold with equality

• (We haven’t yet proved Walras’ Law – that’s what I get for changing the order –

but since u is strictly increasing in every good, the consumer would never choose not to spend

the whole budget3

• So

w =
3∑
j=1

pjxj =
3∑
j=1

pj
αj
λpj

=
α1 + α2 + α3

λ

so λ = α1+α2+α3
w , and therefore

xi =
αi
λpi

=
αi

α1 + α2 + α3

w

pi

or

pixi =
αi

α1 + α2 + α3
w

• Since this is the only way to satsify the K-T conditions,

we know this is the (unique) solution to the consumer problem!

• (also note that we didn’t need concavity of u –

we never even specified that α1 + α2 + α3 ≤ 1!)

3Or to be more formal, recall that for any j with x∗j > 0, λ∗ = 1
pj

∂u
∂xj

(x∗) > 0; and once we know λ∗ 6= 0, then for

complimentary slackness to hold, w − p · x∗ = 0.
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3.1 one other thing about Lagrangians

• Now, (x∗, λ∗, µ∗) being a saddle point of L is really two separate conditions:

– given λ∗ and µ∗, x∗ maximizes L

– and given x∗, the multipliers (λ∗, µ∗) minimize L

• And we’ve seen that the latter condition is really equivalent to two things:

feasibility of x∗, and complementary slackness

• So when I learned this stuff in grad school, I didn’t learn it as saddle points,

I learned it as, you solve a constrained optimization problem by solving

max
x
{u(x) + λ(w − p · x) + µ · x}

and imposing the additional conditions p · x ≤ w, x ≥ 0, λ(w − p · x) = 0, and µ · x = 0

• As we saw, the FOC from maximization over x,

combined with these other conditions (and non-negativity of the Lagrange multipliers),

are exactly the Kuhn-Tucker conditions

3.2 end of Lagrangians

• Before we move on, I’ll repeat two cautionary points I made earlier

• First of all, while this is a great way to solve the consumer problem when u is differentiable,

please don’t think of it as a cookbook,

where you get a problem and immediately plug it into the Kuhn-Tucker conditions without

thinking about it

• There’s a lot to gain by thinking a little about the problem before you start to solve it –

whether to expect a corner solution, an interior solution, and other things like that

• And finally, if you use this for other constrained optimization problems beyond CP,

there’s one additional restriction that has to hold – called “constraint qualification” –

which we didn’t go into.4

4Roughly, constraint qualification requires that all the constraints that bind at the same point have gradients at
that point that are not linear combinations of each other – in some sense, there are no locally “redundant” constraints.
With the Consumer Problem, this holds automatically, since the gradient of w− p · x is (−p1,−p2, . . . ,−pk) and the
gradient of xi is (0, . . . , 0, 1, 0, . . . , 0). But if you were maximizing a function subject to the constraints x1 ≥ 0 and
−x1 +(x2−3)2 ≥ 0, you’d be in trouble, because at the point (0, 3), the two constraints both bind and have gradients
(1, 0) and (−1, 0). See MWG section M.K in the math appendix for more detail.
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4 jump back – a few properties of demand

• We defined x(p, w) as the solution to the consumer problem, or Marshallian demand

• Proposition. Marshallian demand is homogeneous of degree zero: x(λp, λw) = x(p, w) for

any p� 0, w > 0, λ > 0.

– Proof: we already showed B(λp, λw) = B(p, w), so x(λp, λw) and x(p, w) are literally

the solutions to the same optimization problem.

• Again, the problem is invariant to the unit of currency

• Proposition [Walras’ Law]. If preferences are locally non-satiated, then for any (p, w) and

any x ∈ x(p, w), p · x = w.

– Suppose not, i.e., suppose p · x < w for some x ∈ x(p, w)

– If we make ε small enough, then for every y within ε of x, p · y ≤ w

∗ specifically, let ε = (w − p · x)/‖p‖
∗ then

p · y = p · (x+ (y − x)) = p · x+ p · (y − x)

∗ since a · b = ‖a‖‖b‖ cos θ ≤ ‖a‖‖b‖ (where θ is the angle between vectors a and b),

this is

≤ p · x+ ‖p‖‖y − x‖ ≤ p · x+ ‖p‖w − p · x
‖p‖

= w

so if ‖y − x‖ ≤ ε, p · y ≤ w

– but if preferences are LNS, then there must be some y within ε of x such that y � x

– since we just showed that y was affordable, this contradicts x being the maximizer

• so if preferences are LNS, optimizing consumers always spend their entire budget;

so if prefs are LNS, we can rewrite the consumer problem as

maxu(x) s.t. p · x = w
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• We said that x(p, w) could be a set, i.e., the consumer problem could have multiple solutions

• Proposition.

1. If preferences are convex, then for each p and w, x(p, w) is a convex set

2. If preferences are strictly convex, then for each p and w, x(p, w) is a single point, i.e., x

is a function.

– Proof. x(p, w) is a convex set if for any x and x′ ∈ x(p, w), tx + (1 − t)x′ ∈ x(p, w) as

well. So let’s show it.

– If x and x′ are both in B(p, w), then p · x ≤ w and p · x′ ≤ w, so

p · (tx+ (1− t)x′) = t(p · x) + (1− t)(p · x′) ≤ tw + (1− t)w = w

so tx+ (1− t)x′ is in the budget set as well

– And if x and x′ are in x(p, w), then for any other y in the budget set, x % y and x′ % y;

if preferences are convex, this means tx+ (1− t)x′ % y as well, so tx+ (1− t)x′ ∈ x(p, w)

– for the second part, if preferences are strictly convex, suppose there were two separate

points x and x′ in x(p, w)

– since x % x′ and x′ % x′, if preferences are strictly convex, for any t ∈ (0, 1),

tx+ (1− t)x′ � x′

– as we argued above, tx+(1−t)x′ is in the budget set, so this contradicts x′ being optimal

• so now we know that Marshallian demand...

– exists

– is homogeneous of degree 0

– exhausts the budget if preferences are LNS

– is single-valued if preferences are strictly convex

• onward!
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5 The Indirect Utility Function

• We stated the consumer problem as

maxu(x) subject to x ∈ B(p, w)

and called the solution x(p, w); now define v(p, w) as the value function, i.e.,

v(p, w) = maxu(x) subject to x ∈ B(p, w)

• by definition, v(p, w) = u(x) for any x ∈ x(p, w) –

v is the “utility value” of having wealth w and facing prices p

• note that v : Rk++ × R+ → R is a function:

if the CP has multiple solutions, they all give the same utility, so there’s a unique max value

• v is called the indirect utility function (because it’s a function of p and w, not consumption)

• Some properties of v:

• Proposition. Suppose u is a continuous utility function representing a LNS preference

relation % on Rk+. Then v(p, w) is...

1. homogeneous of degree 0: v(λp, λw) = v(p, w)

2. continuous on {(p, w) : p� 0, w ≥ 0}

3. nonincreasing in p, and strictly increasing in w

4. quasi-convex, i.e., the set {(p, w) : v(p, w) ≤ v̄} is a convex set for each v̄

• I’ll skip the formal proofs of most parts.

– Part 1 is the usual – if you scale up prices and wealth, B is unchanged, so you’re solving

the same optimization problem.

– Part 2, I’ll skip the formal proof, but the intuition is this. If (p, w) is close to (p′, w′),

then the budget sets are close to being the same set; so if u is continuous, the utility you

can achieve on one set is close to the utility you can achieve on the other.

– Part 3, if p increases, the budget set shrinks, so you’re maximizing the same function

over a smaller set, so the value goes weakly down. If w goes up, then relative to what

used to be your optimal point, you can afford strictly more, and can therefore afford any

nearby bundle; by LNS, there’s a nearby bundle that’s strictly better, so you can afford

at least one bundle better than your old optimum.
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• Skipped in class, but here’s the formal proof for part 4, that v is quasi-convex:

– We need to show that for any v̄, the set {(p, w) : v(p, w) ≤ v̄} is a convex set

– Or, if (p, w) and (p′, w′) are both in that set,

so is t(p, w) + (1− t)(p′, w′), which we’ll abbreviate (pt, wt)

– so we need to show that if v(p, w) ≤ v̄ and v(p′, w′) ≤ v̄, then v(pt, wt) ≤ v̄ as well

– To show this, note that for any x ∈ B(pt, wt),

x must also be in at least one of B(p, w) or B(p′, w′)

– If it weren’t, then we’d know that both p · x > w and p′ · x > w′, which would mean

t(p · x) + (1− t)(p′ · x) > tw + (1− t)w′ −→ pt · x > wt

which would give a contradiction

– So if v(p, w) and v(p′, w′) are both below v̄,

then any bundle with u(x) > v̄ must be outside of both B(p, w) and B(p′, w′)

which we just said means it’s outside of B(pt, wt)

– so there’s no way to achieve utility more than v̄ in B(pt, wt), so v(pt, wt) ≤ v̄.
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6 Using the Lagrangian to prove one more cool property of v

• We noted last time that a saddle point is the solution to the min-max problem

min
λ,µ≥0

max
x
L(x, λ, µ)

• Further, since we know complementary slackness holds at a saddle point,

the value of that problem is

min
λ,µ

max
x
L(x, λ, µ) = L(x∗, λ∗, µ∗) = u(x∗)+λ∗(w−p·x∗)+µ∗·x∗ = u(x∗) = v(p, w)

since x∗ is the solution to the consume rproblem

• So we can write

v(p, w) = min
λ,µ≥0

max
x
L(x, λ, µ)

• Which gives us an elegant way to prove a cool result:

Theorem (Roy’s Identity). Suppose v is differentiable at (p, w) � 0, and ∂v/∂w > 0.

Then x(p, w) is a singleton and

xi(p, w) = − ∂v
∂pi

(p, w)

/
∂v

∂w
(p, w)

• Originally, we defined v(p, w) as maxu(x) subject to p · x ≤ w and x ≥ 0,

which is a constrained problem – and in particular,

a change in a parameter p or w changes the constraints, not the objective function,

so it was hard to see how changes in parameters would change the outcome

• But now, the Lagrangian lets us move the constraints into the objective function,

which gives us a way to apply the Envelope Theorem to a constrained problem
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• Starting with

v(p, w) = min
λ,µ≥0

max
x
{u(x) + λ(w − p · x) + µ · x}

and define

Φ(λ, µ, p, w) = max
x
{u(x) + λ(w − p · x) + µ · x}

as the result of the inner maximization problem, so that

v(p, w) = min
λ,µ≥0

Φ(λ, µ, p, w)

• By the envelope theorem,
∂v

∂w
=

∂Φ

∂w

∣∣∣∣
λ=λ∗,µ=µ∗

• And applying the envelope theorem again,

∂Φ

∂w
=

∂L
∂w

∣∣∣∣
x=x∗

• So now

∂v

∂w
=

∂

∂w

(
u(x) + λ(w − p · x) +

∑
i

µixi

)∣∣∣∣∣
λ=λ∗,µ=µ∗,x=x∗

= λ|λ=λ∗ = λ∗

• This is interesting in its own right – if (x∗, λ∗, µ∗) is a saddlepoint, dv/dw = λ∗ –

the value of the multiplier on the budget constraint, is the marginal value of wealth!

(That is, the Lagrange multiplier tells you the marginal benefit of relaxing that constraint!)

• (This makes sense – for any good where x∗i > 0, the KT FOC is λ = 1
pi

∂u
∂xi

,

so at a saddlepoint, λ is the marginal utility you’d get from spending an incremental amount

of money on good i

• If you’re already at the optimum, this is equalized across all goods,

and so a marginal increase in w gives you this much additional utility

• But it’s nice that the envelope theorem let us show this formally)

169



• Then we can do the same thing differentiating with respect to price pi, and find

∂v

∂pi
=

∂

∂pi

(
u(x) + λ(w − p · x) +

∑
i

µixi

)∣∣∣∣∣
λ=λ∗,µ=µ∗,x=x∗

= −λxi|λ=λ∗,x=x∗ = −λ∗x∗i

• (This also makes sense – if pi goes up incrementally,

then before you adjust your consumption,

you’re over budget by an amount proportional to x∗i ,

and scaling down consumption to get back under budget costs you that amount times λ∗)

• So

−∂v/∂pi
∂v/∂w

= −−λ
∗x∗i
λ∗

= x∗i

which is Roy’s Identity
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7 The Expenditure Minimization Problem

• Next, we’re going to consider a different formulation of the consumer problem,

look at its properties, and then look at the link between the two problems

• In producer theory, we considered the general problem of profit maximization,

and we also considered the more specialized problem of cost minimization

• Here, we’re going to do something very analogous

• We defined the consumer problem

max
x≥0

u(x) subject to p · x ≤ w

with v(p, w) its value and x(p, w) (Marshallian demand) its solution

• The Expenditure Minimization Problem – or dual consumer problem – is defined as

min
x≥0

p · x subject to u(x) ≥ u

• That is, rather than asking how much utility we can buy for wealth w,

we ask how cheaply we can achieve a target utility level u

• We call e(p, u) the min – the smallest amount of money that can achieve utility u –

this is the expenditure function

And h(p, u), the solution to the problem,

we’ll call Hicksian demand, or compensated demand
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7.1 Why is this problem interesting?

• Our original consumer problem seems like a reasonable proxy for how people might actually

make decisions

• The expenditure minimization problem seems more contrived –

less related to a problem people really solve

• So why do we like it?

• Three reasons

• First, Marshallian Demand faces two effects when a price changes –

substitution and wealth effects

(If p1 goes down, you might buy less of another good and more of good 1

But in addition, if p1 goes down, this makes you effectively richer –

which can change your demand in any direction)

Hicksian demand eliminates the wealth effect –

so it gives a way to kind of decompose price effects into their separate components

• Second, because Hicksian demand doesn’t have wealth effects,

we can get stronger, testable predictions

And importantly, we can infer Hicksian demand from Marshallian demand –

so if we observe data from the regular consumer problem,

this gives us a way to test the predictions of the model

• Third, we can’t really do welfare analysis using indirect utility functions,

because utility has no natural scale and people aren’t comparable

But the Expenditure Function is in dollars –

we can measure welfare changes by how much money it would take to compensate people,

and then aggregate across people in a more valid way

• (It also creates a nice parallel with what we did in producer theory)
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