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 APPLICATIONS OF RECENT METHODOLOGY IN PROJECT
 EVALUATION*

 Using Selection on Observed Variables to Assess Bias from
 Unobservables when Evaluating Swan-Ganz Catheterization

 By Joseph G. Altonji, Todd E. Elder, and Christopher R. Taber*

 Distinguishing causal effects from correla?
 tions is a key objective of research, regardless of
 field. Even in medicine, controlled experiments
 are not always practical or ethical. In econom?
 ics, and we suspect in most other fields, identifi?
 cation strategies based upon observational data
 are rarely bulletproof.

 In their landmark study, A. F. Connors et al.
 (1996) use propensity score matching meth?
 ods with an extremely rich set of demographic
 characteristics and health status measures to

 assess whether Swan-Ganz catheterization (C),
 a widely used device for monitoring intensive
 care unit (ICU) patients, raises or lowers mor?
 tality. In their sample of ICU patients, they find
 that receiving C within the first 24 hours raises

 mortality rates, casting serious doubt on the
 value of this procedure for critically ill patients.

 Jay Bhattacharya, Azeem M. Shaikh, and
 Edward Vytlacil (2007, 2008; hereafter, BSV)
 observe that since C recipients are sicker on many
 observed dimensions, propensity score match?
 ing, which ignores selection on unobservables,

 might overstate the negative consequences of C
 They apply a set of bounds estimators, including
 an extension of Shaikh and Vytlacil (2004), that
 incorporates prior information that weekend

 admission to the hospital is a valid instrument
 for C. Their bounds include the possibility of a
 benefit over the first seven days, although their
 estimates suggest that C has either no effect or a
 harmful effect after 30 days.1
 We revisit the issue using the methods of

 Altonji, Elder, and Taber (2002, 2005; hereaf?
 ter, AET). First, we use a bivariate probit model
 to examine the sensitivity of the estimates to
 assumptions about the amount of selection on
 unobservables. We find that a correlation of

 roughly 0.15 between the unobserved determi?
 nants of C and mortality at 90 days would be
 enough to produce the harmful estimated effect
 when the true effect is zero. Second, we provide
 lower bound estimates ranging from -0.042 in
 the short run to -0.005 in the long run for the
 effect of C on mortality based on the assumption
 that the degree of selection on observed charac?
 teristics is the same as the degree of selection on
 unobserved characteristics. Given that mortality
 is caused by many factors that are more or less
 random at the time C is chosen, equality of selec?
 tion is unlikely, and so the true mortality effect
 of C is likely to be larger (i.e., less negative) than
 the lower bound. Third, we find that selection

 on unobservables that is 0.8 times as strong as
 selection on observables could account for the

 positive probit estimate of the C effect if the true
 effect is 0. Finally, we discuss a possible exten?
 sion of the analysis to a heterogeneous treatment
 effects model. Our main conclusion is that while
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 1 Connors et al. (1996) provided the impetus for two
 large-scale experimental evaluations of the procedure, as
 well as several nonexperimental evaluations. The experi?
 mental studies find that C has no effect. See BSV for refer?

 ences. In this volume (see p. 357), Qi Li, Jeffrey Racine,
 and Jeffrey Wooldridge find that Connors et al.'s results are
 not robust to nonparametric approaches.
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 it is difficult to find evidence that C lowers mor?

 tality in the long run, Connors et al.'s data are
 not sufficient to draw strong conclusions about
 the efficacy of C for critically ill patients.

 I. Data

 We use the data of Connors et al. (1996),
 which contain detailed information on health
 status from medical charts and from interviews

 with patients and proxy respondents. They also
 provide demographic information and private
 insurance status. The study considers a number
 of outcomes in addition to mortality, but we fol?
 low BSV and focus on mortality in 7, 90, and
 180 days. The estimation sample size is 4,572
 patients.2

 In AET (2008), we report means by C and by
 mortality status at 60 days. We find that most
 traits associated with higher mortality rates are
 also associated with catheterization. The raw
 difference in mortality rates between those with
 C - 1 and C = 0 is 0.038 at 7 days, 0.093 at
 90 days, and 0.087 at 180 days. The question is
 whether the implied adverse effects of C simply
 represent selection in who is treated. As we have
 already noted, Connors et al. (1996) find that
 controlling for observed characteristics reduces,
 but does not eliminate, the adverse effect of C,
 and BSV motivate their attention to selection on

 unobservables by noting the systematic pattern
 in the observables.

 IL The Sensitivity of Probit Estimates of
 Catheterization to Correlation in Unobservables

 Following AET (2005), we assess the sensitiv?
 ity of conclusions about C to unobserved hetero?
 geneity by computing estimates under alternative
 assumptions about the degree of correlation in
 the unobservables that affect the choice of C and
 Y, where Y indicates death within t days after
 admission to the ICU. Consider the model

 (1) C = 1 (C* > 0) s \(X? + u>0),

 (2) Y = 1 (y* > 0) = \{X'y + aC + e > 0),

 ? eher: ti)
 where we leave the dependence of the parameters
 y, a, p, and s on / implicit.3 Since semiparamet
 ric identification requires an excluded variable,
 we treat ((1), (2), (3)) as if it is underidentified
 by one parameter?p. Each column of Table 1
 reports estimates of a for specified values of
 t, with the rows corresponding to assumptions
 about p. Setting p = 0 corresponds to treating C
 as exogenous. Consider the case of death within
 90 days. When p is 0, ? is equal to 0.231 and the
 average marginal effect on the mortality prob?
 ability (ME) is 0.074. This confirms Connors et
 al.'s (1996) main result that C raises mortality.
 However, a correlation of 0.1 nearly eliminates
 the effect in the 90-day case, making a statisti?
 cally indistinguishable from zero with an ME of
 only 0.021. A value of p equal to 0.2 is enough to
 shift the estimate to a negative value of -0.033.4

 Note that for mortality at seven days, a value of
 p of 0.1 is sufficient to reverse the sign of a. We
 obtain similar results if we relax the bivariate

 normality assumption.5
 The results in Table 1 show that even a modest

 value of p could eliminate the positive (harm?
 ful) effect of C on mortality, but it is not clear
 what range of values of p are plausible. In the
 next section, we use the degree of selection on
 the observables as a guide.6

 2 To improve comparability, we again follow BSV and
 exclude patients with chronic obstructive pulmonary dis?
 ease, cirrhosis, coma, lung cancer, and colon cancer. Our
 results are not sensitive to this exclusion.

 3 A hazard model would be a natural alternative frame?

 work to explore, but a proportional hazards model is not an
 attractive option because the relative effects of the covari
 ates on the hazard are likely to vary with survival time.

 4 See Paul R. Rosenbaum (1995) or Rosenbaum and
 Donald Rubin (1983) for examples of this type of sensitiv?
 ity analysis. Connors et al. (1996) present a related calcula?
 tion, noting that to explain away their positive estimate of
 a, one would need an omitted variable that is roughly six
 times as powerful in predicting mortality as any observed
 covariate.

 5 We use the semiparametric specification

 (4) u = 0 + u\
 (5) e = 6 + e*,

 where the distribution of 6 is unrestricted and u and e* are

 independent standard normals, which nests the bivariate
 probit model. We estimate the model using nonparametric
 maximum likelihood, as described in James J. Heckman
 and Burton Singer (1984), treating the distribution of 6 as
 discrete with three points of support for 6.

 6 One could follow BSV and use weekend admission as
 a determinant of C, but the medical literature is mixed on
 whether this variable can be excluded from Y. It is not clear
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 Table 1?Sensitivity of Estimates of Swan-Ganz
 Treatment Effects to Variation in the Correlation

 of Disturbances in Bivariate Probit Models

 Dependent variable: mortality

 p 7 days 90 days 180 days
 0.0 0.137 0.231 0.219

 (0.058) (0.046) (0.046)
 [0.025] [0.074] [0.071]

 0.1 -0.029 0.065 0.053
 (0.058) (0.046) (0.045)
 [-0.005] [0.021] [0.017]

 0.2 -0.195 -0.103 -0.114
 (0.057) (0.045) (0.045)
 [-0.036] [-0.033] [-0.037]

 0.3 -0.363 -0.270 -0.282
 (0.056) (0.045) (0.044)
 [-0.067] [-0.086] [-0.092]

 Notes: Cell entries are estimated Swan-Ganz treat?
 ment effects from bivariate probit models restrict?
 ing p to the value given in the first column. Standard
 errors are in parentheses and marginal effects are in
 brackets.

 III. Estimates of the C Effect Using Selection on
 the Observables to Assess Selection Bias

 Consider the linear projection of C* onto X'y
 and s, where s is an index of the unobserved fac?

 tors that determine mortality:

 (6) Proj(e\X'Y,e) = cf>0 + <f>rYX'Y + <l>es.

 The magnitudes of <f)Xy and (?>e summarize the
 relative strength of the dependence of C on the
 observed factors and unobserved factors that

 determine mortality. AET formalize the idea
 that "selection on the unobservables is the same
 as selection on the observables," as

 (7) <t>X'y = </>e

 Roughly speaking, (2) says that the part of
 Y* that is related to the observables and the part
 related to the unobservables have the same rela?

 tionship with C*. The assumption that there is

 no selection on unobservables that matter for Y

 is (?>e = 0.
 The precise conditions and formal model

 leading to (7) are given in AET (2002). Roughly
 speaking, it holds if (a) the elements of X are
 chosen at random from the full set of factors that

 determine Y, (b) the number of observed vari?
 ables X and the number of unobserved variables

 are large and none of the elements dominates the
 distribution of C or Y, and (c) a condition holds
 that implies that the coefficient of the regression
 of C* on y* - aC is equal to the coefficient of
 the regression of the part of C* that is orthogonal
 to X on the corresponding part of F * - aC.

 These assumptions are unlikely to hold
 exactly. Although both Y* and C do depend on a
 fairly large set of factors, information on medi?
 cal charts is collected precisely because it is
 believed to be relevant for assessing health status
 and guiding treatment. Furthermore, health is a
 stochastic process, and future shocks (e.g., infec?
 tion) that lead to mortality are unknown when
 C is chosen. Consequently, in the Swan-Ganz
 application, selection on observables is likely
 to be stronger than selection on unobservables,

 implying that 0 < c/>e < <?>x>r Below, we inter?
 pret estimates of a that impose (7) as a lower
 bound for a and single equation estimates with
 C treated as exogenous (which impose (f)e = 0)
 as an upper bound.

 In the bivariate probit case, (7) may be re?
 written as p = cov (X'?,X'y)/var(X'y) and the
 inequality restrictions on 4>e correspond to

 cov(X'?,X'y) (8) 0<p< P\ JJ. var[Xy)

 In Table 2, we present MLE estimates of a
 and ME imposing p = cov (X'?,X'y)/var(X'y).
 The standard errors assume that (8) holds for the
 particular X variables that we have. They ignore
 variation that would arise if the set of X vari?
 ables is too small for such variation to be non

 negligible. When t is 7, the lower bound estimate
 of a is -0.231 (0.286) and the corresponding
 value for ME is ?0.042, which is a substantial
 negative effect. Note that p is 0.221, indicating
 substantial selection on observables. The lower
 bound estimates at the other horizons are also
 negative, although point estimates are not sig?
 nificant and the ME are small. In particular, at
 180 days the effect is essentially zero. Given that
 this is a lower bound, the point estimates suggest

 that this variable is sufficiently powerful for identification
 in the Connors et. al. (1996) sample. When we use a linear
 probability model for Y and use weekend admission to esti?
 mate the effect of C by 2SLS, we obtain implausibly large
 positive estimates with huge standard errors. At 90 days,
 the marginal effect on mortality is 0.650 (0.296).
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 Table 2?Estimates of Swan-Ganz Treatment Effects
 Assuming Equality of Selection on Observable and

 Unobservable Determinants of Mortality

 Dependent variable: mortality

 Estimate of: 7 days 90 days 180 days
 a -0.231 -0.044 -0.017

 (0.286) (0.174) (0.176)
 [-0.042] [-0.014] [-0.005]

 p 0.221 0.165 0.142

 Note: Cell entries are estimated S-G treatment
 effects from bivariate probit models restricting p =
 cov(Xf?,X'y)/var(X'y). Standard errors are in paren?
 theses and marginal effects are in brackets.

 that C does not substantially lower mortality in
 the long run. However, the standard errors are
 large enough that we cannot reject moderate
 beneficial effects.

 The following refinement to our framework
 is useful for thinking about p. Let e be a vector
 of all unobserved variables that affect mortal?

 ity and are known to doctors when C is chosen.
 Let u be an index of other factors that affect

 choice of C. For simplicity, assume that they
 are unrelated to e. Let v be an index of other
 contemporaneous determinants of mortality
 that doctors do not know about when choosing
 C and assume they are uncorrelated with e and
 u. Let v* capture future variables that have an
 impact on mortality that are unknowable when
 C is chosen. Then,

 C* = X? + e?e + u\

 F* = X'y + e'ye + v + v*,

 cov(e'?e,e'ye)
 var(e'ye + v + v*)

 Let (f> be selection on the unobservables
 known to doctors when they choose C. Because
 u affects C but not Y*,

 _ cov{e'?e + u,e'ye) _ cov{e'?e,e'ye)
 var(e'ye) var{e'ye)

 Let var(e'ye) = 6 var(e'ye + v + v*), where
 6 is the fraction of the unobserved determi?
 nants of variance in mortality that doctors know
 about at the time they choose C. Then p = <f> ? 0.

 For illustrative purposes, suppose one were to
 assume that unobserved mortality determinants
 that doctors know have 0.7 as large an effect
 on C as the observed mortality determinants.
 Then 0 would be 0.7 ? cov (r?,Xfy)/var(Xfy),
 which equals 0.1155 in the 90-day mortality
 case because cov (X'?,X'y)/var(Xfy) is 0.165.
 If we assume that 6 is 0.5, then qbe = cj> ? 6 =
 0.1155 ? 0.5 = 0.0578. Since var (e'ye + v +
 v*) is normalized to 1 and in the 90 day case
 var (X' y) = 0.449, the physicians' R2 for F* is

 var(X'y) + 0
 -7^r{-7 = 0.655. var(X'y) + 1

 We lack the medical expertise and data on
 physicians' beliefs to speculate much further.

 IV. The Relative Amount of Selection on

 Unobservables Required to Explain the C Effect

 AET also provide a different, more informal
 way to use information about selection on the
 observables as a guide to selection on the unob?
 servables. Consider

 E(s\C = 1) - ?(e|C = 0) (9) ?- / /
 = E{X'y\C=l) - E(X'y\C = Q)

 var(X'y)

 The equation says that the relationship between
 C and the mean of the distribution of the index

 of unobservables that determine mortality is ?
 times as strong as the relationship between C
 and the mean of the observable index X'y after
 adjusting for variances. The parameter ? is the
 relative strength of selection on unobservables
 and selection on observables. Under the same
 assumptions as (7), ? = 1, which corresponds to
 the case of equality of selection on observables
 and unobservables.

 A natural way to assess the strength of the
 evidence that C raises mortality is to ask how
 large ? has to be for bias to account for the
 entire estimate of a under the null that a is
 zero. Following AET, we ignore the fact that the
 model for the binary variable F is a probit, and
 treat a as if it were estimated by a regression of
 the latent variable F* on X and C. Let X'? and C
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 represent the predicted value and residuals of a
 regression of C on X. Then

 Y* = aC +X'[y + a?] + e.

 If the bias in a probit is close to the bias in OLS
 applied to the model above for Y*, then the fact
 that C is orthogonal to X leads to the usual bias
 formula:

 A cov(C9e)
 F var(C)

 = a + ^^[?(e|C=l)-?(e|C = 0)]. var\L)

 Given a value of ?, we can use (9) and an estimate

 of E(X'y\C = 1) - E(X'y\C = 0) to estimate
 E (s\C = 1) - E(e\C = 0), and then use the
 equation above to estimate the bias. Under the
 null hypothesis that C has no effect, we can
 consistently estimate y and thus E (X'y | C) from
 a probit after imposing a = 0. When var(s) is
 very large relative to var(X'y), what one can learn
 is limited unless one is confident in the choice of

 ?, because even a small shift in (E(s\C = 1) -
 E(e\C = 0))/var(s) is consistent with a large
 bias in a. But this is also the circumstance with

 the greatest potential for large bias.
 The results for mortality at various time

 horizons are in Table 3. In the 90-day case, the
 (unreported) estimate of (E (X'y\C - 1) - E
 (X'y\C = 0)/var(X(Y) is 0.211, which under
 (9) with ? = 1 implies 0.211 as an estimate of
 E(s\C = 1) - E(s\C = 0) (recall jthat var(s)
 = 1). Multiplying by var (C)/var (C) yields a
 bias reported in the table of 0.288 (0.056). The
 unconstrained estimate of a is 0.231 (0.046),
 and the bottom row of the table reports the ratio

 a/{[var(C)/var(C)] [E(e\C = 1) - E(e\C =
 0)]}, which in the 90-day case is 0.231 / 0.288,
 or 0.801. That is, one can attribute the entire
 positive C effect to bias if the normalized shift
 in the distribution of the unobservables is 0.801

 as large as the shift in the observables (? =
 0.801). We would not want to rule out such a
 possibility, although we suspect that the true
 value of ? is lower for reasons discussed above.
 At seven days, the ratio of selection on unob?
 servables relative to selection on observables
 need only be 0.289 to explain away the positive
 mortality estimate.

 Table 3?The Amount of Selection of Unobservables
 Relative to Selection on Observables Required to

 Attribute the Entire Swan-Ganz Effect
 to Selection Bias

 Dependent variable: mortality

 7 days 90 days 180 days
 Mean of outcome 0.136 0.419 0.475
 Univariate probit 0.137 0.231 0.219
 estimate (0.058) (0.046) (0.046)

 [0.025] [0.074] [0.071]
 Implied bias under 0.475 0.288 0.288
 equality of (0.111) (0.056) (0.056)
 selection

 Ratio of estimate 0.289 0.801 0.759
 to bias

 Notes: Cell entries are estimated Swan-Ganz treat?
 ment effects from bivariate probit models restrict?
 ing p to the value given in the first column. Standard
 errors are in parentheses and marginal effects are in
 brackets.

 V. Heterogenous Treatment Effects

 A disadvantage of our analysis is that it
 implicitly assumes that the response of F* to C
 does not vary with X and e. Connors et al. (1996)
 provide some evidence that the adverse effects
 of C on 30-day mortality vary with observed
 patient characteristics and that they are largest
 for patients with a relatively high predicted two

 month survival probability. AET (2002) provide
 a speculative discussion of the possibility of
 extension of their methods to consider treatment

 heterogeneity. A threshold crossing model with
 heterogeneous effects may be written as

 C = X? + u, C = 1(C* > 0),

 Y; = X'ye + 8c,

 Y* = X'v + e

 f=i(c.f; + (i-c)f;c>o),

 where the latent variable Y* determines F if
 C = 1 and Y*c determines Y otherwise. Apart
 from an intercept shift, our previous specifica?
 tion imposes yc = ync and sc = snc. However,
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 doctors choose C at least in part to minimize
 mortality, so if they know yc and ync, then X'?
 is negatively related to [X'yc - X'ync + sc -
 enc\. The basic reasoning and conditions similar
 to those underlying (7) lead to

 cov(X'?Xyc)
 var(X'yc)

 cov(X'?,X'ync)
 var(X'ync)

 cov(X'yc,rync)
 var(X'ync)

 Since there is clear evidence that the sickest

 patients receive C, in light of our discussion of
 bounds above, one might want to impose

 cov(X'?,X'yc) cov(u,ec) _
 var(X yc) var\sc)

 In addition, unless there are very large
 interactions,

 cov(X'?Xync) cov(u,8nc) _
 var(X>ync) var(enc) "Pue- ?*

 We do not have a presumption about whether
 cov(X'yc,X'ync)/var(X'ync) would be greater
 than or less than cov(sc,snc)/var(snc), although
 both are very likely to be positive. Thus, pecEnc
 would have to be estimated or a sensitivity anal?
 ysis conducted. It would be interesting in future
 research to carefully explore the possibility of
 using these restrictions to help bound estimates
 of yc and ync in a way that is analogous to our
 use of (8) to obtain bounds in the homogeneous
 effects case.

 VI. Conclusions

 We estimate the effects of Swan-Ganz cath
 eterization using the methods of Altonji, Elder,
 and Taber (2002, 2005). Our main conclusion
 is that while it is difficult to find evidence that

 C lowers mortality in the long run, Connors et
 al.'s data are not sufficient to draw strong con?
 clusions about the efficacy of C for critically ill
 patients.

 cov (u,sc)
 var(ec)

 cov(u,enc)

 var(snc)

 cov(sc,enc)

 Puer'

 var (O  Psce
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