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This paper considers models for unobservables in duration models. It demonstrates how cross-section
and time-series variation in regressors facilitates identification of single-spell, competing risks and
multiple spell duration models. We also demonstrate the limited value of traditional identification studies
by considering a case in which a model is identified in the conventional sense but cannot be consistently
estimated.

Econometricians have obtained new results on the identification and estimation of
mixture models and more general statistical models with unobservables. These results.
have applications to models for the analysis of duration data when the possibility of
omitted covariates is explicitly allowed for.
This paper summarizes these results. We place a special emphasis on identification

of nonparametric or partially nonparametric models. A major insight from the
econometrics literature is that introduction of observed covariates in a structured way
solves major identification problems. For example, the standard proof of non-
identifiability of the widely used competing risks model assumes no covariates. These
proofs forfeit an important source of identifying information which is heavily exploited
in the econometrics literature. Dependent competing risks models can be identified if
covariates satisfy the conditions presented below in our general discussion of
identification in nonparametric duration models. By taking a position on the way
observables enter duration models, it is possible to account for unobservables as well
and still recover scientifically interpretable duration models.
Econometricians have investigated the behaviour of a variety of estimators for

partially nonparametric duration models. We present results from studies of con-
sistency, rates of convergence and asymptotic normality of estimators for the para-
metric portions of nonparametric models. We also summarize results from Monte
Carlo studies.
The plan of this paper is as follows. We first present results on identification of single

spell, multiple spell and multiple destination (competing risks) models. We then
consider results on estimation. In a concluding section, we briefly discuss the
econometric research frontier.

1.1 Basic identification results for single spell and competing risks
models

This section considers the identification of the competing risks model when covariates
are part of the model specification. The single spell model is a special case of our
multiple spell set up. Given widespread interest in the competing risks model in
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medical statistics, we start with this model first. The classical competing risks model
excludes covariates. In the classical model there are competing causes of failure
indexed by the integers 1 to ~. Associated with each failure j there is a latent failure
time, T , which is the time to failure from cause j. The observed quantities are the
duration to the first failure and the associated cause of failure

the identified minimum for the problem. In biology, T is the waiting time to death and
1 is the cause of death. David and Moeschberger,l Kalbfleisch and Prentice2 and Cox
and Oakes3 discuss such models. In economics, Flinn and Heckman4 estimate a
competing risks model for unemployed workers, where T is the waiting time to the end
of unemployment and I indexes the reason for leaving unemployment, i.e. getting a job
or dropping out of the workforce. The problem posed in the competing risks literature
is to identify the joint distribution of latent failure times from the distribution of the
identified minimum.
COX5 and Tsiatis6 show that for any joint distribution of the latent failure times there

exists a joint distribution with independent failure times which gives the same
distribution of the identified minimum. This nonidentification theorem has led much
empirical work on multistate duration models to be conducted within an independent
risks paradigm.

In many applications of the competing risks model, there is considerable interest in
identifying the underlying distribution of latent failure times. Yashin et al.7 demon-
strates the importance of accounting for dependence among causes of death in
assessing the impact of eliminating one cause of death on overall mortality rates. In
behavioural or biological models with covariates, there is additional interest in

determining the impact of the regressors on specific marginal failure time distribu-
tions. Thus Yashin et al.’ investigate how smoking, blood pressure and body weight
differentially affect the marginal distributions of time to death attributable to cancer
and other illnesses. Flinn and Heckman8 discuss how unemployment benefits and
other variables differentially affect exit rates from unemployment to out of the
workforce and to employment.
As a consequence of the Cox-Tsiatis theorem, in competing risks models without

regressors it is necessary to make functional form assumptions about the joint
distribution of failure times in order to identify the distribution. Basu and Ghosh,9 9
David and Moeschbergerl and Arnold and Brockettl° exemplify this approach.
The recent literature in econometrics establishes identifiability for models with

covariates. (See Heckman and Honored) It demonstrates conditions under which it is
possible to identify the joint distribution of failure times without invoking distribu-
tional assumptions. The literature summarized below considers identification of
competing risks models in which each marginal distribution is a nonparametric version
of the COX12 proportional hazard model. It also presents identifiability results for an
accelerated hazard competing risk model with covariates.
To simplify the exposition in this survey paper, we consider models with only two

competing failure times. All of our results can easily be generalized to competing risks
models with an arbitrary, but known, finite number of latent failure times. We follow
the discussion Heckman and Honor6l’ rather closely. - ? . 

o.
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The COX12 proportional hazard model specifies the survivor function conditional on
the covariates to be

where Z(.) is the integrated hazard and ~(x) is usually specified as eXI3 where ~i is a
vector of parameters. Assuming Z(t) is differentiable, the associated hazard is

Z’(t)~(x). Differentiability is often only a convenience. Below we provide conditions
under which it can be relaxed. Usually differentiability in a neighbourhood is all that is
required.
One way to combine the Cox proportional hazard specification with the competing

risks model is to assume that each of the potential failure time distributions has a
proportional hazard specification, possibly with different integrated hazard functions
and different functional forms for ( or different values of r3 when ~(x) = exl3. If

independence is assumed, then it is straightforward to specify the resulting competing
risks model (Kalbfleisch and Prentice,2 Flinn and Heckman 13).

Introduce dependence among latent failure times in the following way. In order to
produce random variables from an independent competing risks model one could
generate two independent random variables from a U(0,1) distribution, Ul and U2,
and then solve Sl CTl) = Ul and S2 ( T2 ) = U2 for the potential failure times T, and T2 .
This is equivalent to solving the equations

for Tl and T2 . Dependence between Tl and T2 can be introduced by assuming that U,
and U2 are not necessarily independent. This implies that the joint survivor function of
Tl and T2 conditional on X = x is

where K is the distribution function for ( U, , U2 ) and we assume that Zl (0) = 0 and
Z2(0) = 0. If the marginal distributions are to be of the proportional hazard form, the
marginal distributions associated with K must be of the form Y’ for some c > 0.

Clayton and Cuzick 14 and Flinn and Heckman4 consider generalizations of the
proportional hazard model which are special cases of equation (3). The first

generalization assumes that the true model is an independent competing risks model
with 4)(x) = eXI3 but that one of the covariates is not observed. This implies the model

where G is the distribution of the unobserved covariate, assumed independent of X,
and the integration is over the support of the unobserved covariate, 0. Defining

shows that equation (4) is a special case of equation (3). Heckman and Honor6l’
produce a theorem for models more general than standard univariate mixture
models.
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A second approach taken by Clayton and Cuzick 14 specifies

This specification is also a special case of equation (3). In this case

This specification of K has uniform marginal distributions for all q and therefore
equation (5) has marginal distributions that are consistent with a proportional hazard
specification. The independent competing risks model with proportional marginal
hazards is a special case where ’Y = 0.
The following theorem proved by Heckman and Honorell gives sufficient condi-

tions for the identifiability of ZI, Z2, ~1 and <P2 as well as K for the model given by
equation (3).

THEOREM 1
Assume that (Tu T2) has the joint survivor function as given in equation (3). Then ZI,

Z2, ~&dquo; ~2 and K are identified from the identified minimum of (Tl, Tz) under the following
assumptions.
(i) K is continuously differentiable with partial derivatives K, and K2 and for i =1,2 the

limit as n ~ ~ of Kt(r~ln, ~1Zn) is finite for all sequences Of r~,n, r~2n for which r~ln-~ 1 and
~72n - 1 for n - 00. We also assume that K is strictly increasing in each of its arguments
inallof~0,1JX~0,IJ.

(ii) Zl (1) = 1, Z2(1) = 1, ~1 (x~ = 1, ~2 (x) = 1 for some fixed point xo in the support
X.

(iii) The support of { ~, (x), ~2 (x) is (0, ~) X (0, ~) .
(iv) Z, and Z2 are nonnegative, differentiable, strictly increasing functions, except that we

allow them to be ~ for finite t.

1-Iroof The proof is instructive and we present the main outlines. (See Heckman and
Honor6,&dquo; for more details) . By assumption we know

for all t and x. For notational convenience we suppress the dependence of Q, and Q,
on x. It follows from Theorem 1 of Tsiatis6 that

From the expression for S it follows that
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Calculation of the ratio between QI at an arbitrary x * xo in the support of X and Q~ at
X0 gives .

Cancelling Z ~ (t ) and taking the limit as t - 0 we get ~, (x) . We can thus identify 4), (x)
for all x in the support of X. Using a parallel result for Q2 we can identify <P2’ (Notice
that only (i) and part of (ii) are used to identify 4), (x) and 4)2 (X). Differentiability ofZl
and Z2 is used but the property need only be local. Zl and Z2 need not be strictly
increasing. The support of (~I(x) and ~2(x) can be any intervals including points).
Next observe that by setting t = 1 and letting 4)1(x) and ~2(x) range over the set

(0,~) X (0,~), which can be done as a consequence of assumption (iii), we trace out K.
(This is the first place in the proof where (ii) and (iii) are both used).
To identify Z2(t), let ~2(x) go to 0 holding (~I(x) fixed. We can do this as a

consequence of assumption (iii). Then S(t, t ) goes to a function H [exp{&horbar;Z~t)<~ 1 (x) } ],
where H is a known increasing function since K is known and is increasing in its
argument. Since ~1 is already identified, and Zl(t) = 1 by assumption, Z, can be
identified; Z2 is identified in the same way.
The assumptions made in Theorem 1 deserve a few additional comments. Observe

that fewer assumptions are required to identify <}) than are required to identify K, and
identification of K requires fewer assumptions than does the identification of the Z;(.).
Assumption (ii) is an innocuous normalization. Multiplying by a positive number and
dividing 4), by the same number has no effect on the survivor function. Thus without
loss of generality we can assume that Z, ( 1 ) = 1. With this normalization we can divide
<PI by a positive number a and define a new K, say K, by 7C(T~,ir~) = K (~ i, ~12 ) . This
redefinition has no effect on the survivor function, so we can assume ~, (xo ) = 1 for
some xo in the support of x. The normalizations on Z2 and <P2 are justified in the same
way. The assumption that Z, and Z2 are strictly increasing and differentiable is

necessary only in a neighbourhood of zero. Continuity of Z, and Z2 implies that the
potential failure times Tl and T2 have continuous distributions, and if Zl and Z2 are
strictly increasing then Tl and T2 both have convex support. Observe that Z, or Z2 can
be 00. Thus the failure times are permitted to have bounded support. We also do not
need to assume that either Z, or Z2 goes to 00 as t goes to 00, which implies that we allow
the potential failure times to be infinite with positive probability, so we do not exclude
defective duration distributions.

Assumption (iii) is satisfied in the case where 4~i(x) = exp(x[3i) and there is one
covariate which enters both equations but with different coefficients and for which the
support is all of the real line. Yashin et al.’ and Manton et al.15 use normal covariates in
a competing risks model and argue the plausibility of assuming that different causes
affect the marginal distributions in different ways, so the r3i are distinct across specific
causes.

Assumption (i) is a technical assumption which has to be either assumed or verified
in specific cases. In the model given by equation (4), assumption (i) is satisfied if

I rH .
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The finiteness of this expectation is exactly the condition on unobservables required
for nonparametric identification of the proportional hazard model that appears in
Elbers and Ridder. 16

1.2 Competing risks in an accelerated hazard model

We next consider the identifiability of a competing risks version of the accelerated
hazard model. The survivor function for the accelerated hazard model is given by

Using the same procedure as was used for the proportional hazard model, Heckman
and Honor6&dquo; introduce dependence between two potential failure times by assuming
that they are are generated by solving Ul = S, (TI ) and U2 = S2(T2 ), and where Ul and
U2 are not necessarily independent uniform U(0,1 ) random variables. If the joint
distribution of Ul and U2 is K then the joint survivor function for T, and T2 is

Notice that for all K the bivariate survival model has marginal distributions with
accelerated hazards.

-- Defining .

we can write (7) in the same form as equation (3):

where Zl(t) = t and 22(t) = t. This means that the specification (3) is general enough to
cover dependent accelerated hazard models as a special case. Under the conditions of
Theorem 1 we can identify K, <f>l and ~2. If it is further assumed that the marginal
distribution of K in equation (7) are uniform then we can also identify Zl and Z2 . The
uniformity of the marginal distribution of K implies that the marginal distribution of k
is given by

and hence Zl(t) _ -log{K(e-‘,1)} and by a similar argument Z2(t) _ -log{K(e-‘,1)}.
Thus the model given by equation (7) is identified if it is assumed that K has uniform
marginal distributions. Moreover it is clear that identification of K and of the Zl can be
established if the marginals of K are specified to be any other known distribution. Note
that equation (3) can be interpreted as arising from an accelerated hazard model if and
only if Zl (t) and Z2(t) are power functions.
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1.3 Proportional hazard models for single spells
The logic underlying the proof of Theorem 1 can be utilized to establish the

identifiability of competing risks models with an arbitrary but known number of risks.
With only one risk, this implies that we can identify single spell duration models of the
type

This model includes the proportional hazard model with unobserved heterogeneity
and the accelerated hazard model as special cases. A more familiar representation for
the proportional hazards model which has been widely used since Elbers and Ridder 16
writes this as a Laplace transform with 0 as an unobservable. Thus we write

where L is the Laplace transform. A number of results are available for this widely used
special case which we now present. Many are applications of standard results in the
theory of Laplace transforms. In this section we restate results already implicit in
section one, in terms of more familiar-looking Laplace transform theory.
The model given in equation (10) is exactly the model studied by Elbers and

Ridder 16 and Heckman and Singer.17 It is clear that (10) cannot be identified without
some normalization. Since only the product of Z(t), 4) (x) and 0 appear in (10), we can
change the scale of Z(t), ~(x) and 0 and still be consistent with equation (10). We
continue to make the conventional normalizations of the form Z(to ) = 1 and ~ (xo ) = 1
for some to and xo. To simplify notation we assume in this subsection that X is one-
dimensional. This restriction is of no consequence, for if X is of higher dimension,
then we can always split X in (X 1, X2 ) where X, is one-dimensional. We can then
perform all of the analysis conditional on X2, treating only Xl as the covariate.

In the analysis of equation (10) we will make use of some of the properties of the
Laplace transform first used in this context by Honored For completeness we state
the most important of these in the following lemma.

LEMMA 
_

Assume that L (t) is a Laplace transform. Then L (t) = L (a?) is also a Laplace transform if
~>0~0<~<7.

I-Iroo If Follows from Feller’9 Theorem 1 (page 439) and Criterion 2 (page 441 ) .

The identifiability of equation (10) is investigated in the following theorem.
Theorem 2 presented next shows that (10) is in general not identified, because if Z and
<f> are consistent with (10), then so is Zb and 4)b for b % 1. Theorem 1 shows that these
models are identified given that we exclude power transformations.

THEOREM 2

If (Z, 0, G) is consistent with (10) then for any a ;1 there exists a G * such that
(Z’, 0&dquo;, G *) is also consistent with (1).
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ProoJ Follows directlay from Lemma 1. See also Heckman and Singer, 17 and
Heckman and Singer,2 page 64.

THEOREM 3

(Ridder , 21 Honori8). Assume that the support of X is connected, and that 0 and Z are
differentiable and non-constant in the support of X and T. Then any two specifications
(Z1, 4>p G1) and (ZZ, ~2, G2) consistent with (10) must satisfy

and

for some positive, real numbers k, m and n, and with c = mn.

Equation (13) in Theorem 3 is very useful because it gives the relationship between
the mixing distributions that are consistent with (11). One way to get identification of
(10) is therefore to make assumptions that guarantee that (10) cannot be satisfied for
different specifications. We now follow Honor6 18 and show how the identification
results of Elbers and Ridder 16 and Heckman and Singer 17 can be derived in this way.

Elbers and Ridder 16 show that the model is identified if it is assumed that G has
finite mean. This result can be easily derived as a corollary to Theorem 3.

Corollary 1. (Honori8) T’he model is identified if G has a finite mean.

It is interesting to note that if a specification (Zl , ~ 1, Gal) consistent with equation (10)
has finite mean, then any other specification (Z2, ~2, G2 ) must be related to

(Zl , ~ 1, G1 ) by equations (11), (12), and (13) with k < 1.
In a generalization of Elbers and Ridder/6 Heckman and Singer 17 prove that (10) is

identified if it is also assumed that

where e is known, 0 < E _ 1, 8 % 0, c > 0, and L satisfies the condition that for any fixed

K > 0, L(Kt)lL(t) ~ 1 as t - cc. (Following the notation of Feller, 19 we write u -vv if
ulv -> 1.) Equation (14) is equation (5b) in Heckman and Singer.1’
Theorems 2 and 3 tells us that even though equation (10) is identified if either

moment or tail conditions are imposed on G, there are infinitely many specifications
that are consistent with (10) if such conditions are not imposed. Most of the
identification theorems produced thus far in the literature are for multiplicative,
separable hazards. (,B(tx,O) =Z’(t)~(x)9). Heckman22 considers identification of non-
separable hazard À(t,x,8) = m(t,x)8 and shows that if E(8) < 00 and is normalized to
some value, m(t,x) is identified in the neighbourhood of t = 0.
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1.4 Results for models with single spells without covariates
With additional functional form assumptions on the base hazard, it is not necessary to
have access to covariates to identify the model. For specificity we first consider
identifiability for the class of Box-Cox hazards introduced in Flinn-Heckman8:

For À. = 0, a Weibull hazard model is produced. For À. = 1, a Gompertz hazard model is
obtained. y = 0 produces the exponential model. This class of hazard models
subsumes a wide variety of models used in applied duration analysis. (For further
discussion see Flinn and Heckman8.)
For this class of hazard models there is an interesting trade-off between the interval

of admissible B and the number of bounded moments that is assumed to characterize
G (0). More precisely, the following propositions can be proved.

Proposition 1 (Heckman and Singer 17) . For the true value of ~, ~o, defined so that
Ao ~ 0, if E(9~ < ~ for all admissible G, and for all bounded y, the triple (’Yo, Xo, Go) is

uniquely identified.

Proposition 2 (Heckman and Singer 17) . For the true value of ~, ~o, such that
0 < À.o < 1, if all admissible G are restricted to have a common finite mean that is assumed to
be known a priori (E(e) = ~.~,1) and a bounded (but not necessarily common) second moment
E (e2) < 00, and all admissible y are bounded, the triple (’Yo, À.o , Go) is uniquely identified.

Proposition 3 (Heckman and Singer 17) . For the true value of X, À.o, restricted so that
0 < Bo < j, j a positive integer, if all admissible G are restricted to have a common finite mean
that is assumed to be known a +priori (E(O) = f.Ll) and a bounded (but not necessarily
common) j + 1-st moment (E(9’ ’) < (0), and all admissible y are bounded, the triple
(’Y 0’ À.o , Go~ ~ uniquely identified.
Thus for I ’Y I < 00 if À.o:5 0, finiteness of the mean of 0 (E(O) < (0) is all that is

required in order to secure identification (yo, Xo, Go ) . For j > Xo > 0, the admissible G
are restricted to have a common finite mean (E(O) = >1 ) and a bounded but not

necessarily common j + 1-st moment (E(W+ 1) < (0).
The general strategy of specifying a flexible functional form for the hazard and

placing moment restrictions on the admissible G works in other models besides the
Box-Cox class of hazards. As an example, we consider a nonmonotonic log logistic
model:

Proposition 4 For the log logistic model with multiplicative non-negative heterogeneity
0, the triple (Xo, ao, Go) is uniquely identified provided that the admissible G are restricted to
have a common finite mean E(e) = ~,1~< oo.

Proof. (See Heckman and Singer ).
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1.5 Models with time-varying covariates

The next theorem demonstrates that identification of single spell models (and, by
extension, multiple state competing risks models) is facilitated by access to time-
varying variables. Before stating any formal results on this topic, it is necessary to be
precise about what we mean by duration model with time-varying variables.

Kalbfleisch and Prentice2 present a vague and confusing taxonomy of duration
models with time-varying variables. (See their discussion of ’external’ and ’internal’
covariates.) Fortunately, Yashin and Arjas23 have clarified the issue. Let {X(u)}o be the
sample path of a continuous-time stochastic process up to time t. Realizations of this

process are independent of 0. For the hazard written in terms of X(t), 0 and t, where 0
is an invariant random variable and x(t) is the sample realization (at time t) of the
stochastic covariate process:

Yashin and Arjas demonstrate that the conventional exponential representation of the
survivor function in the time-varying case:

I

is valid under one of two sufficient conditions: : ,’&dquo;,’

(a) T given ( {X(u) } o, 9) is a random variable with an absolutely continuous distribu-
tion function

or

(b) P(T~t ~ I fX(u) 1’, 0) is predictable with respect to {(X(u)}o,9) (i.e. measurable
with respect to the sub u-algebra of f,, , events up to t- but not up to t) and

Condition (b) is called Granger noncausality of the X process. Unless one of these
conditions is satisfied, one cannot guarantee that the representation of the survivor
function as minus an exponentiated integrated hazard (i.e. in the form (15)) is valid.
Either set of conditions ensures that P(T ~ t ~ I (X(u) } o, 6) is a martingale. These
conditions rule out contemporaneous feedback between X(t) and t. They also rule out
the case that future values of X, not known at time t, predict the probability of exit
from the state at time t.
These conditions are to be distinguished from those that arise when X(t) is a

deterministic function of t for all sample paths. Then any distinction between t and
X(t) is arbitrary in any sample with a common starting point (t = 0) for all
observations. Heckman and Singer2° discuss how access to successive samples with
different real time starting points with the process observed at different points in times
(in real time) may afford identification of the model in this situation.

THEOREM 4

(Honoré18). Suppose that there are two types of covariates each satisfying condition (a) or
(b) from Yashin and Arjas23: either the covariate is time-invariant and satisfies the conditions
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of Theorem ~~ or for some fixed t * the covariate is Xl for t < t * and x2 for t % t *. If
<~(~c~ ~ ~(x2), Z satisfies the conditions of Theorem 1, and Z’> 0 in a neighbourhood of t*,
then (10) is identified. If t*> 0, no moments of 0 need exist.

Proof For t > t* compare the survivor function conditional on the covariate being xi
for all t, L(Z(t)~(xl )), to the survivor function conditional on the covariate being xl for
t% t* and X2 for t: t*, L(Z(t*)~(xl ) + (Z(t) -Z(t*))~(x2)). The ratio of the derivative
of the former with respect to t to the derivative of the latter with respect to t is

The limit of this as t- t* from the right is ~(x, )l~(x2). The noteworthy feature of this
result is that finiteness of the mean of the unobservable 0 need not be assumed.
As in the proof of Theorem 3, we can use the data with time-invariant covariates to

identify a Z(t) and a 4-)(x) such that Z(t) = Z(t)&dquo; and ~(x) _ ~(x)°‘ for some unknown
a>0.

For any t> t* we can find a t > t*(i ~ t), such that

or equivalently

or

or

E

As discussed above, an arbitrary normalization is necessary. Let Z(t*) = 1. Then

Since ~(xl )l~(x2) is identified by the argument above, this identifies a, and hence Z(t)
and ~(x). G(9) can be obtained by inverting the Laplace transform.

The preceding theorem can clearly be extended to consider cases where the X(t)
have countable discrete jumps. The main point is that by allowing the covariates to
vary in a simple way drastically changes the nature of the identifiability of proportional
hazard models with a proportional unobserved component. The known discrete jump
points take the place of the origin in Theorem 1 and so allow us to identify models
without assuming that the mean is finite. Honor6’8 conjectures that the sensitivity of
the parameter estimates of ~ to different specifications of Z and G will depend on
whether or not there are time-varying covariates.
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It is straightforward to extend Honor6’s result to models with covariates that are
realizations from stochastic processes with continuous sample paths.

THEOREM 5
For a model with regressors that are realizations from continuous time stochastic processes

with continuous sample paths (e.g. diffusions), it is possible to identify Z(t) and cb(x) in
~l(t, x(t), 9) =Z’(t)cp(x(t))8- a separable form of the model and to identify G(O).

Proof Invoke Yashin-Arjas condition (a) or (b) and write:

Differentiating with respect to t

Evaluating this derivative at the same t for two different values of x(t) (i.e. x’(t) and
x&dquo; (t )) with the same sample paths up to t- (i. e. {x’ (u) } o = {x&dquo; (u) } o ) we form the ratio of
the derivatives of the survivor functions

With one normalization e.g. ~(x(0)) = 1, we can recover ~(x(t)) over the support of
x(t), tE (0, oo) without invoking finiteness of the mean of 0. Only at t = 0 do we need to
invoke the finiteness of the mean. The identification of the remainder of the model
follows using an argument like that given in Theorems 4 and 1.

It is clear how to combine Theorems 4 and 5 to generate identification for models
with both jump covariate processes and processes with continuous sample paths.
Invoking a finiteness of mean assumption, (E(O) < 00). McCa1l24 presents a set of
conditions for the identification of models with time-varying variables that possess a
special structure. McCa1l25 also presents identifiability conditions for models with
time-varying coefficients.

1.6 Multi-spell duration models 
’ &dquo;

We next consider the identification of models that have two observations for each
individual. Extension of the results to models with more than two spells is in most
cases straightforward. We draw heavily on Honor626 who has pioneered in this area.

First, we will show that a multi-spell model can be identified even if there are no
covariates and even if we do not invoke specific functional form assumptions of the
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sort invoked in Section 4. Multi-spell models without covariates have been used for
example by Heckman et a1.2’
Assume that observations are independently distributed conditional on the individ-

ual, but that there is an individual-specific 0 component common across spells.
Specifically,

THEOREM 6

(Honor626). Suppose that for i = 1,2,Zi is differentiable and non-constant, then Zl, Z2 and
G are identified except for a normalizing constant.

It is clear from equation (16) that some kind of normalization is necessary.
Alternative normalizations are Z2(to ) = k, Zl (to ) = k or Z2(to ) = k. We could also
impose E(O) = 1. The latter is more restrictive, as it imposes the restriction that
E[O] < 00.

The result in Theorem 6 is interesting in that it highlights the benefit of having an
additional observation on the same person, even if it is not assumed that the two
observations have the same baseline hazard. It is also worth noting that no assump-
tions are needed about the moments of 0. From the proof of Theorem 6 it follows that
if we observe S(tl , t2 ) only for t, + t2 ~ T, then we can identify Zi(t) for ~7&dquo;,~= 1,2, as
well as G.

Covariates are essential for identification in a single-spell model. We will now show
how covariates in a multi-spell duration model can help relax some of the assumptions
needed for identification of more general versions of (16).

First consider the case where 0 is allowed to be different for different spells. Then we
have

where G is the joint distribution (61, 62 ) . It follows from our discussion of single spell
models that if the conditions of Theorem 3 and the conditions below the theorem are

satisfied, then we can identify Z, , Z2, ~1, <1>2’ as well as the marginal distributions of G,
by considering the marginal distributions of (Tl, T2). It then allows from the

uniqueness of the multi-dimensional Laplace transform that G is identified as well.
Honore26 establishes that:

THEOREM 7
Let the conditional distribution of (T&dquo; T2) given X be given by equation (17). If for

i =1,2, (0i, Oi, Zi) satisfies the assumptions of Theorem 3 and the first corollary below the
Theorem (e.g. the Elbers-Ridder conditions) then 0,, cP2,Z¡,Z2 and G are uniquely identified
(except for the scale normalizations discussed earlier).
We next turn to extensions of equation ( 17) that allow the specification for the

hazard in the second spell to depend on the outcome of the first spell. Thus we write
the density of ( Tl, T2) as

00 00 - - , , .. ,
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Models like (18) have been used, for example, in Heckman and Borjas28 and
Heckman et <2/.~ The dependence of <P2 and Z2 on Tl is usually called ’lagged duration
dependence’.

Conditional on Tl , 02 is not independent of X, so we cannot identify (~2 and Z2 from
the conditional distribution of T2 given Tl using the previous results. A separate
analysis is necessary. The next theorem gives conditions sufficient to guarantee
identification of equation (18).

THEOREM 8
The functions Zl, Z2, ~r, ~2 and G in (18) are uniquely identified (except for scale-

normalizations) if

(1) (Zi ~1, 81) satisfies the conditions of Theorem 3 and Corollary 1.
(2) For given tl, (Z2, 4>2’ 02) satisfies the conditions of Theorem 3 and Corollary 1, and

h(t~ =Zi(t)~,(x)8>Oforall t,.
(3) 81 and 82 are positive random variables with E(8J = 1, E(9,6~ = 1, and h(t~ = 1 for

some known t *

Proof See (Honore,26 Theorem 3).

1.7 A qualification of the preceding results on identification

Before concluding our discussion of identification, it is important to note that the
concept of identifiability employed in this and other papers is the requirement that the
mapping from a space of (conditional hazards) X (a restricted class of probability
distributions) to (a class of joint frequency functions for durations and covariates) be
one to one and onto. This formulation of identifiability is standard. In the literature on
identification there is no requirement of a metric on the spaces or of completeness.
Such requirements are essential if consistency of a partially parametric estimator is
desired. In this connection, Kiefer and WolfoWitZ29 propose a definition of identifia-
bility in a metric space whereby the above-mentioned mapping is 1:1 1 on the

completion (with respect to a given metric) of the original spaces. Without some
additional restriction in defining the original space, undesirable distributions can
appear in the completions.
As an example, consider a Weibull hazard model with conditional survivor function

given an observed k-dimensional covariate x defined as

where

r3 E compact subset of k-dimensional Euclidean space, and Go is restricted to be a
probability distribution on [0, + 00) with f o 9dGo(6) = 1. As a specialization of Elbers
and Ridder’s16 general proof, ao, [3o and Go are identified. Now consider the
completion with respect to the Kiefer-Wolfowitz29 metric of the Cartesian product of
the parameter space of allowed a and (3 values, and the probability distributions on
[0, + 00) satisfying f 6 dGo(6) = 1. The completion contains distributions G, on [0, + 00)
satisfying J’~edGi(6)=oo. Now observe that if S(t ~ x) has a representation



293

as defined above for some aE (0,1) and Go with mean 1, then it is also a completely
monotone function of t. Thus we also have the representation

but now Gl must have an infinite mean. This implies that (ao, r30, Go ) and (1, r31’ Gl )
generate the same survivor function. Hence the model is not identifiable on the

completion of a space where probability distributions are restricted to have a finite
mean. For further discussion see Heckman and Singer.3o

This difficulty can be eliminated by further restricting Go to belong to a uniformly
integrable family of distribution functions. Then all elements in the completion with
respect to the Kiefer-Wolfowitz and a variety of other metrics will also have a finite
mean, and identifiability is again ensured. The comparable requirement for the case
when Eo(6) = oo is that the density with specified tail condition given in equation (14)
converges uniformly to its limit.
The a priori restriction of identifiability considerations to complete metric spaces is

central to establishing consistency of estimation methods in semiparametric models.

2.1 Nonparametric estimation

Securing identifiability of a nonparametric model is only the first step toward

estimating the model. At the time of this writing, no nonparametric estimator has been
devised that consistently estimates the general proportional hazard model (10). There
are results for semiparametric versions of such models.
Heckman and Singer 30 consider consistent estimation of the proportional hazard

model when Z’(t) and ~(x) are specified up to a finite number of parameters but G(0)
is unrestricted, except that it must have either a finite mean and belong to a uniformly
integrable family or satisfy a tail condition with uniform convergence (e.g. condition
(15)). They verify sufficiency conditions due to Kiefer and Wolfowitz2 which, when
satisfied, guarantee the existence of a consistent nonparametric maximum likelihood
estimator. They analyse a Weibull model for censored and uncensored data and
demonstrate how to verify the sufficiency conditions for more general models. Meyer 31
has verified the Kiefer-Wolfowitz conditions for a model with grouped data in finite
intervals. His analysis applies to models with a finite and known number of spline
knots with known location.
These analyses only ensure the existence of a consistent estimator. The asymptotic

distribution of the estimator is unknown but recent bounds on rates of convergence
have been obtained by Honore32 and Ishwaran.33 These are discussed below.
Drawing on results by Lindsey,34,3s we characterize the computational form of the

nonparametric maximum likelihood estimator.* To state these results most succinctly,
we define

* In computing the estimator it is necessary to impose all of the identifiability conditions in order to secure consistent
estimators. For example, in a Weibull model with E(O) < oo, it is important to impose this requirement in securing
estimates. As our example in the preceding subsection indicated, there are other models with E(A) _ ~ that will explain
the data equally well. In large samples, this c ndition is imposed, for example, by picking estimates of G(O) such that

I f (1 - 6(0))dO < ~ or equivalently f (1 - G(8))de F’ > °°. Similarly, if identification is secured by tail condition this
must be imposed in selecting a unique estimator.
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For any fixed value of the parameters determining ~ (x) and Z(t), t* conditional on 0 is
an exponential random variable, i.e.

For this model, the following propositions can be established for the nonparametric
maximum likelihood estimator (NPMLE).

Proposition 5 Let 1 * be the number of distinct t* values in the sample of 7(~7*)
observations. Then the NPMLE of )JL(6) is a finite mixture with at most I* points of
increase, i.e. for censored and uncensored data (with d= 1 for uncensored
observations)

where

Thus the NPMLE is a finite mixture but in contrast to the usual finite mixture

model, I * is estimated along with the Pi and 6,. Other properties of the NPMLE are as
follows.

Proposition 6 Assuming that no points of support {6; come from the boundary of
6 the NPMLE is unique. (See Lindsay.34,35)
Proposition 7 For uncensored data, 9min = 1 ~tm~ and 6,,,. = 1/t:in where&dquo; 

&dquo; 

denotes the
NPMLE estimate, and t£_ and tm;~ are, respectively, the sample maximum and
minimum values for t*. For censored data 9min = 1 and êmax = 1/t:in’ (See
Lindsay.34,35)
These propositions show that the NPMLE for G(6) in the proportional hazard

model is in general unique and the estimated points of support lie in a region with
known bounds (given t*). In computing estimates one can confine attention to this
region. Further characterization of the NPMLE is given in Lindsay.34,35

It is important to note that all of these results are for a given t* = Z(t)~(x). The
computational strategy fixes the parameters determining Z(t) and ~(x) and estimates
G(6). For each estimate of G(6) so achieved Z(t) and 4)(x) are estimated by traditional
parametric maximum likelihood methods. Then fresh t* are generated and a new G(6)
is estimated until convergence occurs. There is no assurance that this procedure
converges to a global optimum.
In a series of Monte Carlo runs reported in Heckman and Singers&dquo; the following

results emerge.

(i) The NPMLE recovers the parameters governing Z(t) and ~(x) rather well.
(ii) The NPMLE does not produce reliable estimates of the underlying mixing

distribution.

(iii) The estimated c.d.f. for duration times F(t x) produced via the NPMLE
predicts the sample c.d.f. of durations quite well, even in fresh samples of data
with different distributions for the x variables.
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Table 1 Results from a typical estimation

’&dquo; The numbers reported below the estimates are standard errors from the estimated information matrix for
(a, P, 0) given 1*. As noted in the text these have no rigorous justification unless the number of points is fixed in
advance.

A typical run is reported in Table 1. The structural parameters (a, r3) are estimated
rather well. The mixing distribution is poorly estimated but the within sample
agreement between the estimated c.d.f. of T and the observed c.d.f. is good. Table 2
records the results of perturbing a model by changing the mean of the regressors from
0 to 10. There is still close agreement between the estimated model (with parameters
estimated on a sample where X -~- N ( 10,1 )) .
The NPMLE can be used to check the plausibility of any particular parameter

specification of the distribution of unobserved variables. If the estimated parameters of
a structural model achieved from a parametric specification of the distribution of
unobservables are not ’too far’ from the estimates of the same parameters achieved

Table 2 Predictions on a fresh sample, X-~- N(10,1 (The model used to fit the parameters is X-~- N(0,1 ).)
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from the NPMLE, the econometrician would have much more confidence in adopting
a particular specification of the mixing distribution. Development of a formal test
statistic to determine how far is ’too far’ awaits development of a distribution for the
nonparametric maximum likelihood estimator. However, because of the consistency of
the nonparametric maximum likelihood estimator a test based on the difference
between the parameters of Z(t) and ~(x) estimated via the NPMLE, and the same
parameters estimated under a particular assumption about the functional form of the
mixing distribution, would be consistent.
The fact that we produce a good estimator of the structural parameters while

producing a poor estimator for G (6) suggests that it is possible to protect against the
consequences of misspecification of the mixing distribution by fitting duration models
with mixing distributions from parametric families, such as finite mixtures models,
with more than the usual two parameters. Thus the failure of the NPMLE to estimate
more than four or five points of increase for G (0) can be cast in a somewhat more
positive light. A finite mixture model with five points of increase is a nine (independ-
ent) parameter model for the mixing distribution. Imposing a false, but very flexible,
mixing distribution does not seem to cause much bias in estimates of the structural
coefficients. Moreover, for small I *, computational costs are lower for the NPMLE
than they are for traditional parametric maximum likelihood estimators of G (6). The
computational costs of precise evaluation of G (0) over ’small enough’ intervals of 6 are
avoided by estimating a finite mixtures model.
Heckman et aL 36 present Monte Carlo evidence on a nonparametric method of

moments estimator for G(6). Their study again shows very slow rates of convergence.
The method of moments estimator appears to be much less reliable than the
maximum likelihood estimator.

In important unpublished research, Ishwaran33 has demonstrated that the lower
bound on the rate of convergence of any estimator of (ao ) in Weibull model (19) with
r3 = 0 depends on the finiteness of

As j increases, and E(e’8) remains finite, the convergence rate increases. Thus if

but

convergence is at rate log N where N is sample size. If equation (20) is finite for j = 2,
convergence is bounded below at rate Nl/3. As j increases and (20) remains finite, the
lower bound on the rate of convergence approaches Nl/2. These results indicate that
the tail behaviour of G (0) vitally affects the rate of convergence of the parametric
portion of the maximum likelihood estimator. Honore32 has some related results.
An important alternative approach to the estimation of the Weibull model when the

mixing distribution is unknown and is not specified parametrically has been developed
by Honored A great advantage of his approach over that taken by Heckman and
Singer 30 is that with his estimator both the rates of convergence and the asymptotic
distribution theory are known.
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Building on an insight by Arnold and Brockett,1O Honor6 notes that in a Weibull
model with no regressors (r3 = 0 in equation (19) except for a constant) that

provided E(O) < oo. Without this assumption, a is not identified (recall the discussion
in the Theorem 3 and the example in the preceding subsection). Honor6 constructs an
order statistic sample analogue to this condition to produce an estimator of a.

Specifically, Honor6 lets t be the mth order statistic of the sample where m - 00, but
mlN~ 0 where N is sample size. S(t) = 1 - mIN. By choosing m = N’-’3 0 < d< 1, it is
possible to produce an order statistics estimator of (ï, &(d) with a known asymptotic
distribution. Honor6 assumes that E (92) < ~, P(9 > 0) > 0 and P(6 % 0) = 1. These
final conditions ensure that durations are finite.
The estimator is generated from

where m = Nl-d, f = ln(-ln(1 - mlN)) and where Tm;N denotes the mth order statistic
Tl , ..., TN and Ti is the survival time of the ith observation. Picking two different
values of d, (dl , d2 ) with dl > d2 we may write

where m= corresponds to the choice of di, and where

This estimator converges to a normal random variable at rate 
- 

’

Honor6 shows that restrictions required to produce a finite variance lead to

d, + 2d2 > 1, which, coupled with the restriction 0 < d2 < dl < 1 leads to a rate of
convergence that can be made arbitrarily close to 3y N. He extends the model to allow
for regressors (p * 0 in (19)). An extensive Monte Carlo analysis shows that his
estimator performs well especially if the coefficient of variation of 0 is not too large.

2.2 Econometric computer algorithms
A computer program estimating maximum likelihood-based general multi-state
duration models with time-varying variables, general hazard rates (including the Box-
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Cox class of models and spline models for hazards) and nonparametric mixing
distributions was initially developed by Heckman, Yates and Honor6 at Chicago. An
application of these programs to birth process data is made by Heckman and Walker.38
These programs have been greatly refined by Steinberg and Colla39 and are now part of
the Systat Library. They are distributed through Salford Systems, 5952 Bernadette
Lane, San Diego, California, 92120, USA. Versions are available for personal
computers, work stations and main frame computers.

3 Summary .

This survey presents results from the recent econometrics literature on duration
models based on mixtures and more general models for unobservables. We have
focused on continuous time duration models. There is a related discrete time literature
in econometrics which we have not surveyed here. (See Heckman and Taber4°.) A
major theme of the econometrics literature has been to establish how the introduction
of regressors in a structured way aids in securing identification of models. There is an
extensive literature on semiparametric estimation of duration models.
Theorem 1 and the other theorems suggest that it should be possible to estimate

more general models with unobservables invoking fewer parametric assumptions than
are conventional. Standard approaches to the competing risks problem are in fact
quite restrictive and unnecessary. The development of more robust semiparametric
and nonparametric estimation methods is a very active topic of research in econo-
metrics, and medical statisticians would be well advised to keep abreast of develop-
ments in this field.
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