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Abstract

Empirical discrete choice dynamic programming models have become important
empirical tools. A question that arises in estimation and interpretation of the results from
these specifications is which combination of data and assumptions are needed to
overcome problems of heterogeneity, selection, and omited variables bias. This paper
addresses this question by considering nonparametric identification of a version of the
model that allows for quite general forms of unobservable and information structures.
I show that the model can be identified under conditions similar to a static poly-
chotomous choice model. Using a stochastic version of an ‘identification of infinity’
argument, utility can be identified up to a monotonic transformation of the observables
under strong support conditions and two types of exclusion restriction. The first type is
similar to a standard static exclusion restriction: a variable that influences the first period
decision, but does not enter the second period decision directly. The second type requires
a variable that does not affect the utility of the first option directly, but is known during
the first period, and has predictive power on the choice during the second. I also provide
two specifications under which the full error structure can be identified. This requires the
additional assumption of stochastic innovations in the observables. I then use the model
to estimate schooling decisions in which students deciding whether to drop out of high
school account for the option value of attending college. © 2000 Elsevier Science S.A.
All rights reserved.
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1. Introduction

Empirical discrete choice dynamic programming models have become impor-
tant empirical tools. In some applications of these models, problems of substan-
tial heterogeneity/selection/omitted variable bias arise (see, e.g. Keane and
Wolpin (1997) or Eckstein and Wolpin (1997)). The source of these biases is
potentially more complex in dynamic models than static ones in that agents may
have heterogeneity not only in outcomes, but also in expectations about future
outcomes. A question that arises in estimation and interpretation of the results
in these cases is which combination of data and assumptions are needed to
overcome these problems. This paper addresses this question by considering
nonparametric identification of a version of the model that allows for quite
general forms of unobservable and information structures. Despite the added
complexity of the model, I show that it can be identified under conditions similar
to a static polychotomous choice model. Using a stochastic version of an
‘identification of infinity’ argument, utility can be nonparametrically identified
up to a monotonic transformation of the observables under strong support
conditions and two types of exclusion restriction. The first type is similar to
a standard static exclusion restriction: a variable that influences the first period
decision, but does not enter the second period decision directly. The second type
requires a variable that does not affect the utility of the first option directly, but
is known during the first period and has predictive power on the choice during
the second. I also provide two specifications under which the full error structure
can be identified. This requires the additional assumption of stochastic innova-
tions in the X’s: a variable known at time one that helps predict the second
period decision, but conditional on second period observables, has no influence
on the decision.

The specification I develop is a generalization of a dynamic ‘Roy’ type model,
and I focus on schooling decisions. In deciding whether to drop out of high
school a student takes into account both the direct value of graduating from
high school as well as the value of the option to attend college. While making
this decision, a student does not know whether he will attend college. Hetero-
geneity bias is likely to be important in that students with high returns or tastes
for high school are also likely to have high returns or tastes for college. While
there is a substantial literature addressing the selection/heterogeneity issue in
schooling models, the previous work has typically ignored the complexity of the
heterogeneity. The problem is not just that the returns to college are likely to be
correlated with returns to high school, but also that agents may have
additional information about their own private returns to college which is
unobservable to the econometrician. For example, a high school student may
know that he has excellent teaching skills. While this information may be
correlated with the returns to high school, since teachers must have a college
degree it is much more important for the decision about whether to attend
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college. Accounting for this type of heterogeneity in information requires a more
complex information structure about unobservables than is often used in em-
pirical work. This leads to two important questions (1) can an information
structure such as this be identified? and (2) if not, can other important structural
parameters be identified without this information? I provide a set of conditions
under which the coefficients can be identified allowing for these forms of
unobserved heterogeneity in information about the unobservables. While we
can not identify an arbitrarily complicated information structure under stan-
dard conditions, I provide two specifications under which we can.

Discrete choice dynamic programming models have been applied to a large
range of topics. Examples include patent renewal (Pakes, 1986), bus engine
replacement (Rust, 1987), job search (Wolpin, 1987), fertility (Hotz and Miller,
1993), life cycle earnings (Keane and Wolpin, 1997), and schooling (Taber, 1998);
a survey can be found in Eckstein and Wolpin (1989) or Rust (1994). The main
goal of this paper is to establish identification of these models under fairly weak
assumptions about the distribution of the error and information structure.
These results are useful for two reasons. First, they take a first step towards
semiparametric estimation of this class of models by establishing sufficient
conditions for their identification. To facilitate estimation, this work typically
imposes strong parametric restrictions on the distribution of the unobservables
and on the information structure that agents use to form their expectations.
These assumptions are typically chosen out of mathematical convenience rather
than as implications of the models themselves so it is important to check the
sensitivity of the model to these assumptions. Secondly, and perhaps more
importantly given current computational problems, they demonstrate the ideal
data set under which these models can be identified without parametric restric-
tions. Solving the heterogeneity bias problem can typically be achieved by
imposing functional forms on the distribution of the error terms. However, it is
preferable to find data that can solve the problems. In practice the perfect data
set rarely exists, so identification is achieved through a combination of data and
assumptions. Nevertheless, this type of identification exercise is potentially
useful both for understanding the trade-off between assumptions and data and
for illuminating which type of data one should use when estimating these
models.

While much work has been done on semiparametric identification of other
discrete choice models, it has not been systematically discussed in dynamic
programming problems. There have been a few papers that focus on specific
points, often with negative results. Flinn and Heckman (1982) consider identi-
fication of job search models. They show that these models are nonparametri-
cally underidentified as one essentially can not distinguish high reservation
wages from low arrival rates. Rust (1994) also shows a form of non-identification
in a more general model. As I discuss below, this problem can be addressed fairly
easily in a finite time model, but is a more serious concern in infinite time
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models. The most closely related work is by Pakes and Simpson (1989). They
provide a sketch of identification for a finite period model of patent renewal that
could be written as a special case of mine. They also use exclusion restrictions
and essentially a similar identification at infinite argument.! T extend this model
into a broader framework by allowing for a more general form for unobser-
vables and information, and a more general process for the observables.
Cameron and Heckman (1998) also consider identification of schooling models,
but the form of their models are quite different in that they do not use this
dynamic programming framework.

This paper extends the work on identification of discrete selection models in
static cases to incorporate dynamics. As in this paper, most of the previous work
generalizes the ideas behind the semiparametric identification of the binary
choice model,

d=1g(X, 0) +¢ > 0). (1)

The function g is assumed known up to parameter 0, but the distribution of ¢ is
unspecified. Identification of this simple model is presented in Cosslett (1983)
and Manski (1975,1988). Extensions that allow for multiple choices or multiple
periods include Manski (1987), Thompson (1989), Cameron and Heckman
(1998), and Cameron and Taber (1994). Matzkin (1990,1992,1993) follows an-
other line. She extends the semiparametric identification to nonparametric
identification. For instance in the binary choice model (1) she allows
g (X, 0) = g(X) and provides conditions under which the function g is identified.

I describe the model in Section 2. I provide identification of various compo-
nents of the model in Sections 3 and 4. In Section 5 I demonstrate how these
results can be used by estimating a version of the model as a schooling model
where a student first decides whether to graduate from high school and then
conditional on high school graduation decides whether to attend college. Sec-
tion 6 presents some conclusions.

2. Model and notation

In order to concentrate on the issues arising from unobserved heterogeneity,
I use a dynamic programming specification that is as simple as possible in terms
of the numbers of periods and choices, but quite general in terms of the joint
distribution of unobservables and information possessed by the agents. Extend-
ing the results below to more complex finite horizon specifications is straight

! They do not explicitly talk about identification at infinity, but in their notation send a second
period variable ¢, above Y; where Y, is the upper bound of the support of the second period error
term.
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forward. The model consists of two time periods and three terminal states. It can
be thought of essentially as a dynamic extension of the Roy model (Roy, 1951;
Heckman and Honoré, 1990). The structure takes the following form,

b

aC

a

In the first period the agent chooses between node a and node a°. If she
chooses node a¢ in the first period, she then chooses between nodes b and ¢ in the
second. In a schooling model node a could represent dropping out of high
school, node b graduating from high school and entering the labor force, and
node ¢ graduating from college. When making the decision to graduate from
high school the student does not know her college options with perfect certainty.

The agent’s preferences are summarized by lifetime reward function V; at each
terminal state ke {a,b,c}. By defining utility at the terminal nodes, I do not
separate utility at node a from utility at nodes b and ¢. Rust (1994) essentially
shows that one can never distinguish utility incurred at node a° from utility
incurred at node b and ¢, but known with perfect certainty at time 1. The
intuition behind this is clear in the schooling example in which it is impossible to
tell whether the utility accumulated from graduating from high school actually
is realized during the graduation ceremony or whether it accrues later in life
while looking at the degree on the wall.? In an infinite time model this type of
normalization is not possible, so the potential problem is more severe.

I define V, so that it is known at the time the choice between a and a° is made
and ¥V, and V. are known at the time the choice between b and c is made. Let
# 1 denote the information available to the agent at the time of the first decision.
I assume that decisions are made in order to maximize expected lifetime reward.
Thus the reward function at node « in the first period takes the value,

Va“(jl) = E[max{l/b: Vc} |f1]

The agent chooses node a if V, > V,(.#;), and chooses node a° otherwise. If she

chooses a° in the first period, she chooses node b in the second if V}, > V.
The incomplete information structure distinguishes this dynamic program-

ming specification from static discrete choice specifications. Under perfect

2 This assumes that at the time of graduation the student recognizes she will receive this utility
later in life.
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certainty, the agent would simply choose the alternative with the highest lifetime
value function and the model would be identical to the standard polychotomous
choice problem. The basic structure of the specification I present below is similar
to the polychotomous choice models of McFadden (1981), Thompson (1989), or
Matzkin (1993). The model differs from these others only in that during the first
period the agents are uncertain about their utilities in the second.

The econometrician observes (d,, dy,d., X4, X;), where for k = {a,b,c}, d, is
an indicator that state k was chosen. I define them explicitly as,

da = I(Va > Var(jl))a (2)
dy = 1(Vy < Vie(A), Vy > V0), A3)
dc = I(I/a < I/cf(fl)a Vb < I/c)a (4)

where 1(-) is the indicator function taking the value one if its argument is true
and zero if it is false.
I define the reward functions at each terminal node to take the following form:

Va = ga(Xa) + & (5)
Ve = g5(Xp) + &, (6)
V. =0. (7

Since utilities are identified only up to monotonic transformations I normalize
utility at node c to zero (see Taber, 1996, for justification). The functions g, and
g, may be finite dimensional as in Manski (1975) or Cosslett (1983) or infinite
dimensional as in Matzkin (1990). The random vector (X,, X}) is observed by
the econometrician and independent of the unobserved random vector (g, &).
The joint distribution of the error terms are left unspecified. I allow the
information set .#; to be heterogeneous across individuals and do not restrict
private information that is contained in .#; to be independent of the error terms.

To simplify the exposition I assume that the first period information about
&, can be completely summarized by a random variable ¢; which is known to the
agent during the first period, but not observed by the econometrician. The
actual numeric value that &, takes is irrelevant for this discussion, but in general

3 An unappealing feature of this type of model is the separability and independence between the
observables and unobservables. This assumption is chosen out of convenience, not as an implication
of economic theory. Unfortunately, something analogous to it is necessary for identification. I use
this specification for its simplicity and for direct comparison with previous work. The proofs in this
paper can be easily altered to address other types of restrictions that have been used for the binary
choice model.
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we may want to think of it as a very large dimensional vector. All that is relevant
about ¢, is the information it provides. Similarly, the first period information
about X, is completely contained in the observable random vector X,.* Thus,

S =0(e1, X1),

where the notation o(Y) denotes the sigma algebra generated by a random
variable Y. In addition, I assume that the observables (X, X,, X,) are indepen-
dent of the unobservables (g1, &,, &).

Since the agents know the value of X, during the first period,

g(X,) co(Xy)

I am not requiring that X, = X, only that knowledge of X is sufficient for
knowledge of X,.> Similarly I do not assume that ¢, = ¢, only that

0 (&) = 0 (&1),

thus the agent may have private information about the values of future unobser-
vables that is not contained in o (¢,).
The structure is summarized in the following table:

Known to the Agent Learned by the Observed by the
at time one Agent at time two Econometrician
€1, & Ep Xl s Xu
Xl ) Xu Xb Xb
G(Xy|Xy) G(Xp | X 1)

da, dba dc
Action taken: d, Action taken: d,, d,

Proving identification involves showing that the functions (g,, g,) and aspects
of the joint distribution of (¢q, ¢,, &) are identified from the observed condi-
tional probabilities. I also allow common shocks to occur between period one
and period two. I denote the outcome of these shocks by ¥,. These could
correspond to macro shocks which influence the outcomes of all individuals.

4By assuming that X, is observable, I do not allow the agents to be better at forecasting their
future values of X, and X, than the econometrician. This assumption is not crucial for the results in
Section 3, but would complicate identification of the full model in Section 4.

5In other words, I can construct some function a such that X, = a(X), but in general I cannot
find a function a~ ! such that X; = a™ (X,).
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The consequences of these types of shocks is to cause the ex-ante conditional
distribution of (&, | ¢;) which agents use to form V- to differ from the ex-post
realization of (g, | &y, ¥,). This could also represent departure from rational
expectations. The econometrician observes Pr(a|X;) and Pr(b| X, X;,¥>),
defined as,

Pr(d, = 11 X1) = Pr(g.(X,) + &0 > V(X 1,61)| Xy) ®)
Pr(d, = 11X, X,,¥,) = Pr(g.(X,)
+ & < Voe(Xy, 1), 95(X3) + &, > 0] X1, X, ¥5). )

The goal of this work is to provide conditions under which (8) and (9) are
sufficient for identification of the functions (g,, ¢,) and the joint distribution of
the unobservables (g4, &4, &)

As mentioned above, there is an aspect to this problem that differentiates it
from most previous work on both static and dynamic discrete choice models.
Since ¢; is person specific, the function V,(X{, &) is also person specific. This
represents a different type of heterogeneity: heterogeneity across expectations as
opposed to heterogeneity across outcomes. The only restriction imposed on
information heterogeneity is that an agent’s time one expectations of ¢, are
independent of the observables X = (X, X5).

3. Identification of g, and g, up to monotonic transformations

In this section I provide conditions which deliver identification of g, and
¢, with minimal assumptions about the distribution of the unobservables. I use
a definition of identification that is analogous to Matzkin (1992). By identifica-
tion of g, and g, up to a monotonic transformation, I mean that for any
alternative functions and distribution of error terms (g, gi, ¥, €%, &f) consis-
tent with the observed probabilities,

Prga(X.) + &, > VX1, 1) | X] = Prgi(X,) + &i > Vi(Xy, ef) | X]
and
Prlg.(Xo)+ea <V (X1, €1),95(X) + & > 0] X, ¥, ]
= Prgi(Xa) + & < ViE(Xy, €f),95(Xs) + & > 0] X, V5],

g¥ and gf must be monotonic transformations of g, and g,. That is it must be
the case that for almost any (x2,x}, x2, x2) if

9o(xp) > g5(x3),  ga(x2) > galx2),
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then

gi(xp) > gi(xz),  gi(xa) > giF(x2).

I first present the conditions required for identification, pose the theorem, and
then describe the general strategy of the proof. The notation supp{Y} denotes
the support of random variable Y. Since X, is measurable with respect to X,
the notation X,(X ;) denotes that value of X, consistent with X .

Condition G1. For any x, esupp{X,} and x; esupp{X, },

supp{e,} = (S, Ss) < supp{ — gu(X.) | X = x3)},
supp{e,} = (S, S5,)

(Si.SY,S;,, and S2 need not be finite)

Condition G2. For any x, esupp{X,}, ye( — Si,, — S&), and c€(0,1), there exists
a set Z'1(x,, y, ¢) with positive measure such that for x; € Z';(x,, y, ¢),

(a) Xqg = Xa(xl)a

(b) Pr(gy, <y|X; =x1)>c,

(c) The distribution of g, conditional on x; is stochastically dominated by the
unconditional distribution of g,.

Condition G3.

E(eplle1) < oo and  E(lgy(X,)l| X 1) < 0.

Theorem 1. Under Assumptions G1,G2, and G3,g, and g, are identified up to
monotonic transformations within ( — Se., — Si ) and (— St., — S\ ) respectively
(Proof in Appendix).

The basic strategy used in this proof is a stochastic extension of ‘identification
at infinity’. This type of approach is common in static models (see, e.g. Chamber-
lain (1986), Heckman (1990), Matzkin (1993), or Cameron and Heckman (1998))
and is very difficult to avoid in these types of selection models without paramet-
ric restrictions on the distribution of the unobservables. To see how this type of
approach works and why it is almost necessary, consider a standard selection
model where,

d=1Z+¢e>0), y=p+u,

E(u| Z) =0, Z and d are observable, but y is observed only when d = 1. Con-
sider identification of f,. If we could condition on a value z* large enough so
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that Pr(d = 1| Z = z*) = 1 then we could identify f, since B(Y | Z = z*) = B,.°
We could then trace out the joint distribution of (¢, u) by varying Z.

Two assumptions are important for this strategy. (1) We need an exclusion
restriction (a variable Z) that enters the selection equation, but not the regres-
sion equation, and (2) this variable must have a large support. To see why this
second assumption is hard to avoid suppose the support of Z is bounded above
by Z where Pr(d =1|Z = Z) < 1. In this case forany e < — Z, d=0and y
is unobserved. This means that the data is completely uninformative about
E(u|e < — Z). Without information about this object, the assumption
E(u| Z) = 0 will not suffice to identify B,.” To achieve nonparametric identifica-
tion of §, without placing strong conditions on the conditional distribution of u,
some type of ‘identification at infinity’ strategy cannot be avoided.

My model has a similar selection structure. The econometrician can only
observe the decision between b and c¢ for individuals who reject a. The same
intuition for identification that comes from the standard selection model will
hold in this case. We typically possess less information in a discrete choice model
than in a selection model so it is very difficult to avoid the ‘identification at
infinity’ strategy here as well without strong restrictions on the error terms.

I identify g, in almost exactly the same manner as f§, in the above example.
With an exclusion restriction we can condition on g, arbitrarily low so that the
probability of selecting node a is close to zero. This leaves us with a simple
binary choice model in which the agents choose between b and ¢. From previous
work we know in this case that we can identify g, up to a monotonic transforma-
tion. The type of exclusion restriction used here is a variable that enters g,, but
does not influence g, directly. To see this suppose that X, is unidimensional,
does not influence g, and that,

lim ¢g,= — o0,
then,
lim Pr(b|X)= lim Pr[g.X,) + &

< Vae(Xy, &1), go(Xp) + 8 > 0] X]
= Pr[gh(Xb) + Ep > 0|X]

% And similarly if we could condition on Z so that Pr(d = 1| Z) is ‘close’ to one then we could
obtain an estimate ‘close’ to f3o.

7Heckman and Vytlacil (1999), Aakvik et al. (1999), and Ichimura and Taber (1999) use a different
strategy. They consider the case where one has exclusion restrictions for this problem, but not full
support of Z. In this case one cannot get point estimates of f, but can get bounds on these values.
A similar strategy could be used for the model presented here as well.
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Using standard identification strategies for the binary choice model (see, e.g.
Manski (1988) or Matzkin (1992)), I can identify g,.® If we have a variable that
influences g,, but not g, directly then we can fix X, and still vary g,. This type of
exclusion restriction satisfies G1. Note that time varying X’s are typically
sufficient for an exclusion restriction here. A first period outcome will influence
ga, but not influence g, conditional on the second period outcome.

Identification of g, is somewhat trickier. Since the sequencing of the choices is
different, at first glance the problem does not seem to take the form of the
selection model. However, it is similar. Since V, is normalized to zero,
g, represents the difference in utility between a and c that is made given
information at time 1. If we could condition on a group of people for whom b is
not an option, then we could identify g, using the same argument as above.
Since in general g, will depend on values of X, that are not realized until time
two we cannot condition on g, at time one. Instead I develop a stochastic notion
of identification at infinity. Rather than conditioning on a set of X, such that
gy 1s small, I condition on a set of X; such that the conditional distribution of
gp 1s ‘small’

This requires a somewhat different type of exclusion restriction, a variable
known at time one that does not enter g, directly, but does have predictive
power for the distribution of g, above and beyond X,. To see how this works,
suppose we have a variable X ; that satisfies these conditions and that as x; gets
small the conditional distribution of g, becomes small. In this case

lim E[max(g,, 0)|x, £,] =0,

X1~ — 0

so that

lim Pr(a|X)= lim Prlg.(x,) + & > E[max(gy, 0)|x1, & ]]

= Pr [ga(xb) + & > 0]

From this piece we can identify g, up to a monotonic transformation. This type
of variable will satisfy G2. Note that simple time varying X’s will not typically be
sufficient in this case. We need a variable that is known at time one and does not
enter g, directly. A second period realization of an observable will not enter
g, directly, but it typically will not be known at time one.

81 assumed one piece of information that is not available. I assumed that the econometrician
knew that g, went to negative infinity with x, even though I have not shown that g, is identified.
This is not a serious issue since holding g, constant, the set of x, for which g, > — oo is the same as
the set of x, for which the probability of choosing a goes to zero which is observable.
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Given a set of exclusion restrictions with large enough support, the model is
essentially transformed from a dynamic model to a static binary choice model.
Thus, the identification strategy here can be easily extended to other cases
addressed in that literature. For example, if one wanted to allow for hetero-
skedasticity in the error terms as in Manski (1975), a combination of Assump-
tions G1 and G2 as well as Manski’s assumptions would be sufficient for
identification. Extending the model to more periods and more choices is also
straight forward. With multiple choices one needs multiple exclusion restriction
that would be jointly sent to infinity. Once again it would be almost impossible
to nonparametrically identify the model without this type of assumptions.
Extending the model to allow for endogenous continuous variables in a manner
similar to Heckman and Honoré¢ (1990) was done in Taber (1996). It also uses
the intuition presented here.

The assumptions above about access to exclusion restrictions can be relaxed
if one is willing to make parametric assumptions about g, and g,. In parti-
cular if g, = X', and ¢, = X', then exclusion restrictions are no longer
necessary (see Taber, 1996). To see the intuition for this, as long as f§, is not
proportional to 5, we can send g, — o0, and still have enough variation in X to
identify f,.

4. Identification of the distribution of the unobservables

The theorems above show that g, and g, can be estimated even if we can
say nothing about the distribution of the error terms. However, their
nonparametric identification is of interest as well. Typically these types of
structural models are estimated with the goal of simulating policy counterfac-
tuals. Except in very special cases, without knowledge of the full model, these
counterfactuals cannot be constructed. For example, in the schooling
case, suppose that policy makers consider subsidizing college education. Evalu-
ating the consequences of the policy on schooling outcomes from the model
cannot be done using g, and g, alone. A second reason for exploring identifica-
tion of the distribution of unobservables is that nonparametric identification
of the unobservables is required for the use of many semiparametric estimators.
For example, showing consistency of the nonparametric maximum likelihood
estimator that I use below requires identification of the distribution of
the unobservables. Finally, the joint distribution of the unobservables may
be of interest in its own right. In the schooling model a researcher may be
interested in understanding the manner in which students learn about their own
ability.

The most general version of the full model above cannot be identified without
further assumptions. I will consider the following possible restrictions on the
unobservables that may provide identification.
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Assumption EI. For all yeR, Pr[e, < y|e(,¥,] = Prle, < yleq].
Assumption E2. For all yeR, Pr[e, < yle; ] = Prle, < yle,].

Assumption E3. &, = v, + n, where v, = E(g, | &1), 1, is independent of &, and
the characteristic functions of ¢, and 7, do not vanish.

Assumption E1 eliminates the possibility of a difference between the ex-ante
and ex-post conditional distribution of g,. It is helpful for identification because
it places strong restrictions on the relationship between the conditional distribu-
tion of ¢, and the conditional distribution agents possess about ¢, during the
first time period. Without this assumption, or at least a strong restriction on
the way these effects operate, identification of the full model from only one
realization of ¥, is not feasible.

Assumptions E2 and E3 are alternative conditions on the first period informa-
tion people possess about their unobservables. Neither is stronger than the
other. Assumption E2 essentially allows for general types of serial correlation. It
imposes that agents have no information about g, beyond ¢,, but does not
restrict the relationship between ¢, and ¢,. Assumption E3 allows a very general
conditioning set, but restricts the knowledge of ¢, to be simply its expected
value. In the schooling model one might expect that individuals have more
information about their returns to college than is conveyed through their
returns to high school, so Assumption E3 is probably more appropriate. How-
ever, in cases in which the decision between a and «f is similar to the choice
between b and ¢, Assumption E2 may be preferred.

The first result of this section is that even under the seemingly strong
conditions above, identification of the error structure cannot be achieved with-
out stochastic innovations in the observables between the two periods. That is,
when agents know the value of X, with perfect certainty in the first period,
identification cannot be achieved even under strong parametric assumptions.
The basic problem is that the choice in the first period is influenced by
Vie(Xy, €1). If X, were known with perfect certainty in the first period then
X, = X, and we could not vary g,(X,) separately from V,(X,, ;). Under
Assumption E3, that would leave us with essentially two degrees of freedom
(g4, 9gp) to identify a three dimensional distribution (e,, v, ;). Under Assump-
tion E2 the intuition is more subtle. Since g,(X,) enters both the first and second
period decisions, it is not possible to differentiate between the two roles which is
necessary for identification in some cases.

I first use counterexamples to demonstrate nonidentification of the distribu-
tion of the error terms in this case. I then show that with stochastic innovations
in X,, I can vary V,(X,, &) separately from g,(X,) which delivers identification
of the distribution of the error terms under condition E1 and either E2 or E3.
While these counterexamples are very special, only very restrictive general
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conditions will rule them out. Unless we use these other very strong assump-
tions, stochastic innovations in the observables between periods are necessary
for identification.

In what follows I assume that g, and g, are identified. In the first section
I showed that they could be identified up to monotonic transformations.
Therefore, after choosing a class of functions which are normalized up to
a monotonic transformation, they are identified. There are a number of different
normalizations have been used in the binary choice model that can be used here
as well (see, e.g. Manski (1988), Cosslett (1983) or Matzkin (1990,1992)). I will not
discuss specific ones but refer the reader to previous work. The only somewhat
unique aspect of this problem is that we can only normalize one of these
functions, and given this normalization the other should be identified. For
example in the linear case if we normalize the scale of g, we can identify the scale
of g, under the conditions presented in the previous section. In some cases when
g, and g, are completely nonparametric this identification requires an addi-
tional exclusion restrictions (a variable that influences ¢, but not g, or
g, directly). These issues are much easier to deal with under specific forms of
g, and g, rather than in the general case, so for the sake of space, I just assume
these conditions hold rather than get into these details.

Assumption G4. g,(X,) and g¢,(X}) are identified.

I first consider the case in which X, is known to the agent with perfect
certainty during the first period, so E(g,|X;) =g¢,. Notice that when
g, &> — oo, Pr(a) - Pr(g, + ¢, > 0), so we can identify the distribution of ¢,.
Similarly if we set g, > — oo, Pr(b) » Pr(g, + ¢, > 0), so we can identify
the distribution of ¢,. The problem is that we cannot identify the joint dis-
tribution.

I first show through a counterexample that Assumptions E1 and E2 are not
sufficient for identification in the case where X, is known during the first period.
The basic intuition is that we do not have enough variation in the observables to
separate the direct effect of ¢, from its role in predicting ¢,.

Counterexample 1. Assume that ¢, is binomial and that the distribution ¢, condi-
tional on ¢, is also binomial for each value of ¢,. I let the (e,, ¢,) have the
following distribution,

{61 with probability p,
8(4 = . g
0, with probability 1 — p,

— ¢, with probability pu,
(ep |0 = 01) = . .
— ¢, with probability 1 — g,



C.R. Taber | Journal of Econometrics 96 (2000) 201-229 215

— ¢, with probability g,
(8b|8a=02)={ . Jo

— ¢p with probability 1 — g,
where ¢, > ¢, and ¢, > ¢,. If p=0.5 and 0, — ¢, u =0, — P, u, then the
model with ¢, = ¢3 and ¢, = ¢, cannot be distinguished from an alternative
model with ¢, = ¢4 and ¢, = ¢s.

Now consider Assumption E3. I will go to the two extremes and provide

a counterexample in which I cannot distinguish a model in which the agent has
full knowledge of ¢, during the first period (i.e. & = v,) from a model in which
the agent has no knowledge of ¢, during the first period (ie. & = #;). I take
& and ¢, to be distributed logistically and show that the nested logit model
cannot be distinguished from a model in which agents have no information
about ¢, at time one. McFadden has shown that the nested logit can be derived
from a multinomial choice model. These models are special cases in which the
agents have full information in the first period.

Counterexample 2. 1 present the models in the context of my current notation
without the normalization of g. = 0. I let g, be the original reward functions so
by definition g, = g, — g. and g, = g, — §.. The following two models produce
the same choice probabilities.

Model 1 (Nested Logit Model(McFadden 1977,1981))

Vazga—i_éaﬂ
Ve = gy + &,
Ve=gc + &,

fl = a(gaa gba gc, éaa éba éc)»

F(2,, &, &) = exp( — exp( — &,)) exp( — [exp(?) + exp<—péc>] ”>

Model 2:
Vi =9a + &a
Ve =gy + © + pt,
Ve=9. + o+ pé,
I1=0(Gas Gb> o> Ear ),
F(E,, &, &, w) = exp( — exp( — &))exp( — exp( — &))

exp( — exp( — &))exp( — exp( — ).
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In other words the error terms are all independent with Type 1 extreme value
distribution.

Now suppose that X, is not known with perfect certainty during the first
period. In this case it is possible to provide sufficient conditions under which the
distribution of the unobservables is identified. I assume E1 and show that either
E2 or E3 are sufficient for identification. I use the following additional assump-
tion,

1

Condition G5. For almost all x; esupp(X ), (S;,, Ss, ) €supp( — gp(Xp) | X1 = Xy).

I first show in the following lemma that this additional assumption provides
identification of the joint distribution of (g,, &,). I then use this lemma to prove
I can identify the full model when I combine Assumption E1 with either E2 or
E3.

Lemma 1. Under Assumptions G1-GS5 the joint distribution of (¢,, &,) is identified.
(Proof in Appendix.)

To see the intuition for the proof of the lemma recall that,
Pr(b|X)=Pr(gy + & > 0,9, + &4 < Va(X1, &1)| X).
So by sending V,(X;, &) — 0 as in the proof of the first theorem, I can identify
Pr(gy + & > 0,9, + &, < 0] X),

from which it is easy to identify the joint distribution of (¢,, ¢;,) by varying g, and
9b-

Given this lemma it is obvious that Assumptions E1 and E2 are sufficient for
identification.

Theorem 2. Under Assumptions El, E2, and GI-G5 the full model is identified
(Proof in Appendix.)

I now consider Assumption E3. This is useful because as E(g, + v, | X1, &1)
gets large, E[max{g, + v, + s, 0} | X1,v,] approaches E(g,|X;) + v;. I use
this fact to show that I can identify the joint distribution of (g, — v, v, + 1),
and from this I can identify the distribution of #, and the joint distribution of

(Sba Vh)~

Theorem 3. Under Assumptions El, E3, and GI-GS5 the full model is identified.
(Proof in Appendix.)
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5. Estimation of a schooling model

In this section I estimate an empirical schooling model using the framework
developed above. There is a very large literature in labor economics, public
economics, and sociology on schooling decisions. Perhaps the largest concern in
this literature has been about heterogeneity and selection bias. In terms of
observable attributes, students who attend college are very different than those
who do not. It is thus reasonable to expect that they are different in terms of
unobservable attributes as well. Cameron and Heckman (1998) provide a recent
example of a schooling model that focuses on heterogeneity and Card (1998)
provides a recent survey of work done on the returns to schooling which deal
with the selection problem in a variety of ways. Schooling is also clearly
a dynamic decision in which people do not have full certainty about their
options when they make the decisions. Many papers in this literature have
addressed this problem of uncertainty in schooling returns. Examples include
Weisbrod (1962), Comay et al. (1973), Altonji (1993), Belzil and Hansen (1997),
Keane and Wolpin (1997), Buchinsky and Leslie (1996), and Taber (1998). In this
section I apply the discussion of identification above to a