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Abstract

Empirical discrete choice dynamic programming models have become important
empirical tools. A question that arises in estimation and interpretation of the results from
these speci"cations is which combination of data and assumptions are needed to
overcome problems of heterogeneity, selection, and omited variables bias. This paper
addresses this question by considering nonparametric identi"cation of a version of the
model that allows for quite general forms of unobservable and information structures.
I show that the model can be identi"ed under conditions similar to a static poly-
chotomous choice model. Using a stochastic version of an &identi"cation of in"nity'
argument, utility can be identi"ed up to a monotonic transformation of the observables
under strong support conditions and two types of exclusion restriction. The "rst type is
similar to a standard static exclusion restriction: a variable that in#uences the "rst period
decision, but does not enter the second period decision directly. The second type requires
a variable that does not a!ect the utility of the "rst option directly, but is known during
the "rst period, and has predictive power on the choice during the second. I also provide
two speci"cations under which the full error structure can be identi"ed. This requires the
additional assumption of stochastic innovations in the observables. I then use the model
to estimate schooling decisions in which students deciding whether to drop out of high
school account for the option value of attending college. ( 2000 Elsevier Science S.A.
All rights reserved.
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1. Introduction

Empirical discrete choice dynamic programming models have become impor-
tant empirical tools. In some applications of these models, problems of substan-
tial heterogeneity/selection/omitted variable bias arise (see, e.g. Keane and
Wolpin (1997) or Eckstein and Wolpin (1997)). The source of these biases is
potentially more complex in dynamic models than static ones in that agents may
have heterogeneity not only in outcomes, but also in expectations about future
outcomes. A question that arises in estimation and interpretation of the results
in these cases is which combination of data and assumptions are needed to
overcome these problems. This paper addresses this question by considering
nonparametric identi"cation of a version of the model that allows for quite
general forms of unobservable and information structures. Despite the added
complexity of the model, I show that it can be identi"ed under conditions similar
to a static polychotomous choice model. Using a stochastic version of an
&identi"cation of in"nity' argument, utility can be nonparametrically identi"ed
up to a monotonic transformation of the observables under strong support
conditions and two types of exclusion restriction. The "rst type is similar to
a standard static exclusion restriction: a variable that in#uences the "rst period
decision, but does not enter the second period decision directly. The second type
requires a variable that does not a!ect the utility of the "rst option directly, but
is known during the "rst period and has predictive power on the choice during
the second. I also provide two speci"cations under which the full error structure
can be identi"ed. This requires the additional assumption of stochastic innova-
tions in the X's: a variable known at time one that helps predict the second
period decision, but conditional on second period observables, has no in#uence
on the decision.

The speci"cation I develop is a generalization of a dynamic &Roy' type model,
and I focus on schooling decisions. In deciding whether to drop out of high
school a student takes into account both the direct value of graduating from
high school as well as the value of the option to attend college. While making
this decision, a student does not know whether he will attend college. Hetero-
geneity bias is likely to be important in that students with high returns or tastes
for high school are also likely to have high returns or tastes for college. While
there is a substantial literature addressing the selection/heterogeneity issue in
schooling models, the previous work has typically ignored the complexity of the
heterogeneity. The problem is not just that the returns to college are likely to be
correlated with returns to high school, but also that agents may have
additional information about their own private returns to college which is
unobservable to the econometrician. For example, a high school student may
know that he has excellent teaching skills. While this information may be
correlated with the returns to high school, since teachers must have a college
degree it is much more important for the decision about whether to attend
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college. Accounting for this type of heterogeneity in information requires a more
complex information structure about unobservables than is often used in em-
pirical work. This leads to two important questions (1) can an information
structure such as this be identi"ed? and (2) if not, can other important structural
parameters be identi"ed without this information? I provide a set of conditions
under which the coe$cients can be identi"ed allowing for these forms of
unobserved heterogeneity in information about the unobservables. While we
can not identify an arbitrarily complicated information structure under stan-
dard conditions, I provide two speci"cations under which we can.

Discrete choice dynamic programming models have been applied to a large
range of topics. Examples include patent renewal (Pakes, 1986), bus engine
replacement (Rust, 1987), job search (Wolpin, 1987), fertility (Hotz and Miller,
1993), life cycle earnings (Keane and Wolpin, 1997), and schooling (Taber, 1998);
a survey can be found in Eckstein and Wolpin (1989) or Rust (1994). The main
goal of this paper is to establish identi"cation of these models under fairly weak
assumptions about the distribution of the error and information structure.
These results are useful for two reasons. First, they take a "rst step towards
semiparametric estimation of this class of models by establishing su$cient
conditions for their identi"cation. To facilitate estimation, this work typically
imposes strong parametric restrictions on the distribution of the unobservables
and on the information structure that agents use to form their expectations.
These assumptions are typically chosen out of mathematical convenience rather
than as implications of the models themselves so it is important to check the
sensitivity of the model to these assumptions. Secondly, and perhaps more
importantly given current computational problems, they demonstrate the ideal
data set under which these models can be identi"ed without parametric restric-
tions. Solving the heterogeneity bias problem can typically be achieved by
imposing functional forms on the distribution of the error terms. However, it is
preferable to "nd data that can solve the problems. In practice the perfect data
set rarely exists, so identi"cation is achieved through a combination of data and
assumptions. Nevertheless, this type of identi"cation exercise is potentially
useful both for understanding the trade-o! between assumptions and data and
for illuminating which type of data one should use when estimating these
models.

While much work has been done on semiparametric identi"cation of other
discrete choice models, it has not been systematically discussed in dynamic
programming problems. There have been a few papers that focus on speci"c
points, often with negative results. Flinn and Heckman (1982) consider identi-
"cation of job search models. They show that these models are nonparametri-
cally underidenti"ed as one essentially can not distinguish high reservation
wages from low arrival rates. Rust (1994) also shows a form of non-identi"cation
in a more general model. As I discuss below, this problem can be addressed fairly
easily in a "nite time model, but is a more serious concern in in"nite time
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1They do not explicitly talk about identi"cation at in"nity, but in their notation send a second
period variable c

2
above >

J
where >

J
is the upper bound of the support of the second period error

term.

models. The most closely related work is by Pakes and Simpson (1989). They
provide a sketch of identi"cation for a "nite period model of patent renewal that
could be written as a special case of mine. They also use exclusion restrictions
and essentially a similar identi"cation at in"nite argument.1 I extend this model
into a broader framework by allowing for a more general form for unobser-
vables and information, and a more general process for the observables.
Cameron and Heckman (1998) also consider identi"cation of schooling models,
but the form of their models are quite di!erent in that they do not use this
dynamic programming framework.

This paper extends the work on identi"cation of discrete selection models in
static cases to incorporate dynamics. As in this paper, most of the previous work
generalizes the ideas behind the semiparametric identi"cation of the binary
choice model,

d"1(g (X, h)#e'0). (1)

The function g is assumed known up to parameter h, but the distribution of e is
unspeci"ed. Identi"cation of this simple model is presented in Cosslett (1983)
and Manski (1975,1988). Extensions that allow for multiple choices or multiple
periods include Manski (1987), Thompson (1989), Cameron and Heckman
(1998), and Cameron and Taber (1994). Matzkin (1990,1992,1993) follows an-
other line. She extends the semiparametric identi"cation to nonparametric
identi"cation. For instance in the binary choice model (1) she allows
g (X, h)"g (X) and provides conditions under which the function g is identi"ed.

I describe the model in Section 2. I provide identi"cation of various compo-
nents of the model in Sections 3 and 4. In Section 5 I demonstrate how these
results can be used by estimating a version of the model as a schooling model
where a student "rst decides whether to graduate from high school and then
conditional on high school graduation decides whether to attend college. Sec-
tion 6 presents some conclusions.

2. Model and notation

In order to concentrate on the issues arising from unobserved heterogeneity,
I use a dynamic programming speci"cation that is as simple as possible in terms
of the numbers of periods and choices, but quite general in terms of the joint
distribution of unobservables and information possessed by the agents. Extend-
ing the results below to more complex "nite horizon speci"cations is straight
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2This assumes that at the time of graduation the student recognizes she will receive this utility
later in life.

forward. The model consists of two time periods and three terminal states. It can
be thought of essentially as a dynamic extension of the Roy model (Roy, 1951;
Heckman and HonoreH , 1990). The structure takes the following form,

In the "rst period the agent chooses between node a and node ac. If she
chooses node ac in the "rst period, she then chooses between nodes b and c in the
second. In a schooling model node a could represent dropping out of high
school, node b graduating from high school and entering the labor force, and
node c graduating from college. When making the decision to graduate from
high school the student does not know her college options with perfect certainty.

The agent's preferences are summarized by lifetime reward function<
k
at each

terminal state k3Ma, b, cN. By de"ning utility at the terminal nodes, I do not
separate utility at node ac from utility at nodes b and c. Rust (1994) essentially
shows that one can never distinguish utility incurred at node ac from utility
incurred at node b and c, but known with perfect certainty at time 1. The
intuition behind this is clear in the schooling example in which it is impossible to
tell whether the utility accumulated from graduating from high school actually
is realized during the graduation ceremony or whether it accrues later in life
while looking at the degree on the wall.2 In an in"nite time model this type of
normalization is not possible, so the potential problem is more severe.

I de"ne <
a
so that it is known at the time the choice between a and ac is made

and <
b

and <
c

are known at the time the choice between b and c is made. Let
I

1
denote the information available to the agent at the time of the "rst decision.

I assume that decisions are made in order to maximize expected lifetime reward.
Thus the reward function at node ac in the "rst period takes the value,

<
a
c(I1

),E[maxM<
b
,<

c
N DI

1
].

The agent chooses node a if <
a
'<

a
c (I1

), and chooses node ac otherwise. If she
chooses ac in the "rst period, she chooses node b in the second if <

b
'<

c
.

The incomplete information structure distinguishes this dynamic program-
ming speci"cation from static discrete choice speci"cations. Under perfect
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3An unappealing feature of this type of model is the separability and independence between the
observables and unobservables. This assumption is chosen out of convenience, not as an implication
of economic theory. Unfortunately, something analogous to it is necessary for identi"cation. I use
this speci"cation for its simplicity and for direct comparison with previous work. The proofs in this
paper can be easily altered to address other types of restrictions that have been used for the binary
choice model.

certainty, the agent would simply choose the alternative with the highest lifetime
value function and the model would be identical to the standard polychotomous
choice problem. The basic structure of the speci"cation I present below is similar
to the polychotomous choice models of McFadden (1981), Thompson (1989), or
Matzkin (1993). The model di!ers from these others only in that during the "rst
period the agents are uncertain about their utilities in the second.

The econometrician observes (d
a
, d

b
, d

c
, X

a
, X

b
), where for k"Ma, b, cN, d

k
is

an indicator that state k was chosen. I de"ne them explicitly as,

d
a
"1(<

a
'<

a
c (I1

)), (2)

d
b
"1(<

a
)<

a
c (I1

),<
b
'<

c
), (3)

d
c
"1(<

a
)<

a
c (I1

),<
b
)<

c
), (4)

where 1( ) ) is the indicator function taking the value one if its argument is true
and zero if it is false.

I de"ne the reward functions at each terminal node to take the following form:

<
a
"g

a
(X

a
)#e

a
, (5)

<
b
"g

b
(X

b
)#e

b
, (6)

<
c
"0. (7)

Since utilities are identi"ed only up to monotonic transformations I normalize
utility at node c to zero (see Taber, 1996, for justi"cation). The functions g

a
and

g
b

may be "nite dimensional as in Manski (1975) or Cosslett (1983) or in"nite
dimensional as in Matzkin (1990). The random vector (X

a
,X

b
) is observed by

the econometrician and independent of the unobserved random vector (e
a
, e

b
).3

The joint distribution of the error terms are left unspeci"ed. I allow the
information set I

1
to be heterogeneous across individuals and do not restrict

private information that is contained in I
1

to be independent of the error terms.
To simplify the exposition I assume that the "rst period information about

e
b
can be completely summarized by a random variable e

1
which is known to the

agent during the "rst period, but not observed by the econometrician. The
actual numeric value that e

1
takes is irrelevant for this discussion, but in general
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4By assuming that X
1

is observable, I do not allow the agents to be better at forecasting their
future values of X

b
and X

c
than the econometrician. This assumption is not crucial for the results in

Section 3, but would complicate identi"cation of the full model in Section 4.
5 In other words, I can construct some function a such that X

a
"a(X

1
), but in general I cannot

"nd a function a~1 such that X
1
"a~1(X

a
).

we may want to think of it as a very large dimensional vector. All that is relevant
about e

1
is the information it provides. Similarly, the "rst period information

about X
b

is completely contained in the observable random vector X
1
.4 Thus,

I
1
"p (e

1
, X

1
),

where the notation p(>) denotes the sigma algebra generated by a random
variable>. In addition, I assume that the observables (X

1
, X

a
, X

b
) are indepen-

dent of the unobservables (e
1
, e

a
, e

b
).

Since the agents know the value of X
a

during the "rst period,

p (X
a
)Lp (X

1
).

I am not requiring that X
a
"X

1
, only that knowledge of X

1
is su$cient for

knowledge of X
a
.5 Similarly I do not assume that e

a
"e

1
, only that

p (e
a
)Lp (e

1
),

thus the agent may have private information about the values of future unobser-
vables that is not contained in p (e

a
).

The structure is summarized in the following table:

Known to the Agent Learned by the Observed by the
at time one Agent at time two Econometrician

e
1
, e

a
e
b

X
1
, X

a
X

1
, X

a
X

b
X

b
G (X

b
DX

1
) G(X

b
DX

1
)

d
a
, d

b
, d

c

Action taken: d
a

Action taken: d
b
, d

c

Proving identi"cation involves showing that the functions (g
a
, g

b
) and aspects

of the joint distribution of (e
1
, e

a
, e

b
) are identi"ed from the observed condi-

tional probabilities. I also allow common shocks to occur between period one
and period two. I denote the outcome of these shocks by W

2
. These could

correspond to macro shocks which in#uence the outcomes of all individuals.
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The consequences of these types of shocks is to cause the ex-ante conditional
distribution of (e

b
D e

1
) which agents use to form <

a
c to di!er from the ex-post

realization of (e
b
D e

1
, W

2
). This could also represent departure from rational

expectations. The econometrician observes Pr (a DX
1
) and Pr (b DX

1
, X

b
,W

2
),

de"ned as,

Pr (d
a
"1 D X

1
)"Pr(g

a
(X

a
)#e

a
'<

a
c(X1

,e
1
) DX

1
) (8)

Pr (d
b
"1 D X

1
,X

b
,W

2
)"Pr (g

a
(X

a
)

#e
a
)<

a
c (X1

, e
1
), g

b
(X

b
)#e

b
'0 DX

1
, X

b
,W

2
). (9)

The goal of this work is to provide conditions under which (8) and (9) are
su$cient for identi"cation of the functions (g

a
, g

b
) and the joint distribution of

the unobservables (e
1
, e

a
, e

b
).

As mentioned above, there is an aspect to this problem that di!erentiates it
from most previous work on both static and dynamic discrete choice models.
Since e

1
is person speci"c, the function <

a
c(X1

, e
1
) is also person speci"c. This

represents a di!erent type of heterogeneity: heterogeneity across expectations as
opposed to heterogeneity across outcomes. The only restriction imposed on
information heterogeneity is that an agent's time one expectations of e

b
are

independent of the observables X"(X
1
,X

2
).

3. Identi5cation of ga and gb up to monotonic transformations

In this section I provide conditions which deliver identi"cation of g
a

and
g
b

with minimal assumptions about the distribution of the unobservables. I use
a de"nition of identi"cation that is analogous to Matzkin (1992). By identi"ca-
tion of g

a
and g

b
up to a monotonic transformation, I mean that for any

alternative functions and distribution of error terms (gH
a
, gH

b
, eH

a
, eH

1
, eH

b
) consis-

tent with the observed probabilities,

Pr [g
a
(X

a
)#e

a
'<

a
c(X1

, e
1
) DX]"Pr [gH

a
(X

a
)#eH

a
'<H

a
c(X1

, eH
1
) D X]

and

Pr[g
a
(X

a
)#e

a
)<

a
c (X1

, e
1
), g

b
(X

b
)#e

b
'0 DX, W

2
]

"Pr [gH
a
(X

a
)#eH

a
)<H

a
c (X1

, eH
1
), gH

b
(X

b
)#eH

b
'0 DX, W

2
],

gH
a

and gH
b

must be monotonic transformations of g
a

and g
b
. That is it must be

the case that for almost any (x1
b
,x1

a
,x2

b
,x2

a
) if

g
b
(x1

b
)'g

b
(x2

b
), g

a
(x1

a
)'g

a
(x2

a
),
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then

gH
b
(x1

b
)'gH

b
(x2

b
), gH

a
(x1

a
)'gH

a
(x2

a
).

I "rst present the conditions required for identi"cation, pose the theorem, and
then describe the general strategy of the proof. The notation suppM>N denotes
the support of random variable >. Since X

a
is measurable with respect to X

1
,

the notation X
a
(X

1
) denotes that value of X

a
consistent with X

1
.

Condition G1. For any x
b
3suppMX

b
N and x

1
3suppMX

1
N,

suppMe
a
N"(S-ea , S6ea )LsuppM!g

a
(X

a
) D X

b
"x

b
)N,

suppMe
b
N"(S-eb , S6eb )

(S-ea ,S6ea , S-eb , and S6eb need not be "nite)

Condition G2. For any x
a
3suppMX

a
N, y3(!S-eb ,!S6eb ), and c3(0,1), there exists

a set X
1
(x

a
, y, c) with positive measure such that for x

1
3X

1
(x

a
, y, c),

(a) x
a
"X

a
(x

1
),

(b) Pr (g
b
(y D X

1
"x

1
)'c,

(c) The distribution of g
b

conditional on x
1

is stochastically dominated by the
unconditional distribution of g

b
.

Condition G3.

E(De
b
D D e

1
)(R and E(Dg

b
(X

b
)D D X

1
)(R.

Theorem 1. Under Assumptions G1,G2, and G3, g
a

and g
b

are identixed up to
monotonic transformations within (!S6ea ,!S-ea ) and (!S6eb ,!S-eb ) respectively
(Proof in Appendix).

The basic strategy used in this proof is a stochastic extension of &identi"cation
at in"nity'. This type of approach is common in static models (see, e.g. Chamber-
lain (1986), Heckman (1990), Matzkin (1993), or Cameron and Heckman (1998))
and is very di$cult to avoid in these types of selection models without paramet-
ric restrictions on the distribution of the unobservables. To see how this type of
approach works and why it is almost necessary, consider a standard selection
model where,

d"1(Z#e'0), y"b
0
#u,

E(u DZ)"0, Z and d are observable, but y is observed only when d"1. Con-
sider identi"cation of b

0
. If we could condition on a value zH large enough so
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6And similarly if we could condition on Z so that Pr (d"1 D Z) is &close' to one then we could
obtain an estimate &close' to b

0
.

7Heckman and Vytlacil (1999), Aakvik et al. (1999), and Ichimura and Taber (1999) use a di!erent
strategy. They consider the case where one has exclusion restrictions for this problem, but not full
support of Z. In this case one cannot get point estimates of b

0
but can get bounds on these values.

A similar strategy could be used for the model presented here as well.

that Pr (d"1 DZ"zH)"1 then we could identify b
0

since E(> DZ"zH)"b
0
.6

We could then trace out the joint distribution of (e, u) by varying Z.
Two assumptions are important for this strategy. (1) We need an exclusion

restriction (a variable Z) that enters the selection equation, but not the regres-
sion equation, and (2) this variable must have a large support. To see why this
second assumption is hard to avoid suppose the support of Z is bounded above
by ZM where Pr (d"1 D Z"ZM )(1. In this case for any e(!ZM , d"0 and y
is unobserved. This means that the data is completely uninformative about
E(u D e(!ZM ). Without information about this object, the assumption
E(u DZ)"0 will not su$ce to identify b

0
.7 To achieve nonparametric identi"ca-

tion of b
0

without placing strong conditions on the conditional distribution of u,
some type of &identi"cation at in"nity' strategy cannot be avoided.

My model has a similar selection structure. The econometrician can only
observe the decision between b and c for individuals who reject a. The same
intuition for identi"cation that comes from the standard selection model will
hold in this case. We typically possess less information in a discrete choice model
than in a selection model so it is very di$cult to avoid the &identi"cation at
in"nity' strategy here as well without strong restrictions on the error terms.

I identify g
b

in almost exactly the same manner as b
0

in the above example.
With an exclusion restriction we can condition on g

a
arbitrarily low so that the

probability of selecting node a is close to zero. This leaves us with a simple
binary choice model in which the agents choose between b and c. From previous
work we know in this case that we can identify g

b
up to a monotonic transforma-

tion. The type of exclusion restriction used here is a variable that enters g
a
, but

does not in#uence g
b

directly. To see this suppose that X
a

is unidimensional,
does not in#uence g

b
, and that,

lim
xa?~=

g
a
"!R,

then,

lim
xa?~=

Pr (b D X)" lim
xa?~=

Pr [g
a
(X

a
)#e

a

)<
a
c (X1

, e
1
), g

b
(X

b
)#e

b
'0 D X]

"Pr [g
b
(X

b
)#e

b
'0 D X].
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8 I assumed one piece of information that is not available. I assumed that the econometrician
knew that g

a
went to negative in"nity with x

a
even though I have not shown that g

a
is identi"ed.

This is not a serious issue since holding g
b
constant, the set of x

a
for which g

a
P!R is the same as

the set of x
a

for which the probability of choosing a goes to zero which is observable.

Using standard identi"cation strategies for the binary choice model (see, e.g.
Manski (1988) or Matzkin (1992)), I can identify g

b
.8 If we have a variable that

in#uences g
a
, but not g

b
directly then we can "x X

b
and still vary g

a
. This type of

exclusion restriction satis"es G1. Note that time varying X's are typically
su$cient for an exclusion restriction here. A "rst period outcome will in#uence
g
a
, but not in#uence g

b
conditional on the second period outcome.

Identi"cation of g
a
is somewhat trickier. Since the sequencing of the choices is

di!erent, at "rst glance the problem does not seem to take the form of the
selection model. However, it is similar. Since <

c
is normalized to zero,

g
a

represents the di!erence in utility between a and c that is made given
information at time 1. If we could condition on a group of people for whom b is
not an option, then we could identify g

a
using the same argument as above.

Since in general g
b

will depend on values of X
b

that are not realized until time
two we cannot condition on g

b
at time one. Instead I develop a stochastic notion

of identi"cation at in"nity. Rather than conditioning on a set of X
b

such that
g
b

is small, I condition on a set of X
1

such that the conditional distribution of
g
b

is &small.'
This requires a somewhat di!erent type of exclusion restriction, a variable

known at time one that does not enter g
a

directly, but does have predictive
power for the distribution of g

b
above and beyond X

a
. To see how this works,

suppose we have a variable X
1

that satis"es these conditions and that as x
1

gets
small the conditional distribution of g

b
becomes small. In this case

lim
x1?~=

E[max(g
b
, 0) D x

1
, e

1
]"0,

so that

lim
x1?~=

Pr (a DX)" lim
x1?~=

Pr [g
a
(x

a
)#e

a
'E[max(g

b
, 0) D x

1
, e

1
]]

"Pr [g
a
(x

b
)#e

a
'0].

From this piece we can identify g
a

up to a monotonic transformation. This type
of variable will satisfy G2. Note that simple time varying X's will not typically be
su$cient in this case. We need a variable that is known at time one and does not
enter g

a
directly. A second period realization of an observable will not enter

g
a

directly, but it typically will not be known at time one.
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Given a set of exclusion restrictions with large enough support, the model is
essentially transformed from a dynamic model to a static binary choice model.
Thus, the identi"cation strategy here can be easily extended to other cases
addressed in that literature. For example, if one wanted to allow for hetero-
skedasticity in the error terms as in Manski (1975), a combination of Assump-
tions G1 and G2 as well as Manski's assumptions would be su$cient for
identi"cation. Extending the model to more periods and more choices is also
straight forward. With multiple choices one needs multiple exclusion restriction
that would be jointly sent to in"nity. Once again it would be almost impossible
to nonparametrically identify the model without this type of assumptions.
Extending the model to allow for endogenous continuous variables in a manner
similar to Heckman and HonoreH (1990) was done in Taber (1996). It also uses
the intuition presented here.

The assumptions above about access to exclusion restrictions can be relaxed
if one is willing to make parametric assumptions about g

a
and g

b
. In parti-

cular if g
a
"X@b

a
and g

b
"X@b

b
, then exclusion restrictions are no longer

necessary (see Taber, 1996). To see the intuition for this, as long as b
a

is not
proportional to b

b
we can send g

a
PR, and still have enough variation in X to

identify b
b
.

4. Identi5cation of the distribution of the unobservables

The theorems above show that g
a

and g
b

can be estimated even if we can
say nothing about the distribution of the error terms. However, their
nonparametric identi"cation is of interest as well. Typically these types of
structural models are estimated with the goal of simulating policy counterfac-
tuals. Except in very special cases, without knowledge of the full model, these
counterfactuals cannot be constructed. For example, in the schooling
case, suppose that policy makers consider subsidizing college education. Evalu-
ating the consequences of the policy on schooling outcomes from the model
cannot be done using g

a
and g

b
alone. A second reason for exploring identi"ca-

tion of the distribution of unobservables is that nonparametric identi"cation
of the unobservables is required for the use of many semiparametric estimators.
For example, showing consistency of the nonparametric maximum likelihood
estimator that I use below requires identi"cation of the distribution of
the unobservables. Finally, the joint distribution of the unobservables may
be of interest in its own right. In the schooling model a researcher may be
interested in understanding the manner in which students learn about their own
ability.

The most general version of the full model above cannot be identi"ed without
further assumptions. I will consider the following possible restrictions on the
unobservables that may provide identi"cation.
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Assumption E1. For all y3R, Pr[e
b
)y D e

1
,W

2
]"Pr[e

b
)y D e

1
].

Assumption E2. For all y3R, Pr[e
b
)y D e

1
]"Pr[e

b
)y D e

a
].

Assumption E3. e
b
"l

b
#g

b
where l

b
"E(e

b
D e

1
), g

b
is independent of e

1
, and

the characteristic functions of e
b

and g
b

do not vanish.

Assumption E1 eliminates the possibility of a di!erence between the ex-ante
and ex-post conditional distribution of e

b
. It is helpful for identi"cation because

it places strong restrictions on the relationship between the conditional distribu-
tion of e

b
and the conditional distribution agents possess about e

b
during the

"rst time period. Without this assumption, or at least a strong restriction on
the way these e!ects operate, identi"cation of the full model from only one
realization of W

2
is not feasible.

Assumptions E2 and E3 are alternative conditions on the "rst period informa-
tion people possess about their unobservables. Neither is stronger than the
other. Assumption E2 essentially allows for general types of serial correlation. It
imposes that agents have no information about e

b
beyond e

a
, but does not

restrict the relationship between e
a
and e

b
. Assumption E3 allows a very general

conditioning set, but restricts the knowledge of e
b

to be simply its expected
value. In the schooling model one might expect that individuals have more
information about their returns to college than is conveyed through their
returns to high school, so Assumption E3 is probably more appropriate. How-
ever, in cases in which the decision between a and ac is similar to the choice
between b and c, Assumption E2 may be preferred.

The "rst result of this section is that even under the seemingly strong
conditions above, identi"cation of the error structure cannot be achieved with-
out stochastic innovations in the observables between the two periods. That is,
when agents know the value of X

b
with perfect certainty in the "rst period,

identi"cation cannot be achieved even under strong parametric assumptions.
The basic problem is that the choice in the "rst period is in#uenced by
<
a
c (X1

, e
1
). If X

b
were known with perfect certainty in the "rst period then

X
1
"X

b
and we could not vary g

b
(X

b
) separately from <

a
c (X

b
, e

1
). Under

Assumption E3, that would leave us with essentially two degrees of freedom
(g

a
,g

b
) to identify a three dimensional distribution (e

a
, l

b
, g

b
). Under Assump-

tion E2 the intuition is more subtle. Since g
b
(X

b
) enters both the "rst and second

period decisions, it is not possible to di!erentiate between the two roles which is
necessary for identi"cation in some cases.

I "rst use counterexamples to demonstrate nonidenti"cation of the distribu-
tion of the error terms in this case. I then show that with stochastic innovations
in X

b
, I can vary <

a
c(X1

, e
1
) separately from g

b
(X

b
) which delivers identi"cation

of the distribution of the error terms under condition E1 and either E2 or E3.
While these counterexamples are very special, only very restrictive general
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conditions will rule them out. Unless we use these other very strong assump-
tions, stochastic innovations in the observables between periods are necessary
for identi"cation.

In what follows I assume that g
a

and g
b

are identi"ed. In the "rst section
I showed that they could be identi"ed up to monotonic transformations.
Therefore, after choosing a class of functions which are normalized up to
a monotonic transformation, they are identi"ed. There are a number of di!erent
normalizations have been used in the binary choice model that can be used here
as well (see, e.g. Manski (1988), Cosslett (1983) or Matzkin (1990,1992)). I will not
discuss speci"c ones but refer the reader to previous work. The only somewhat
unique aspect of this problem is that we can only normalize one of these
functions, and given this normalization the other should be identi"ed. For
example in the linear case if we normalize the scale of g

a
we can identify the scale

of g
b
under the conditions presented in the previous section. In some cases when

g
a

and g
b

are completely nonparametric this identi"cation requires an addi-
tional exclusion restrictions (a variable that in#uences g

c
, but not g

a
or

g
b

directly). These issues are much easier to deal with under speci"c forms of
g
a

and g
b

rather than in the general case, so for the sake of space, I just assume
these conditions hold rather than get into these details.

Assumption G4. g
a
(X

a
) and g

b
(X

b
) are identi"ed.

I "rst consider the case in which X
b

is known to the agent with perfect
certainty during the "rst period, so E(g

b
D X

1
)"g

b
. Notice that when

g
b
P!R, Pr (a)PPr (g

a
#e

a
'0), so we can identify the distribution of e

a
.

Similarly if we set g
a
P!R, Pr(b)PPr (g

b
#e

b
'0), so we can identify

the distribution of e
b
. The problem is that we cannot identify the joint dis-

tribution.
I "rst show through a counterexample that Assumptions E1 and E2 are not

su$cient for identi"cation in the case where X
b
is known during the "rst period.

The basic intuition is that we do not have enough variation in the observables to
separate the direct e!ect of e

a
from its role in predicting e

b
.

Counterexample 1. Assume that e
a
is binomial and that the distribution e

b
condi-

tional on e
a

is also binomial for each value of e
a
. I let the (e

a
, e

b
) have the

following distribution,

e
a
"G

h
1

with probability o,

h
2

with probability 1!o,

(e
b
D e

a
"h

1
)"G

!/
1

with probability k,

!/
a

with probability 1!k,
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(e
b
D e

a
"h

2
)"G

!/
2

with probability k,

!/
b

with probability 1!k,

where /
a
'/

1
and /

b
'/

2
. If o"0.5 and h

1
!/

1
k"h

2
!/

2
k, then the

model with /
a
"/

3
and /

b
"/

4
cannot be distinguished from an alternative

model with /
a
"/

4
and /

b
"/

3
.

Now consider Assumption E3. I will go to the two extremes and provide
a counterexample in which I cannot distinguish a model in which the agent has
full knowledge of e

b
during the "rst period (i.e. e

b
"l

b
) from a model in which

the agent has no knowledge of e
b

during the "rst period (i.e. e
b
"g

b
). I take

e
a

and e
b

to be distributed logistically and show that the nested logit model
cannot be distinguished from a model in which agents have no information
about e

b
at time one. McFadden has shown that the nested logit can be derived

from a multinomial choice model. These models are special cases in which the
agents have full information in the "rst period.

Counterexample 2. I present the models in the context of my current notation
without the normalization of g

c
"0. I let g(

k
be the original reward functions so

by de"nition g
a
"g(

a
!g(

c
and g

b
"g(

b
!g(

c
. The following two models produce

the same choice probabilities.
Model 1 (Nested Logit Model(McFadden 1977,1981))

<
a
"g(

a
#e(

a
,

<
b
"g(

b
#e(

b
,

<
c
"g(

c
#e(

c
,

I
1
"p(g(

a
, g(

b
, g(

c
, e(

a
, e(

b
, e(

c
),

F(e(
a
, e(

b
, e(

c
)"exp(!exp(!e(

a
)) expA!CexpA

!e(
b

o B#expA
!e(

c
o BD

o
B

Model 2:

<
a
"g(

a
#e(

a
,

<
b
"g(

b
#u#oe(

b
,

<
c
"g(

c
#u#oe(

c
,

I
1
"p(g(

a
, g(

b
, g(

c
, e(

a
, u),

F(e(
a
, e(

b
, e(

c
, u)"exp(!exp(!e(

a
))exp(!exp(!e(

b
))

exp(!exp(!e(
c
))exp(!exp(!u)).
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In other words the error terms are all independent with Type 1 extreme value
distribution.

Now suppose that X
b

is not known with perfect certainty during the "rst
period. In this case it is possible to provide su$cient conditions under which the
distribution of the unobservables is identi"ed. I assume E1 and show that either
E2 or E3 are su$cient for identi"cation. I use the following additional assump-
tion,

Condition G5. For almost all x
1
3supp(X

1
), (S-eb ,S6eb )3supp(!g

b
(X

b
) DX

1
"x

1
).

I "rst show in the following lemma that this additional assumption provides
identi"cation of the joint distribution of (e

a
, e

b
). I then use this lemma to prove

I can identify the full model when I combine Assumption E1 with either E2 or
E3.

Lemma 1. Under Assumptions G1}G5 the joint distribution of (e
a
, e

b
) is identixed.

(Proof in Appendix.)

To see the intuition for the proof of the lemma recall that,

Pr (b DX)"Pr (g
b
#e

b
'0, g

a
#e

a
)<

a
c(X1

, e
1
) DX).

So by sending <
a
c (X1

, e
1
)P0 as in the proof of the "rst theorem, I can identify

Pr (g
b
#e

b
'0, g

a
#e

a
)0 D X),

from which it is easy to identify the joint distribution of (e
a
, e

b
) by varying g

a
and

g
b
.
Given this lemma it is obvious that Assumptions E1 and E2 are su$cient for

identi"cation.

Theorem 2. Under Assumptions E1, E2, and G1}G5 the full model is identixed
(Proof in Appendix.)

I now consider Assumption E3. This is useful because as E(g
b
#l

b
D X

1
, e

1
)

gets large, E[maxMg
b
#l

b
#g

b
, 0N D X

1
,l
b
] approaches E(g

b
D X

1
)#l

b
. I use

this fact to show that I can identify the joint distribution of (e
b
!l

b
, l

b
#g

b
),

and from this I can identify the distribution of g
b

and the joint distribution of
(e
b
, l

b
).

Theorem 3. Under Assumptions E1, E3, and G1}G5 the full model is identixed.
(Proof in Appendix.)
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5. Estimation of a schooling model

In this section I estimate an empirical schooling model using the framework
developed above. There is a very large literature in labor economics, public
economics, and sociology on schooling decisions. Perhaps the largest concern in
this literature has been about heterogeneity and selection bias. In terms of
observable attributes, students who attend college are very di!erent than those
who do not. It is thus reasonable to expect that they are di!erent in terms of
unobservable attributes as well. Cameron and Heckman (1998) provide a recent
example of a schooling model that focuses on heterogeneity and Card (1998)
provides a recent survey of work done on the returns to schooling which deal
with the selection problem in a variety of ways. Schooling is also clearly
a dynamic decision in which people do not have full certainty about their
options when they make the decisions. Many papers in this literature have
addressed this problem of uncertainty in schooling returns. Examples include
Weisbrod (1962), Comay et al. (1973), Altonji (1993), Belzil and Hansen (1997),
Keane and Wolpin (1997), Buchinsky and Leslie (1996), and Taber (1998). In this
section I apply the discussion of identi"cation above to a dynamic schooling
model. Given the exclusion restrictions suggested by the assumptions above,
I estimate a version of the model.

To be consistent with the simple framework above, I consider two schooling
decisions, the "rst is whether to graduate from high school, and the second
is whether to attend college. At the time the high school graduation decision is
made, students do not know with perfect certainty whether they will attend
college. In terms of the notation above node a represents dropping out of high
school, node ac graduating from high school, node c entering college, and node
b entering the labor force immediately following high school graduation. The
model I estimate is a modi"ed version of the speci"cation developed in Cameron
and Taber (1998) and details about the data can be found there. In the previous
section, I presented two possible manners of representing the information struc-
ture, E2 and E3. For the schooling model, Assumption E3 seems more appropri-
ate. As discussed above, typically we think that high school students will have
some private information about their own returns to schooling that is known
during high school. The serial correlation Assumption E2 does not capture this
very well since the determinants of college matriculation may depend on di!erent
attributes than that for high school graduation. For example the types of skills
that are relatively more important for college sector jobs than high school
graduate sector jobs, seem very di!erent than the type of skills that are relatively
more important for high school sector jobs versus high school dropout jobs.
Under this assumption as well as linearity, the value functions take the form,

<
a
"X@

a
b
a
#e

a
,

<
b
"X@

b
b
b
#l

b
#g

b
.
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9Again, Card (1998) provides a good survey.

Assumption E3 is also restrictive. It assumes that while l
b

is known during high
school, there is no variation in the conditional variance of the agent's forecast of
<
b
.
Previous empirical work on selection models has found that empirical esti-

mates are much more reliable when exclusion restrictions are used for identi"ca-
tion even in parametric cases in which exclusion restrictions are not necessary.
There is a huge literature on the returns to schooling that considers di!erent
exclusion restrictions.9 The results above suggest that two types are likely to be
useful. (1) Assumptions G1 and G5 can be satis"ed with time varying X's. (2) To
satisfy Assumption G2, I need a variable known at time one, that in#uences the
decision about whether to attend college, but does not a!ect the returns to
dropping out of high school directly.

Local labor market variation provides a potential source of time varying
observables. Temporarily low wage rates will lower the opportunity cost of
schooling and lead more individuals to attend college. The local wage during
high school satis"es the type of exclusion restriction needed for G1: it is
a variable that in#uences the decision to drop out of college, but conditional on
the local wage during college, should have no e!ect on the college decision.
Assumption G5 requires a variable that is not known at time one, but in#uences
the time two decision. The college local wage variable satis"es this condition. It
in#uences the college decision, but is not known with perfect certainty during
the "rst period. Measures of the cost of college will satisfy Assumption G2
exclusion restrictions, they are often known during high school, but should have
no direct e!ect on high school graduation. I use a dummy variable for whether
there is a college in the student's county. This should certainly in#uence the
probability of attending, will be known during high school, but should have no
direct e!ect the decision to drop out. While these variables do seem to satisfy the
criterion for exclusion restrictions, they do not have large support so they are
not ideal.

I estimate the model using a #exible form for the distribution of the error
terms. In particular, I assume that I can write e

a
"e1

a
#e2

a
where e2

a
is standard

normal and independent of l
b
. I estimate the distribution of (e1

a
, l

b
) by assuming

these variables take on only "nitely many values. By letting the number of values
get large I can approximate any smooth distribution function arbitrarily well.
Heckman and Singer (1984) show consistency of a similar procedure and along
with Cameron and Taber (1998) have monte carlo results that demonstrate
that this approximation works very well in practice. Similarly, I assume that
g
b
"g1

b
#g2

b
where g2

b
is independent of g1

b
and is normal mean zero, and that

g1
b

takes only "nitely many values. Speci"cally, (e1
a
, l

b
) takes K

1
values which

I denote by (e1
aj1

, l
bj1

) each with probability k
1j1

for j
1
"1,2, K. Similarly
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g1
b

takes K
2

values denoted by g1
bj2

each with probability k
2j2

for j
2
"1,2,K

2
.

Under this notation,

<
a
c(X1

, l
b
)"E(maxMX@

b
b
b
#l

b
#g1

b
#g2

b
, 0N D X

1
, l

b
)

"P
K2

+
j2/1

p
b
uA

X@
b
b
b
#l

b
#g1

bj2
p
b

Bk2j2
dG(X

b
D X

1
),

where

u(>)"U(>)(>)#/(>),

p
b

is the standard deviation of g2
b
, and U and / denote the CDF and PDF of

a standard normal random variable. We can then form the pieces of the
likelihood function given,

Pr (d
a
"1 D X

1
)"Pr (X@

a
b
a
#e1

a
#e2

a
'<

a
c (X1

, l
b
) D X

1
)

"

K1

+
j1/1

U(X@
a
b
a
#e1

aj1
!<

a
c (X1

, l
bj1

))k
1j1

,

and

Pr (d
b
"1 D X

1
,X

b
)

"

K1

+
j1/1

[(1!U(X@
a
b
a
#e1

aj1
!<

a
c(X1

, l
bj1

)))

A
K2

+
j2/1

UA
X@

b
b
b
#l

bj1
#g1

bj2
p
b

Bk2j2BDk1j1
.

For any given K
1

and K
2

I use maximum likelihood, estimating the parameters

[b
a
, b

b
, p

b
, (e1

a1
, l

b1
),2,(e1

aK1
, l

bK1
), g1

b1
,2,g1

bK2
].

I present a model estimated without heterogeneity in Table 1. Included in the
speci"cation are family background variables, test scores from four sections of
the Armed Service Vocational Aptitude Battery test administered to individuals
in the NLSY sample, demographic variables, regional variables, cohort dum-
mies, and the exclusion restrictions. Most variables enter the model as in
previous work. Of particular concern are the exclusion restrictions. As expected
having a college in one's county does make individuals more likely to attend
college. I want to use the local cyclical patterns of local wages for identi"cation
rather than cross-sectional di!erences, as they may be attributed instead to
di!erences in wealth levels across counties. With this in mind I control for the
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Table 1
Estimated parameters from schooling model with no heterogeneity

Variables Drop out of Attend college
high school

Constant 1.444 (0.230) !1.412 (0.268)
Live in South 0.109 (0.106) 0.387 (0.095)
Live in West 0.035 (0.125) 0.399 (0.109)
Live in Northeast 0.229 (0.126) !0.181 (0.118)
Math Score !0.082 (0.016) 0.074 (0.008)
Science Score !0.023 (0.012) 0.011 (0.012)
Word Score !0.023 (0.010) 0.046 (0.008)
Automotive Knowledge Score !0.008 (0.012) !0.048 (0.009)
Highest Grade Compl. Father !0.020 (0.013) 0.040 (0.013)
Highest Grade Compl. Mother !0.002 (0.017) 0.039 (0.017)
Number of Siblings 0.013 (0.014) !0.021 (0.015)
Black !0.415 (0.105) !0.324 (0.101)
Hispanic !0.066 (0.122) 0.398 (0.117)
College in County 0.363 (0.102)
Average Wage in County 0.024 (0.071) 0.230 (0.072)
Wage in County at Time 0.039 (0.081) !0.235 (0.080)
Cohort Dummies Yes Yes
Standard error of e

b
0.330 (0.328)

Note: Standard errors in parentheses.

10 In order to avoid endogeneity associated with moving, both the local wages and the college in
county are measured based on where the respondent lived at age 17.

11 I approximated G(X
b
DX

1
) by assuming that the log deviation of the local labor market variable

from its long run mean follows an AR(1) with a gaussian error term. This approximation seems to "t
the data well.

long-run mean wage in the county over an approximately thirty-year period.
The level of average wages at age 16 enters the decision about whether to drop
out of high school and the level of average wages at age 18 enters the decision
about whether to attend college.10 These variables have the expected signs in the
college decision.11 Students from counties with higher average income are more
likely to attend college, and college attendance is counter-cyclical. Unfortunate-
ly, the local labor market variables are much weaker in the high school drop out
decision. It is also notable that the standard error of e

b
is not signi"cant in this

model. Looking at the probabilities above we see that this parameter is essen-
tially the coe$cient on

PCUA
X@

b
b
b

p
b
BA

X@
b
b
b

p
b
B#/A

X@
b
b

p
b
BDdG(X

b
DX

1
)
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12At essentially every level of K
1

I found no evidence that K
2

should be higher than zero.

in a probit for whether the individual drops out of high school. The exclusion
restriction that identi"es this parameter is the &college in county' dummy
variable. A reduced form probit on high school drop out gives a very similar
result, the coe$cient on this variable is positive but not signi"cant. There are
a number of di!erent interpretations of this result that the option value of
college does not seem to a!ect high school completion. The "rst is that we
simply need more data to get a better estimate of the e!ect. A second is that this
is evidence that high school students are not forward looking. A third is that the
option of college has no value to high school dropouts. That is, it is possible that
individuals at the margin of whether to drop out of high school, would not
attend college if they did complete high school. For them, the cost of college is
irrelevant so the decision about whether to drop out of high school will not be
in#uenced by college costs. Distinguishing between these three possibilities is
beyond the scope of this paper.

I next present results from the speci"cation in which I allow heterogeneity to
enter the model #exibly. The basic strategy is to add points of support to the
distribution of the heterogeneity until the likelihood fails to increase by some
prespeci"ed amount. In particular, I use the Akaike Information Criterion to
choose the number of points of support. The "nal model gave me a value of
K

1
"5 and K

2
"0.12 The results of this model are presented in Table 2. There

are a few strange aspects to the results. The most striking is the size of the
coe$cients and the support points for the heterogeneity distribution in the college
attendance decision. With these estimates, the variance of l

b
is very large relative

to the variance of g
b
. g

b
is essentially irrelevant as a predictor of college attend-

ance. If the variance of g
b
were zero, the model would not be di!erentiable and the

standard method of approximating standard errors would not work. While this is
not precisely true here, with these estimates it is approximately true so the
estimates of the standard errors are not likely to be reliable. Most coe$cients in
the schooling decision have the expected signs, but nothing is close to being
statistically signi"cant at conventional levels. We also see that the standard error
of e

b
once again is insigni"cant and in this case has the wrong sign. Given the large

and unreliable standard errors it is di$cult to make strong claims about the
interpretation of these results. To be able to estimate the dynamics of high school
completion, more work needs to be done with hopefully more powerful exclusion
restrictions, though "nding such covariates may be very di$cult.

6. Summary and conclusions

This paper develops a simple discrete choice dynamic programming model
with a quite general form for unobservables and agent's information sets. The
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Table 2
Estimated parameters from schooling model with "ve points of support

Variables Drop out of Attend college
high school

Constant 1.236 (0.458) 4313.610 (10452.171)
Live in South 0.043 (0.155) 524.178 (3466.992)
Live in West 0.012 (0.191) 715.894 (4722.897)
Live in Northeast 0.278 (0.190) 78.88 (4339.117)
Math Score !0.109 (0.019) 105.399 (272.429)
Science Score !0.029 (0.019) 31.834 (382.258)
Word Score !0.035 (0.013) 85.417 (267.042)
Automotive Knowledge Score 0.005 (0.016) !99.152.942 (312.035)
Highest Grade Compl. Father !0.030 (0.017) 59.370 (309.565)
Highest Grade Compl. Mother !0.019 (0.025) 111.596 (432.254)
Number of Siblings 0.018 (0.021) 12.135 (416.229)
Black !0.507 (0.149) 321.498 (2636.381)
Hispanic !0.147 (0.170) 547.318 (2912.296)
College in County 79.928 (3219.761)
Average Wage in County 0.018 (0.019) 218.244 (1875.892)
Wage in County at Time 0.046 (0.099) !216.574 (2091.232)
Cohort Dummies Yes Yes
Distribution of heterogeneity

Drop out of Attend college
Probability high school
0.317 (174.143) 0.000 0.00
0.392 (142.507) 0.000 1728.09
0.166 (25.754) !0.315 3857.79
0.069 (4.681) 392.307 3234.37
0.056 (1.120) 392.700 !2599.65
Standard error of e

b
!0.00008 (0.000020)

Note: Standard errors in parentheses.

goal is to uncover what type of data can solve the selection problem induced by
this structure. As in static models, I show that with strong support conditions
and exclusion restrictions the model is identi"ed. While these support condi-
tions are strong, it is very di$cult to avoid them. Essentially two types of
exclusion restriction are required. The "rst is a variable that in#uences the "rst
period decision, but does not enter the second period decision directly. The
second type requires a variable that does not a!ect the utility of the "rst option
directly, but is known during the "rst period and has predictive power on the
choice during the second. I also provide two speci"cations under which the
full error structure can be identi"ed. This requires the additional assumption
of stochastic innovations in the X's: a variable known at time one that
helps predict the second period decision, but conditional on second period
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observables, has no in#uence on the decision. While the model presented here is
special, generalizing these results to more complicated "nite time models is
straight forward.

I estimate a schooling version of the model in which students "rst decide
whether to graduate from high school and then decide whether to attend college.
This procedure has only limited success. The model does not show signs of
forward looking behavior and reliable standard errors could not be obtained.
Part of the problem may be that the exclusion restrictions are weaker than one
may hope, and they do not have large support. One possible direction for future
research on dynamic schooling models is to obtain more powerful exclusion
restrictions which may solve the problems, although this may prove di$cult.
More generally this paper has suggested that certain types of exclusion restric-
tions with strong support conditions should help solve the dynamic selection
problem. This should be a useful input for empiricists who face this problem.
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Appendix

Proof of Theorem 1. Since every probability I consider in this section conditions
on X and W

2
, for the sake of exposition I leave this conditioning implicit.

Suppose that there exists (g
a
, g

b
)O(gH

a
, gH

b
), e(u) and eH(u) such that for almost

all (x
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,x

a
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),
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'0]. (A.2)

I will "rst show that gH
b

must be a monotonic transformation of g
b

on the
limited support.
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Suppose not, suppose there exist X1
b

and Xb
b

with positive measure such that
for all x1

b
3X1

b
and all x2

b
3X2

b
,

!S6eb 'g
b
(x1
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)'g

b
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Without loss of generality suppose it is the "rst. From Condition G1 we can
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which is a contradiction so g
b
must be identi"ed to a monotonic transformation

on the limited support.
Now in a similar manner suppose that g

a
is not identi"ed up to a monotonic

transformation. From the same argument as above, there must exist a set X1
a

of
positive measure such that for all X1

a
3X1

a
, !S6eb 'g

b
(x1

a
)'!S-eb and

Pr [g
a
(x1

a
)#e

a
'0]!Pr [gH

a
(x1

a
)#eH

a
'0]'d.
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For any x
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I will now show that I can choose x
1

to set the "nal expression arbitrarily close
to zero which leads to a contradiction.

Using Condition G3, by dominated convergence it is easy to show that for
all e

1
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) we obtain a contra-

diction. h

Proof of Lemma 1. By Assumption G4 we know that g
a

and g
b

are identi"ed.
Suppose that the lemma were false. Suppose that there exists a random vector
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) whose distribution cannot be distinguished from that of the true random
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but without loss of generality for some d'0, since the joint distribution of
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) is di!erent from the joint distribution of (eH
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But then for all members of this set and all x
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Following exactly the last part of the proof of Theorem 1, I can show that there
exists a set of X

1
with positive measure such that for x
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but this is a contradiction, so the result must hold. h

Proof of Theorem 2. This follows trivially from Theorem 1 and Lemma 1 since
the only unobservables in this case are e

a
and e

b
. h

Proof of Theorem 3. I "rst show that the joint distribution of (e
a
!l

b
, l

b
#g

b
) is

identi"ed and then use this fact to show that both the distribution of g
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the joint distribution of (e
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We can then apply the lemma to the rede"ned model to obtain the desired result.
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I now use the characteristic functions of these variables to complete the proof.
I will make use of the notation /

Y
to denote the characteristic function of

random variable > and /
Y1Y2

to denote the characteristic function of the
random vector (>

1
,>

2
).
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a
, gH

b
, lH

b
) that generate the same

choice probabilities as (e
a
, g

b
, l

b
). First applying Lemma 1, we know that

/ea "/eHa . But (e
a
!l

b
,l
b
#g

b
) identi"ed implies that,

/gb (t)"
E[expMit(e

a
!l

b
)#it(l

b
#g

b
)N]

/ea (t)

"

E[expMit(eH
a
!lH

b
)#it(lH

b
#gH

b
)N]

/ea (t)

"/gHb (t),

so the distribution of g
b

is identi"ed.
I can now show that the joint distribution of l

b
and e
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is identi"ed since g
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independent of them and has a known distribution.
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The characteristic function and thus the distribution of (e
a
,l
a
) is identi"ed and

the full distribution of the unobservables is known. h
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