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 ACCOUNTING FOR DROPOUTS IN EVALUATIONS OF SOCIAL PROGRAMS

 James Heckman, Jeffrey Smith, and Christopher Taber*

 Abstract-This paper explores issues that arise in the evaluation of social
 programs using experimental data in the frequently encountered case
 where some of the experimental treatment group members drop out of the
 program prior to receiving treatment. We begin with the standard estimator
 for this case and the identifying assumption upon which it rests. We then
 examine the behavior of the estimator when the dropouts receive a partial
 "dose" of the program treatment prior to dropping out of the program. In
 the case of partial treatment, the identifying assumption is typically
 violated, thereby making the estimator inconsistent for the conventional
 parameter of interest: the impact of full treatment on the fully treated. We
 develop a test of the identifying assumption underlying the standard
 estimator and consider whether exclusion restrictions produce identifica-
 tion of the mean impact of the program when this assumption fails to hold.
 Finally, we discuss alternative parameters of interest in the presence of
 partial treatment among the dropouts and argue that the conventional
 parameter is not always the economically interesting one. We apply our
 methods to data from a recent experimental evaluation of the Job Training
 Partnership Act (JTPA) program.

 I. Introduction

 JN RECENT years, social experiments have gained popu-
 llarity as a method for evaluating social and labor market
 programs. A common problem affecting social experiments

 is that persons randomly assigned to the experimental
 treatment group often drop out of the program under study
 prior to receiving some or all of the treatment.' In the
 presence of dropouts, the usual experimental mean differ-

 ence estimator provides an estimate of the mean impact of
 the assignment to treatment rather than of the mean impact
 of the treatment itself.

 In this paper we consider the evaluation of social pro-
 grams using experimental data when there are dropouts from

 the program. We begin with an instrumental-variable estima-
 tor variously attributed to Mallar et al. (1980), Smith et al.
 (1984, p. 251), and Bloom (1984).2 This estimator is
 commonly used to produce estimates of the mean impact of
 treatment on the treated in experiments with dropouts. In

 experiments in which the dropouts receive none of the

 treatment prior to dropping out, this estimator performs very

 well in estimating the impact of full treatment on the fully

 treated. Howevei; in the commonly encountered case where

 the dropouts receive some treatment prior to leaving the

 program, the estimator will generally not provide consistent

 estimates of the mean impact of treatment on the treated,

 which is often the parameter of interest in conducting

 evaluations.

 This paper considers the case of partial treatment. In it, we

 (1) define the key identifying assumption underlying the

 estimator; (2) show why in the partial treatment case this

 assumption is likely to be violated; (3) discuss the economic

 content of the parameter in this case; (4) develop statistical

 tests of an implication of the identifying assumption; and (5)

 explore alternative instrumental-variable approaches to the

 identification of treatment effects when dropouts receive

 partial treatment. In the final section of the paper we analyze

 data from a recent experimental evaluation of the Job

 Training Partnership Act (JTPA) program (see Bloom et al.

 (1993)). The instrumental-variable estimator was employed

 in the JTPA evaluation even though many of the dropouts

 received some JTPA services prior to dropping out.

 II. The Problem Posed by Dropouts

 Consider an experimental evaluation in which persons

 who apply and are accepted into a program are assigned
 randomly into a treatment group eligible to receive the

 treatment and a control group ineligible to receive it.

 Assuming that everyone in the treatment group receives the
 treatment, the mean impact of the treatment on some

 outcome Y is defined as

 A = E(Yt) - E(YC) (1)

 where A is the mean impact, E denotes mathematical

 expectation, E(Yt) is the mean outcome in the treatment
 group, and E(Yj) is the mean outcome in the control group.3
 An unbiased estimator of A is

 A-Yt-YC (2)
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 2 THE REVIEW OF ECONOMICS AND STATISTICS

 where the overbar denotes sample mean. Estimates based on
 equation (2) can be constructed using post-random-

 assignment outcome data on those assigned at random.
 Now suppose that some persons in the experimental

 treatment group actually do not receive the treatment.4

 Define d to be an indicator of dropout status (d for dropout),
 so that d = 1 for a treatment group member who drops out of
 the program and d = 0 for a treatment group member who

 receives the treatment. Let E(Yt|d = 1) denote the mean
 outcome of the treatment group members not receiving the
 treatment (the dropouts), let E(Y,|d = 0) denote the mean
 outcome of those receiving the treatment (the participants),

 and let kt denote the probability of dropping out of the
 program for members of the treatment group. Then the mean

 outcome in the treatment group may be decomposed in the
 following way:

 E(Yt) = ktE(Ytd= 1) + (1 - kt)E(Ytld = 0). (3)

 Random variable d is in principle also defined for members
 of the control group, so that d = 1 if a control group member
 would have dropped out had he or she been a member of the
 treatment group, and d = 0 is the complementary event. The
 control group mean outcome can then be decomposed into

 two components:

 E(YC) = kCE(Yld = 1) + (1 - kc)E(Ycd = 0) (4)

 where E(Yc|d = 1) denotes the mean outcome of those
 control group members who would have been dropouts had

 they been in the treatment group, E(YcId = 0) denotes the
 mean outcome of those control group members who would
 have been participants had they been randomized into the

 treatment group, and kc denotes the probability that a control
 would have dropped out of the program. Decomposition (4)
 is not empirically operational because we do not observe d
 for control group members.

 When there are dropouts from an experiment, the estima-
 tor A defined in equation (2) provides an estimate of the
 mean impact of the availability of the treatment5 rather than
 an estimate of the mean impact of "full treatment on the
 fully treated," where this latter quantity is defined as

 AP = E(Yt|d= O)-E(YcId= O). (5)

 The parameter Ap is widely regarded to be of greater interest
 than the mean impact of treatment availability. It is informa-
 tive about the difference in outcomes obtained given receipt
 of full treatment and given receipt of no treatment for
 persons who actually received the full treatment. It is not the

 same as the effect of full treatment on all initial enrollees

 into the program unless dropping out is random with respect

 to potential outcomes.6 For an evaluation of an ongoing
 program in which participants routinely drop out, it is not

 clear that Ap should be the only parameter of interest.
 Data on the post-treatment outcomes of those in the

 treatment and control groups are not enough to estimate AP
 because E(YC|d = 0) is not known. Data on observed

 choices and outcomes alone provide no way to sort the
 control group into those who would and those who would

 not have been dropouts. Additional assumptions or addi-

 tional data are required.

 III. An Identifying Assumption and an Estimator

 That Implements It

 An identifying assumption made by Mallar et al. (1980),

 Smith et al. (1984), and Bloom (1984), among others, is that

 the mean outcome of the dropouts in the treatment group is
 the same as the mean outcome of the persons in the control

 group who would have been dropouts, had they been in the

 treatment group. More formally, it is assumed that

 E(YtId = 1) = E(Yjd= 1). (6)

 Only equality of the conditional means is required. Vari-
 ances and other parameters of the conditional distributions

 (YtId = 1) and (YjId = 1) need not be equal. To see how this
 assumption produces identification of Ap, first note that
 random assignment implies that

 k= = k. (7)

 Combining this fact with assumption (6) allows equation (4)

 to be solved for E(Yc Id = 0),

 E(Ycld = 0) = (i k) E(Yc)
 (8)

 -(1-k) E(Ytld= 1).

 Note that each component of the right-hand side of equation
 (8) can be identified from the available data. Simple algebra
 using equations (5)-(8) reveals that

 E(Yt) - E(Yc) A

 P 1-k 1-k (9)
 4Note that this is not an attrition problem. We assume that everyone who
 is assigned randomly remains in the sample, but that some treatment group
 members drop out of the program and so fail to receive some or all of the
 treatment.

 5This parameter is often referred to as the "intent to treat" parameter in
 the biostatistics literature (see, e.g., Efron and Feldman (1991)).

 6 That is, A&p corresponds to the mean impact of tretment on all initial
 enrollees only when (Y,, Y,) is statistically independent of d. Technically,
 all that is required is mean independence, namely, that E(Y,Id) = E(Y,) and
 E(Y, d) = E(YC).
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 ACCOUNTING FOR DROPOUTS IN EVALUATIONS OF SOCIAL PROGRAMS 3

 The natural method of moments estimator replaces popula-

 tion parameters by their sample counterparts,

 _ Yt- YC Ai
 AP A A( 10)

 1- kt 1- kt A~ ~

 where kt is the fraction of the treatment group members who
 drop out. Writing the estimator in this form shows that it

 scales up the estimate of the mean impact of treatment

 availability into an estimate of the mean impact of full

 program participation by assuming a zero impact of the

 program on the dropouts. The asymptotic variance for this

 estimator iS7

 var (Y,) + var (Yc)
 var (Ap) = ( (11)

 [E(Yt)- E(YJ)12 k(l - k)

 (1-k)2 j nt

 where nt is the sample size of the treatment group sample. If

 k is assumed to be known, the second term vanishes.

 While the instrumental-variable estimator is widely used,
 the standard errors reported in empirical implementations of

 it typically do not account for the estimation of k. In results

 not reported in detail in this paper, we show using data from

 a recent experimental evaluation of the JTPA program that

 ignoring sampling error in k is not empirically important in

 that evaluation, which had sample sizes well in excess of

 1000 for each demographic group (see Heckman et al.

 (1994)).
 While the literature confines its attention to mean impacts,

 both the identifying assumption (6) and the resulting estima-

 tor can be generalized to allow the full distribution of
 outcomes of control group members who would have

 participated in the program had they been in the treatment

 group to be obtained. Letting Ft(yId = 1) be the distribution
 of (Ytld = 1) and letting F(yId = 1) be the distribution of
 (YcId = 1), the distributional analog to assumption (6) is

 Ft(yId = 1)= FJ(yId = 1). (12)

 This assumption is clearly stronger than assumption (6). It

 is not needed to construct the estimator Aip given in equation
 (10). However, many economic models that justify assump-

 tion (6) will also justify assumption (12). When assumption

 (12) fails, there is no a priori reason to expect assumption (6)

 to hold except by coincidence. Under assumption (12) the

 outcome distribution for members of the control group who

 would have received treatment had they been in the treat-

 ment group is given by

 F,(y) - kFt(yId = 1)

 Assumption (12) is useful for two reasons. First, if one is

 interested in some aspect of the distribution of Yc given d =
 0 other than just its mean, it will be identified from equation
 (13). Second, assumption (12) provides a testable restriction

 that we now investigate.

 IV. Testing the Strengthened Version

 of the Identifying Assumption

 In this section we describe the strongest testable restric-

 tion implied by assumption (12). The appendix develops a
 test of the restriction. As discussed previously, while the

 estimator defined in equation (10) requires only the weaker

 assumption (6), this assumption is implied by assumption

 (12) and is unlikely to hold in its absence except by

 coincidence. Thus it is of interest to test restrictions on the

 distribution of outcomes implied by assumption (12) for

 persons in the control group who would have participated

 (received full treatment) had they been in the treatment

 group.

 The restriction that we examine follows from equation

 (13), which is an immediate consequence of assumption

 (12). For assumption (12) to hold, FC(y| d = 0) must be a
 legitimate distribution function, that is,

 Fc(y)-kFt(yld = 1)
 (14)

 1-k

 is a proper cumulative distribution function (cdf).

 Condition (14) imposes a number of testable restrictions
 on the component distributions, such as

 Fc(y) - kFt(yld = 1)
 1-k (5

 for all y. Another restriction is that the constructed cdf
 should be monotonically increasing in y.

 A weakness of our proposed strategy is that any test of
 assumption (12) based on restriction (14) may not be
 consistent. (A test is consistent if, as the sample size
 becomes large, the power of the test goes to 1.) The problem
 arises because assumption (12) is sufficient for restriction
 (14) but not necessary; that is, restriction (14) may hold even
 when assumption (12) does not. Any test based on restriction
 (14) will have no power against alternatives that are
 consistent with it but not with assumption (12). Thus
 rejection of restriction (14) constitutes rejection of assump-

 7The derivation is a straightforward application of the delta method (see,
 e.g., Angrist and Imbens (1991) or Heckman et al. (1994)).
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 4 THE REVIEW OF ECONOMICS AND STATISTICS

 tion (12), but acceptance of restriction (14) is not necessarily

 evidence in support of assumption (12).8
 Note that in general the power of the test will depend on k.

 When k is close to 1, the restriction is very strong. However,
 as k becomes smaller, the restriction becomes weaker.

 While in some cases, tests of restriction (14) have no
 power, the restriction is the strongest testable restriction
 implied by assumption (12). To see this, suppose that
 restriction (14) is true and define

 Fc(y)- kFt(yd = 1)
 F*(y|d = 0) = 1k (16)

 When restriction (14) is true, we can never reject FC = F*
 (that is, we could never find evidence that the data were not

 generated by F*). Furthermore, FC = F* implies assump-
 tion (12). Therefore it is impossible to find a testable
 restriction of assumption (12) that is violated when restric-
 tion (14) is not. The appendix describes a testing strategy for
 hypothesis (14). We next discuss identification in the
 presence of partial treatment.

 V. Role of Partial Treatment When Identifying
 Assumption (6) Fails

 A. Partial Treatment

 For certain types of programs, assumptions (6) and (12)
 are plausible. For example, in drug trials, if dropouts leave a
 program before receiving any dose of the drug, it is unlikely
 that any treatment effect exists for them. However, if the
 dropouts receive some of the drug before dropping out of the
 program, then their mean treatment effect is likely to be
 nonzero and assumptions (6) and (12) will be violated.

 It is clarifying to extend the previous framework and
 introduce three latent random outcome variables for each

 person. These correspond to the potential outcome variables
 central to the Roy (1951) model, the switching regression
 model of Quandt (1988), or to models of discrete choice

 (see, e.g., McFadden (1981)). In this new notation, Yp is the
 outcome a person receives if he or she receives full
 treatment; Yd is the outcome a person receives if he or she is
 randomized into the treatment group but then drops out

 before receiving full treatment; and Yc is the outcome a
 person receives if he or she is randomized out of the
 program. The econometrician observes only one of these

 three random variables for each person: Yc if the person is
 randomized out; Yp if the person receives full treatment; and
 Yd if the person is randomized into the treatment group but
 drops out.

 Suppose that receipt of full treatment alters the base state
 outcome-what the person receives if he or she is random-
 ized into the control group-by an amount a, whereas

 partial treatment alters the base state outcome by an amount

 va, where v is an adjustment factor, and where both cx and v

 may be random variables.9 Then we may write

 Yd= Y, + va (17)

 Yp = Y + a (18)

 Yt= dYd+ (1-d)Yp. (19)

 We do not assume that participants drop out of the

 program at random; d may be arbitrarily correlated with Yc,
 cx, and v. In this notation,

 E(Yt) = kE(Ydld = 1) + (1 - k)E(Ypld = 0) (20)

 and

 Ap = E(otId = 0). (21)

 The impact of full treatment on the fully treated is just the
 expected value of the treatment effect a for persons who do
 not drop out. Substituting into equation (10) and simplify-
 ing, we obtain

 k
 plim (Ap) = AP + 1 - E(otvld 1). (22)

 If k is positive, then the estimator Ap is consistent for the
 parameter Ap if and only if E(av d = 1) = 0. Thus if there is
 no partial effect of treatment for the dropouts (v 0 for

 almost everyone), zip is consistent for Ap. Even in the
 presence of some partial treatment it is possible that the
 equality E(ctv|d = 1) = 0 could occur by coincidence.
 However, it would be fortuitous if this equality held and v 0
 0 for almost everyone. Note that if v 0, assumption (12) is
 valid.

 B. Parameter of Interest in the Presence of Partial Treatment

 While much of the literature on program evaluation

 focuses exclusively on /p as the parameter of interest, it is
 not always true that it is the most economically interesting
 summary measure of the effect of a program on its partici-

 pants.10 The parameter AP measures the impact of the
 program only for those who do not drop out, yet programs
 often affect the dropouts as well as those who receive the full
 program treatment. When dropouts are also affected by the

 program, z\p may not be the primary parameter of interest, and
 the commonly used estimator zip is an inconsistent estimator
 of Alp. We now consider two examples that demonstrate these
 points.

 8 This problem is common in hypothesis testing. Acceptance of an
 implication of a model does not imply acceptance of the full model.

 9 One can think of v as being bounded between 0 and 1, but this is not
 necessary.

 10 Heckman and Robb (1985), Moffitt (1992), Heckman (1992), Heck-
 man and Smith (1993, 1995, 1998), and Heckman et al. (1997) discuss a
 variety of alternative parameters of interest in evaluating social programs.
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 ACCOUNTING FOR DROPOUTS IN EVALUATIONS OF SOCIAL PROGRAMS 5

 Example 1: In our first example we suppose that a., the

 effect of the program, is a pure stigma effect. Anyone

 randomized into the treatment group and therefore associ-

 ated with the program, even the dropouts, gets an outcome

 drawn from a common distribution that reflects this stigma.

 Thus Yp = Yd, so that v = 1. In this case, assumption (6) is
 violated. If the program stigmatizes its participants, then

 presumably E(Yd|d = 1) < E(YCjd = 1) and E(Yp|d = 0) <
 E(Y,Id = 0), from which it follows that both z\p < 0 and A\ <
 0.

 The stigmatization experienced by the nondropouts may

 be more or less than the stigmatization experienced by the

 dropouts. There is no particular reason why the expected

 stigma effect among the nondropouts, given by AP, should be
 of greater economic interest than the expected effect of
 stigma among the dropouts, given by

 Ad = E(Ydld = 1) -E(Y|d = 1)

 or than the expected effect of stigma on anyone randomized
 into the treatment group, given by A\.

 In the stigma case, AP is an inconsistent estimator of Ap.
 Under random sampling,

 k

 plim (AP) = A\P + 1- [E(Ydld = 1) - E(Yld= 1)]

 =A

 1-k

 Thus zip overstates the stigma effect in absolute value and is
 downward inconsistent for Ap if stigma has a negative effect
 on the dropouts.

 Example 2: In this example z\p is an economically
 interesting parameter but provides only a partial description

 of the full impact of the program on participants. Consider a

 job subsidy program, and assume for simplicity that the
 persons to be offered the subsidy are all initially not

 employed. The program operates by offering participants a

 subsidized job with a wage Yp = yp drawn from distribution
 Fp. Both the experimental controls and the experimental
 treatment group members have access to a common unsubsi-

 dized job market, from which they are assumed to receive a

 wage offer Y, = Yc drawn from distribution F,. Treatment
 group members receive their unsubsidized offer after learn-

 ing the value of their subsidized offer, but prior to deciding

 whether or not to accept it. The two wage offers Yp and Y,
 need not be statistically independent of each other.

 This program confers an option value on each person in

 the treatment group. Persons in the treatment group who turn

 down the subsidized job offer (and thereby drop out of the
 program) because they receive a better unsubsidized offer do

 not exercise the option provided by the program. Persons
 randomized into the treatment group have expected wages of

 E(max {Yp, YJ), while those randomized into the control
 group have expected wages of E(YC).

 In this example,

 Ap = E(Yp|Yp > Yc) -E(YclYp > Yc)

 measures that part of the "treatment" attributable to those

 whose unsubsidized wage offers do not exceed their subsi-

 dized wage offer. The proportion of treatment group mem-

 bers for whom the unsubsidized wage exceeds the subsi-

 dized wage offered by the program is given by k, where

 k= Pr(Yc> Yp).

 In this example the program confers an option on everyone

 in the treatment group. The option value is

 A = Emax {Yp, Ycl - E(Yc).

 Under random sampling, this parameter is consistently

 estimated by I\. At the same time, AV consistently estimates

 Ap because the treatment group dropouts receive the same
 outcome, in expected value terms, as their analogs in the
 control group, namely, their unsubsidized wage offer. How-

 ever, in the case described in this example, zAp provides only
 an incomplete characterization of the effect of the program.

 For a complete picture, both A\ and zAp are required.

 VI. Identification in the Presence of Partial Treatment

 For many econometric selection models it has been shown

 that the use of exclusion restrictions, or what are sometimes
 inappropriately termed "instruments," is sometimes helpful
 for the identification of certain parameters of interest (see,
 e.g., Heckman and Robb (1985), Heckman (1990a), Imbens
 and Angrist (1994), Heckman (1997), and Heckman and

 Smith (1996, 1998)). In this section we explore whether this

 approach is useful for the identification of zAp when assump-
 tion (6) fails to hold.

 Here we focus on two parameters that are often consid-
 ered in conducting evaluations. We have devoted most of our

 attention in this paper to zAp, defined in equation (5) as

 Ap E(Ypd = O) -E(Ycjd = 0).

 Recall that in application to the control group, d = 0
 indicates an individual who would not drop out of the
 program if he or she were randomized into the treatment

 group. Thus A/p is the expected effect of participating in the
 program among those who participate or, more precisely, the
 effect of full treatment on the fully treated. We contrast this
 with the parameter

 A E(Yn) - E(YC). (23)
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 6 THE REVIEW OF ECONOMICS AND STATISTICS

 This is the effect of the program on participants if nobody

 drops out.11 The two parameters define different counterfac-
 tuals and answer different policy questions. Both are ver-

 sions of "treatment on the treated," where treatment means
 "full treatment" in both cases but where the set of persons
 over whom the expected value is computed differs between

 Ap and A1p. For A1p the conditioning set is the fully treated; for
 A1p it is the entire treatment group.

 We define variable Z subject to an exclusion restriction as
 some random variable with support Z that influences the
 decision to drop out, but does not influence the outcomes
 directly. A standard definition of Z requires it to satisfy the
 following conditions:

 E(Yp|Z) = E(Yp)

 E(Yd|Z) = E(Yd) (24)

 E(YcJZ) = E(YC)

 and

 Pr(d= 1|Z=z1)OPr(d= IIZ=z2)

 for some (Zl, Z2) such that z1 0 Z2 (see Heckman (1997)).
 From the data commonly available in a social experiment,

 it is possible to identify E(Yp|Id = 0), the mean outcome of
 the nondropouts in the treatment group, E(YdId = 1), the
 mean outcome of the treatment group dropouts, and E(Yc),
 the mean outcome of the controls. The missing piece of

 information required to identify Ap is E(YcId = 0), the mean
 outcome of the controls who would have been participants,
 had they been in the treatment group. The missing piece of

 information required to identify A,p is E(Yp|Id = 1), the
 expected outcome conditional on full treatment of the
 treatment group dropouts.

 First consider how to use assumption (24) to identify A,P.
 Clearly E(Yc) is identified from the control group alone.
 Identification of E(Yp) requires the same type of conditions
 required to identify a selection model. (See Amemiya (1985)
 for numerous examples of sample selection correction
 procedures and Heckman (1990a) for a survey of some
 nonparametric estimators for selection models.)

 A common practice is to use E(Yp|Id = 0) as a proxy for
 E(YpId-= 1) or E(Yp) in an attempt to secure the identifica-
 tion of AP. The general problem here is that of using a
 truncated sample to estimate the mean of a full distribution.
 As demonstrated in Heckman (1990a) or Heckman and
 Honore (1990), access to Z can sometimes aid in identifying

 E(Yp|d = 1) in this context. Take, for example, an "index
 structure" representation,

 E(Yp|d = 0, Z) = E(Yp|d = O,p(Z))

 where p(Z) = Pr (d = 0 Z). With sufficient variation in Z,

 one can recover E(Yp) in the limit as

 lrn E(YpIP(Z)) = E(Yp).
 P(Z)-~1

 Alternatively, as noted in Heckman (1990a,b), if there is a

 value z of Z such that Pr (d = 1 IZ = z*) = 0, then

 E(YpJZ = z*) = E(Yp)

 and the counterfactual required to identify Ap can be
 obtained without having to assume an index structure. A

 more traditional approach uses the exclusion restriction in

 conjunction with parametric selection bias correct methods

 to estimate E(Yp). An example of this approach is given later
 in this section.

 Identifying z\p is more challenging because it requires
 breaking E(Y,) into its two components E(Yjd = 1) and
 E(Yj|d = 0). Traditional selection bias methods are not

 informative in this case. However, a limit argument similar

 to the one used above to identify A&p can be used to identify
 AP over some range of the data. If there is some limiting
 value of Z = z such that

 lim Pr(d=O|Z)=l
 z **

 then we can construct E(YId = O, Z=z*) = E(YcI
 Z = z**). Then for Z = z we can construct

 Ap(Z= z**) = E(Yp|d = O, Z = Z**) (25)
 - E(Ycld= 0, Z z**).

 Conditional on Z = z , Ap and Ap are the same. However,
 the expression in equation (25) cannot be identified for all
 values of Z. It is only identified on the set of values for which

 Z = z *. We now present an example that helps to clarify

 this discussion, and which shows that /p is not identified
 even in a model with strong functional form assumptions.

 Example 1: Restrict the model to the following special
 case:

 Yc = gc + EC

 Yp= tp+ Ep

 Yd =-d + Ed

 d = 1(Zy + v ? 0)

 where 1(.) is the indicator function, which takes on the value
 1 if its argument is true and 0 if it is false. We assume

 (E, Ep, Ed , v) is a mean zero normal random vector that is
 statistically independent of the scalar random variable Z. In

 11 Recall that we continue to implicitly condition on application to and
 acceptance into the program.
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 ACCOUNTING FOR DROPOUTS IN EVALUATIONS OF SOCIAL PROGRAMS 7

 addition, we normalize the variance of v to 1. In this case we
 can write

 E(Ycjd = 0, Z)= E(YJZ, Zy + v < 0) (26)

 = PC + UCVX(-ZY)

 where ucv is the covariance between v and Ec, and A(.) is the
 inverse Mills ratio. This is the traditional sample selection
 model of Heckman (1976). We do not observe d for the
 control group. As a result, even with access to Z we can

 never hope to identify ucv without further assumptions. Thus
 we cannot identify

 AP = P- PC + (Upv - UCV)X(-Zy) (27)

 where upv is the covariance between v and Ep. However, note
 that we can identify pc = E(YC) and we can also identify

 Vp = E(Yp), so the parameter Ap = Vp-pc is identified.

 There is a conditioning assumption which delivers identi-

 fication of AP, although it only holds in very special cases:

 E(YcIZ, d) = E(YcId) (28)

 for some z, E Z and Z2 E ?, such that

 Pr(d= 1 Z=zl) Pr(d= 1 Z=z2).

 Assumption (28) requires only that the variable Z take on

 two distinct values, while much of the literature requires that
 the support of Z be the real line Al, or that there be some
 value of Z for which Pr (d = 0 Z) = 1. Neither of these is
 required for identification if we are willing to make assump-
 tion (28).12

 We first show that this assumption is sufficient for the

 identification of Ap. Suppose assumption (28) holds for
 some particular values z, and Z2. We define P1 =
 Pr(d= 11Z=zl)andP2=Pr(d= 1 Z = Z), where Pi 0
 P2. Then it is easy to show that

 P2E(YcZ = z1) - PIE(YcJZ= Z2)
 E(Ycld = 0) = . (29)

 P2- PI

 Using equation (29) we can obtain A,p = E(Yp Id = 0) -
 E(Ycd = 0).

 A major interpretive issue is whether assumption (28) is
 plausible. Except in very special cases, it is not. This

 assumption requires that Y, be dependent on Z, but only
 through the seemingly irrelevant event corresponding to d =
 0. This condition is not satisfied in standard discrete choice

 models. We present an example in which this condition
 holds, and demonstrate the sensitivity of the identifying

 power of assumption (28) to small perturbations in the

 assumption set.

 Example 2: Let

 Z = axzO + U(Z) (30)

 Yc = ctyo + U(Y,) (31)

 d = 0 (32)

 where 0 E {0, 1} is a binary random variable and where

 (U(Z), U(Y,)) are mutually independent and are also indepen-
 dent of 0. Heuristically, persons with 0 = 1 are unmotivated

 while those with 0 = 0 are motivated. Motivated persons do

 not drop out (d = 0 for 0 = 0). Let Z be ability. Then if ocz <
 0, more motivated persons have higher ability. If ay < 0,
 then more motivated persons have higher income. This is an
 instance of a signaling model in which d perfectly signals 0.

 In this example it is clear that

 E(Ycjd, Z) = E(Yjd) (33)

 so assumption (28) is satisfied. Dropout status is a perfect
 predictor of 0, which drives the correlation among all three
 random variables.

 However, if equation (32) is modified slightly to add
 nondegenerate random variable U(d) so that

 d = 0 + U(d) (34)

 where E(U(d)) = 0, U(d) is conditionally independent of 0,

 and where U(Z), U(Yc), and U(d) are mutually independent,
 then assumption (28) is violated. Adding a little "noise" to 0
 in the form of U(d) in determining d makes Z a useful

 predictor of Yc given d. In this setting, assumption (28) is a
 very fragile assumption.

 VII. Analyzing the National JTPA Study

 A. JTPA and Partial Treatment

 In this section we apply our analysis to data from the
 National JTPA Study (NJS). This is a recent experimental
 evaluation of the employment and training programs fi-
 nanced under the JTPA. This job training program provides
 basic education, classroom training in occupational skills,
 subsidized on-the-job training at private firms, job search
 assistance, and other employment and training services to
 economically disadvantaged persons. The program includes
 a performance standards system in which locally managed
 training centers compete for incentive payments based on
 their success at placing enrollees in steady, high-paying jobs.

 In the NJS, random assignment occurred prior to formal
 enrollment in the program. A substantial fraction of those
 randomly assigned to the experimental treatment group

 12 Note that assumption (28) is the polar opposite of the assumption
 traditionally made in matching, which is that E(YJIZ, d) = E(YcIZ).
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 8 THE REVIEW OF ECONOMICS AND STATISTICS

 TABLE 1.-SAMPLE MEAN EARNINGS, k, AND MEAN DIFFERENCE IMPACT ESTIMATES

 (FULL ABT 18-MONTH IMPACT SAMPLE)

 Target Group, Outcome Adult Men Adult Womena Male Youth Female Youth

 Treatment group, E(Yt) 13096.43 8261.81 9997.76 6163.67
 (210.78) (132.31) (253.98) (163.33)

 Full participants, E(Yp) 13638.23 8424.97 10274.77 6114.49
 (260.96) (155.89) (310.36) (196.76)

 Less than full, E(Yd) 12181.06 7946.47 9442.33 6256.13
 (354.80) (244.35) (441.13) (290.81)

 Controls, E(Yc) 12530.09 7470.98 10781.72 6202.09
 (305.57) (180.20) (401.80) (248.77)

 Fraction dropping out 0.3718 0.3410 0.3328 0.3472

 Impact estimate 566.34 790.83 -783.96 -38.42

 (371.21) (223.56) (475.34) (297.60)

 Sample size 4420 5724 1747 2301

 Notes: Estimated standard errors are in parentheses.
 a Adult female nonrespondents not included.

 never enrolled in the program. As shown in table 1, over
 37% of adult male (ages 22 and older) treatment group
 members did not enroll in JTPA during the 18 months
 following random assignment. Similar nonenrollment rates

 are reported for the other three target groups in the NJS:

 adult females (ages 22 and older), male out-of-school youth
 (ages 16 to 21), and female out-of-school youth (ages 16 to
 21). These nonenrollment rates are used to generate esti-

 mates of A,P using estimator (10).
 This high rate of nonenrollment results in part from the

 time lag that often occurs between random assignment and

 the initiation of training. For courses given on an academic
 schedule, the applicant must wait until the beginning of the
 next quarter or semester. During this waiting period, the

 applicant may find a job or lose interest, and so may fail to

 enroll. However, as long as the training and job-seeking
 activities of potential trainees randomized in are the same as
 those of potential trainees of the same type randomized out,

 the instrumental-variable estimate of AP remains valid.
 A potentially serious problem may arise from the mechan-

 ics of the JTPA performance standards system. Incentive
 payments to the training centers under the JTPA perfor-
 mance standards system depend only on the performance of
 their enrollees. At the same time, enrollment in JTPA is very
 flexible, so that training centers can often delay enrolling
 someone until it is clear that the person is likely to succeed

 in training. For trainees assigned to job search assistance or
 to on-the-job training, this can mean that enrollment occurs

 when they find a job or an employer willing to provide them
 with on-the-job training. Those not enrolled for this reason

 are counted as dropouts, even though they often receive

 assistance in looking for jobs, writing resumes, and present-
 ing themselves in interviews and may acquire information
 about the local labor market not available to persons

 randomized out. These activities would likely increase their
 future earnings even if they do not find a job or an on-the-job
 training slot during the period of their contact with the JTPA
 program.

 Table 2 shows the extent of JTPA contact following
 random assignment among a subset of the treatment group

 nonenrollees. Over half of this subset of nonenrollees
 received some JTPA services. This evidence suggests that

 assumption (6) may be inappropriate, as those in the control
 group who would have been dropouts had they been in the
 treatment group did not receive these services. Many of

 these JTPA dropouts are not "no shows" who receive no
 treatment from the program.

 In this experiment it is very hard to justify why Ap should
 be the parameter of interest (which it is defined to be by the
 analysts in the NJS; see Orr et al. (1995)). Over half of the
 people who dropped out actually received services. Clearly

 the impact of the program on these people is of some

 TABLE 2.-PERCENTAGE DISTRIBUTION OF POST-RANDOM-ASSIGNMENT

 AcTIvITY IN JTPA OF TREATMENT GROUP MEMBERS WHO DID NOT ENROLL

 Nonenrollees
 Activity (%)

 No further contact 15
 Further contact, but not eligible 1
 No longer interesteda 11

 Got job on own 5
 Moved 2

 Health problems 1
 In another program 1

 Reason unknown 3
 Interested, but made contact only and received no services 20
 Interested and received service(s)b 53

 Received further assessment and counseling 1I1
 Referred to classroom training provider(s) 5
 Received support service(s) 2
 Referred to employer(s) for possible 36
 on-the-job training

 Participated in job club or received job search assistance 20
 Total 100

 Sample size 307

 Notes: Calculations are based on data for a random sample of 307 treatment group members in the
 18-month study sample who did not enroll in JTPA.

 Source: Kemple et al. (1993).
 a When totaled, subcategory percentages are over 1 1 % because nonenrollees could cite more than one

 reason for no longer being interested in JTPA.
 b When totaled, subcategory percentages are over 53% because some nonenrollees received more than

 one service.
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 ACCOUNTING FOR DROPOUTS IN EVALUATIONS OF SOCIAL PROGRAMS 9

 interest. On the other hand, it is hard to argue that Ap is of no
 interest. It informs us of the impact of the program on the
 group of people who were actually enrolled in it.

 B. Sensitivity of Impact Estimates to Violations

 of Assumption (6)

 We explore the sensitivity of the experimental impact
 estimates to departures from assumption (6) in two ways.

 Our first analysis considers the sensitivity of estimates of AP
 to assumptions about the impact of partial treatment on the
 nonenrollees. Suppose that the difference in expected out-
 comes between the treatment group dropouts and their

 analogs in the control group is given by E = E(YdId = 1) -
 E(Yc|d = 1). Then a simple modification of the derivation
 leading up to equation (10) produces an adjusted estimator

 of AP,

 - k

 A E.l(35) p AP 1-k~

 Table 3 displays AP calculated with E equal to $150, $100,
 $50, -$50, -$100, and -$150. As in table 1, the outcome
 variable Y corresponds to the sum of self-reported earnings
 in the 18 months after random assignment. The estimated
 means and sample sizes underlying the values in table 3
 appear in table 1. As noted above, in the context of the JTPA

 evaluation, the most likely source of bias is receipt of partial
 treatment by some of the treatment group dropouts. Suppose
 that the mean impact of these partial services on earnings in
 the 18 months after random assignment is $300, which is
 quite reasonable given the annual impact findings for job
 search assistance reported in Gueron and Pauly (1991). As
 the evidence in table 2 indicates that roughly half of the
 dropouts received some partial treatment, this corresponds
 to a value of E equal to $150. For adult males, E =_$150
 implies an adjusted earnings impact estimate of A =
 $990.33. The figure in square brackets indicates that this
 estimate is $88.78, or around 10%, lower than the estimate
 given by the instrumental-variable estimator.

 The second analysis examines the sensitivity of the

 estimates of Ap to assumptions about the relative magnitudes
 of E(YC d = 1) and E(YC d = 0). Making an assumption
 about the relative magnitudes of these two conditional
 expectations represents an alternative way to identify
 E(YC d = 0). The general form of this identifying assump-
 tion is

 E(Ycld = 1) = rE(Ycld=0) (36)

 where q is the constant of proportionality.
 Substituting equation (36) into equation (4) and solving

 for E(YC Id = 0) yields

 E(Yc)

 E(YcId = 0) = 1 + 1 (37)

 TABLE 3.-SENSITIVITY OF ESTIMATES OF IMPACT OF TREATMENT ON TREATED

 USING THE INSTRUMENTAL VARIABLE ESTIMATOR TO ASSUMPTIONS ABOUT

 IMPACT OF PARTIAL TREATMENT ON EARNINGS OF NONENROLLEES

 (FULL ABT 18-MONTH IMPACT SAMPLE)

 Adult Adult Male Female
 Target Group Men Women Youth Youth

 Bloom estimate Apa 901.55 1200.00 -1174.96 -58.85
 (590.60) (339.19) (712.30) (455.92)

 APwithE = $150 990.33 1277.61 -1100.15 20.92
 [88.78] [77.61] [74.81] [79.78]

 A with E = $100 960.74 1251.74 -1125.08 -5.67
 [59.19] [51.74] [49.87] [53.19]

 A with E = $50 931.14 1225.87 -1150.02 -32.26
 [29.59] [25.87] [24.94] [26.59]

 A with E = -$50 871.95 1174.13 -1199.90 -85.45
 [-29.59] [-25.87] [-24.94] [-26.59]

 A with E = - $ 100 842.36 1148.26 -1224.83 -112.04
 [-59.19] [-51.74] [-49.87] [-53.19]

 A with E = -$150 812.77 1122.39 -1249.77 -138.63
 [-88.78] [-77.61] [-74.81] [-79.78]

 Notes: Estimated standard errors are in parentheses; bias is in brackets.

 Since E is a constant, standard errors for A are equal to standard errors for Ap and are not repeated.
 a Estimates presented here differ from those in Bloom et al. (1993) because (1) estimates are calculated

 using simple means without regression adjustment and (2) imputed values for adult female nonrespon-
 dents based on UI earnings data are not used.

 The value on the left-hand side decreases as q increases so

 that the overall mean E(Y,) remains the same. Under these
 assumptions we can write

 A"== Yt(d= O)-Y,(d= 0)

 _Yt(d=)]~Yc(d = O)] (38)

 -Yt(d = ?) -1 (1

 We can provide information about the sensitivity of the

 estimates to the choice of 9 by calculating A'I for different
 values of q. Hotz and Sanders (1994) present another way of
 conducting sensitivity analyses in a more structured setting.

 Table 4 gives estimates of Aq constructed using data on
 self-reported earnings in the 18 months after random assign-
 ment from the NJS for various choices of q. The first row

 repeats the estimates of AP obtained using the instrumental-
 variable estimator. The next five rows present estimates of
 A'p for values of q equal to 0.50, 0.75, 1.00, 1.25, and 1.50.

 The final row displays the value of q that equates Al and AP p

 for each target group. The table shows that for 9q E
 [0.5, 1.5], varying the selection process into the dropout
 group by varying the value_of q strongly influences the
 resulting impact estimates Al. Setting q = 0.50, which
 implies that those controls who would have been dropouts
 have only half the mean earnings of those who would have
 been participants, produces strongly negative impact esti-

 mates in all cases. In contrast, for q = 1.5, which implies a
 lower mean outcome for those who would have received the
 treatment than for those who would have dropped out, very
 large impact estimates are produced in all cases. The
 estimates for q = 1.0, which corresponds to the case of
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 10 THE REVIEW OF ECONOMICS AND STATISTICS

 TABLE 4.-ESTIMATED IMPACTS ON EARNINGS IN THE 18 MONTHS AFTER

 RANDOM ASSIGNMENT ASSUMING E(YjId = 1) = rE(YCId = 0)
 (FULL ABT 18-MONTH IMPACT SAMPLE)

 Adult Adult Male Female

 Target Group Men Women Youth Youth

 IV estimate Apa 901.55 1200.00 -1174.96 -58.85
 (590.60) (339.19) (712.30) (455.92)

 A with X = 0.50 -1753.23 -581.53 -2658.96 -1390.44
 (457.15) (267.38) (573.28) (359.63)

 AA with X9 = 0.75 -175.93 257.77 -1485.31 -677.10
 (426.13) (251.21) (537.03) (336.04)

 AA with = 1.00 1108.13 953.99 -506.94 -87.60
 (401.84) (238.27) (507.71) (317.18)

 AP with -9 = 1.25 2173.79 1540.82 321.14 407.74
 (382.45) (227.76) (483.65) (301.85)

 AA with -9 = 1.50 3072.39 2042.18 1031.09 829.81
 (366.73) (219.10) (463.67) (289.22)

 Values of Xi such 0.9564 1.0999 0.8247 1.0134
 that AP" = AP

 Notes: Estimated standard errors are in parentheses.
 a Estimates presented here differ from those in Bloom et al. (1993) because (1) estimates are calculated

 using simple means without regression adjustment and (2) imputed values for adult female nonrespon-
 dents based on UI earnings data are not used.

 random dropping out, come close to those from the Bloom
 estimator for three of the four target groups, with male youth
 the exception. The last row of table 4 provides additional

 evidence on this point, as the value of 9 that equates the two
 estimates lies close to 1.0 for all groups other than male
 youth.

 C. Testing Assumption (12) in the NJS

 The testing strategy used here begins with simple tests of
 differences between the outcome distributions of the control

 group and the dropouts from the treatment group. Under
 assumption (12), the control and dropout outcome distribu-

 tions will be equivalent if the factors causing persons to drop

 out are unrelated to their outcomes. If F,(y) = Fd(y Id = 1),
 then restriction (14) will hold. In practice, when these two
 oucome distributions are not statistically distinguishable, the

 implied outcome distribution for the participant analogs in
 the control group is extremely unlikely to violate any of the
 restrictions tested by the more complicated tests proposed in

 the appendix. Thus, in general, when the initial battery of
 tests fails to reject the equivalence of the control and
 treatment group dropout outcome distributions, the addi-
 tional tests proposed in this paper are superfluous. In results
 not reported here we do not reject the hypothesis of equality

 of the two distributions for any demographic group using
 both Kolmogorov-Smirnov and Wilcoxin tests. As a result,
 we do not pursue this issue further with the data from the
 NJS.13

 VIII. Conclusion

 This paper examines several aspects of an instrumental-

 variable estimator commonly used to produce estimates of

 A1p, the impact of full treatment on the fully treated, in the
 context of experimental evaluations in which not all treat-

 ment group members receive treatment. We present and

 discuss the key assumption that justifies this estimator and
 argue that it is not likely to hold in the commonly encoun-

 tered case where the dropouts receive a partial "dose" of the

 treatment prior to dropping out.

 When the identifying assumption underlying the model

 fails to hold, the instrumental-variable estimator considered
 in this paper does not provide consistent estimates of the

 parameter A1p. For example, if dropouts receive partial
 treatment, the instrumental-variable estimator discussed in

 this paper produces inconsistent estimates of A1p. We develop
 statistical tests of the assumption underlying the estimator.

 This paper makes the general point that the parameter Ap,
 the effect of full treatment on the fully treated, may not be

 the main parameter of economic interest in evaluating a
 social program, especially in situations where the assump-
 tions justifying the instrumental-variable estimator do not
 hold. There are many parameters of economic interest other

 than A1p. We present examples where the unadjusted mean
 impact of assignment to treatment, A, may be of greater

 interest than A1p.
 We also discuss the role of identifying assumptions based

 on exclusion restrictions. In general, different exclusion
 restrictions identify different parameters, a point that has

 often generated confusion in the literature on program

 evaluation. Identification of A1p based on exclusion restric-
 tions is a delicate operation that is not robust to small

 perturbations in the assumptions.
 Applying our statistical tests to the data from the recent

 NJS, we do not reject the identifying assumption underlying

 the widely used instrumental-variable estimator, despite
 substantial receipt of partial treatment by dropouts in the
 experimental treatment group. At the same time, sensitivity
 analyses conducted using the JTPA data reveal that the
 empirical consequences of the failure of the key identifying
 assumption can be quite substantial.

 13 See Heckmnan et al. (1994) for detailed results of these tests and the
 tests proposed in the appendix and applied to the NJS data.
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 APPENDIX

 Testing Strategy

 The intuition for our proposed test is obtained by rewriting restriction
 (14) in the text in a different but equivalent form,

 Pr (Y E b) - kPr (YdE b)

 1-k 2~0 forallbC X' (14')

 where X6 is the class of subsets of the union of the supports of Y, and Yd.
 Conditioning on d = 1 is kept implicit in defining Pr(Yd E B). Unless X is
 finite, testing restriction (14') for every element of X6 poses a difficult
 statistical problem. However, it is straightforward to test restriction (14')
 using a finite number of subsets of X. In the case where X is finite, this
 procedure completely exhausts the implications of restriction (14). In the
 case where X6 is infinite, we could in principle develop a more powerful
 test. However, the tests developed here are easy to implement in practice
 and have known asymptotic properties.

 The null hypothesis we consider is

 1

 Ho: 1-k[Pr (Y, Elbj) - kPr (Yd E bj)] 2 0

 forallj= 1,...,J.

 For each j we can estimate [1/(1 - k)][Pr (Y, E b j) - k Pr (Yd E bj)]^by
 using sample probabilities to estimate population probabilities. Define P to
 be the vector of these estimates and P the vector of true values. Letting n be
 the sample size, where we assume for simplicity that the treatment and
 control samples are of the same size, it is easy to show that under random
 sampling,

 d

 ;n(P -P) -N(O,) (A. 1)

 where each element of the matrix X is of the form

 Pr (Y, E bi U bj) - Pr (Y, E bi) Pr (YCE bj)
 uij = (1-k)2

 k2[Pr (YdE bi U bj) - Pr (YdE bi) Pr (YdE bj)]

 (1-k)2

 For simplicity we assume that k is known. Modifying the covariance
 matrix to account for the estimation of k is straightforward (see Heckman

 et al. (1994)).14

 14 If nlnd = up # 1, then equation (A. 1) becomes - P-P) d N(O, 1)
 and equation (A.2) becomes uij = {[Pr (Y, E bi U bj) - Pr (Y, E bi)
 Pr (Y, E bj)] + pk2[Pr (Yd E bi U bj) - Pr (Yd E bi) Pr (Yd E bj) - l(l-k2).
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 12 THE REVIEW OF ECONOMICS AND STATISTICS

 Testing Ho requires that we define a test statistic t(P) and derive the
 asymptotic distribution of this test statistic under the null hypothesis. The
 composite nature of the null hypothesis complicates the procedure. There
 is no similar test region in this case. That is, the size of the test will vary

 I 1.00, P*(1) > 0, P*(2) > 0, Pp(3) > 0

 lrn Pr (t> c) = I I)(c(1)), Pp (1) = 0, Pp(2)> 0, Pp(3) > 0
 n---c( -

 (BVN(-c(l), -c(2); P12), Pp (l) = O, Pp (2) = O, Pp (3) > ?

 across alternative values of (k, Fc, F, (. d = 1)) consistent with the null
 hypothesis. For any critical region we calculate the size of the test based on
 the least favorable distribution, which is the distribution consistent with the
 null hypothesis for which the probability of rejection is greatest. One test
 statistic is based on the Wald test. We can define

 t(P)= inf [(P - M)'Y(P - M)].
 M20

 Drawing on the analysis of Perlman (1969), Wolak (1991) derives the least
 favorable distribution for this testing problem and provides a partial
 characterization of it. He shows that under the least favorable distribution
 at least two of the restrictions given in restriction (14') will bind, so that at
 least two of the test regions will be at the boundary of the parameter space.

 Another possible test statistic is

 P1

 t(P)=

 &JJ

 where Pj = [1/(1 - k)][Pr (Y, E bj) - kPr (Yd E bj)] so that t(P) is just
 the vector of t-statistics for each of the individual cells. We choose the
 critical region c = (c(l), . . ., c(J)) so that we reject when any element of
 t(P) is less than the corresponding element of c. In other words, we
 perform J t-tests and reject the null hypothesis whenever we reject the null
 hypothesis for any of the individual t-tests. Using this test statistic, it is
 easy to derive the least favorable distribution.

 We derive the least favorable distribution for the simple case of a model
 with three cells which form a partition of the support of Yc U Yd. The
 extension to the case of J cells simply generalizes the same line of
 reasoning. Let PC(i) denote the probability that Yc lies in cell bi, let Pd(i)
 denote the probability that Yd lies in cell bi, and let PC(i) and Pd(i) be their
 sample analogues. In what follows we take k, the fraction of the treatment
 group that drops out, as fixed and known. Define

 P (i) - kPd(i)
 Pp (i) =C

 and

 A*(j) = Pc(i) - kPd(i)
 Pp (i) 1-k

 Now consider the following null hypothesis:

 Ho: Pp(1)20

 Pp (2) 2 0

 Pp (3) 2 0.

 As noted previously, the distribution of the test statistic varies across
 values of the parameters consistent with the null hypothesis. Using the
 analysis of Perlman (1969), it is straightforward to show that the
 probability of accepting the null hypothesis can be written as follows:'5

 where 'F denotes the cdf of a univariate standard normal random variable,
 BVN(a, b; c) denotes the cdf of a standardized bivariate normal distribu-
 tion with upper limits a and b and correlation c, and P12 denotes the
 asymptotic correlation between P(1) and P(2).

 The least favorable distribution dictates the size of the test. It
 corresponds to those parameter values for which the limit of Pr (t > c) is
 minimal. In the case considered in this paper, the least favorable
 distribution will occur when the constraint binds in two cells. The feasible
 value of P12 that minimizes BVN(-c(l), -c(2); P12) turns out to be P12 =
 -k, as we now demonstrate.

 For any critical region, the size of the test is

 ot = 1 - BVN(-c(l), -c(2); -k).

 A least favorable distribution can be derived by minimizing the correlation
 with respect to (PC(1), PC (2), Pd(l), Pd (2)) subject to the constraints

 PC(1) = kPd(l)

 Pc(2) = kPd(2)

 1 - Pd(l) - Pd(2) 2 0.

 The solution to this problem is as follows:

 k1

 2 2

 PC= 2 , Pd 1

 2 2

 -k 0

 At this solution P12 =-k.

 In practice, the size of the test will not be very sensitive to P12 as long as
 P12 is negative. Suppose that c = c(l) = c(2) and (F(-c) = 1 - ot.

 Consider the following two extreme cases:

 (F(-c, -c; -1) = Pr (ItI > c) = 1- 2c

 .F(-c, -c; 0)= Pr (t(l) > c) Pr (t(2) > c) = (1- a)2.

 However, since (1 - t)2 - (1 - 2o) = at2 and at is small even at the two
 extremes, the difference in the size of the test will be very small. For
 example, when at = 0.025, 1 - 2cx = 0.95 and (1 - t)2 = 0.9506.

 15 This problem is completely symmetric with respect to the cells, so
 without loss of generality we ignore the case where Pp (3) = 0.
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 TABLE A.1L-MoNTE CARLO EVIDENCE ON LEAST FAVORABLE DISTRIBUTION
 PROBABILITY OF AcCEPTANCE

 Critical Region

 c(l) = - 1.96 c(l) = - 1.80 c(l) = - 1.65
 c(2) = -1.96 c(2) = -2.20 c(2) = -3.30

 True Distribution c(3) = -1.96 c(3) = -1.80 c(3) = -1.65

 Pc = (0.25, 0.25, 0.50)
 Pd = (0.50, 0.50, 0.00) 0.950 0.948 0.948

 pp = (0.00, 0.00, 1.00)

 Pc = (0.20, 0.20, 0.60)
 Pd = (0.40,0.40,0.20) 0.946 0.946 0.947

 pp = (0.00, 0.00, 1.00)

 Pc = (0.30, 0.10, 0.60)
 Pd = (0.60, 0.20, 0.20) 0.947 0.945 0.949

 pp = (0.00, 0.00, 1.00)

 Pc = (0.25, 0.26, 0.49)
 Pd = (0.50, 0.50, 0.00) 0.971 0.960 0.945

 Pp = (0.00, 0.02,0.98)

 Pc = (0.25, 0.30, 0.45)
 Pd = (0.50, 0.50, 0.00) 0.976 0.965 0.951

 pp = (0.00, 0.10, 0.90)

 Pc = (0.25, 0.25, 0.50)
 Pd = (0.50, 0.49, 0.01) 0.964 0.957 0.948

 pp = (0.00, 0.01, 0.99)

 Pc = (0.25, 0.25, 0.50)
 Pd = (0.50, 0.25, 0.25) 0.973 0.961 0.947

 Pp = (0.00, 0.25, 0.75)

 Pc = (0.26, 0.26, 0.48)
 Pd = (0.50, 0.50, 0.00) 0.994 0.995 0.993

 Pp = (0.02,0.02,0.96)

 Pc = (0.30, 0.30, 0.40)
 Pd = (0.50, 0.50, 0.00) 1.000 1.000 1.000

 Pp = (0.10, 0.10, 0.80)

 Note: Results were obtained using 10,000 Monte Carlo runs, with sample size 2000 and k = 0.5.

 We perform a Monte Carlo study to examine the sensitivity of the test
 size to various distributions of the data consistent with the null hypothesis.
 We use 10,000 Monte Carlo draws each with a sample size of 2000 and
 k = I. Table A.1 presents the fraction of Monte Carlo draws for which
 the null hypothesis was accepted. The theoretical size is supported by
 Monte Carlo analysis.

 All three critical regions were chosen so that asymptotically the size of
 the test should be close to 0.05. Since the constraint does not bind in the
 third cell for any of the true distributions considered, asymptotically only
 c(l) and c(2) are relevant. The relative sizes of c(l) and c(2) are chosen to
 be the same in the first column. We predict that the probability of rejecting
 is 0.95 when the first two constraints bind, 0.975 when only one binds, and
 1.0 when none bind. The second critical region is not symmetric. Here the
 probability of rejecting based on c(l) is 0.964, the probability of rejecting
 based on c(2) is 0.986, and the joint probability of rejecting is approxi-
 mately 0.95 when both constraints bind. The third critical region is chosen
 so that the probability of rejecting based on c(2) is very small. Then the
 probability of rejecting based on c(l) is 0.95 and the joint probability is
 0.95. These theoretical predictions are very close to Monte Carlo
 predictions. It appears that 2000 observations are sufficient to justify the
 application of asymptotic theory.

 We also perform some Monte Carlo runs to gauge the power of the tests.
 These results appear in table A.2. Note that it is the probability of accepting
 the null hypothesis (1 - power) that is reported rather than the power
 itself. The test has low power against moderate violations of the null
 hypothesis that are concentrated in a particular cell. For small departures,
 the test is inconsistent-power is less than size.

 Rather than testing the individual cells, we may want to test whether the
 cdf remains bounded between 0 and 1. Using three cells as before, we can

 TABLE A.2.-MONTE CARLO EVIDENCE ON POWER OF TEST

 PROBABILITY OF ACCEPTANCE

 Critical Region

 c(1) = -1.96 c(1) = -1.80 c(1) = -1.65
 c(2) = -1.96 c(2) = -2.20 c(2) = -3.30

 True Distribution c(3) = -1.96 c(3) = -1.80 c(3) = -1.65

 Pc = (0.24, 0.25, 0.51)
 Pd = (0.50,0.50, 0.00) 0.822 0.793 0.764

 Pp = (-0.02, 0.00, 1.02)

 Pc = (0.24, 0.38, 0.38)
 Pd = (0.50, 0.25, 0.25) 0.851 0.805 0.765

 Pp = (-0.02, 0.51, 0.51)

 Pc = (0.24, 0.24, 0.52)
 Pd = (0.50, 0.50, 0.00) 0.851 0.805 0.765

 Pp= (-0.02, -0.02, 1.04)

 Pc = (0.33, 0.33, 0.34)
 Pd = (0.67, 0.17, 0.16) 0.932 0.909 0.882

 Pp = (-0.01, 0.49, 0.52)

 Pc = (0.30, 0.35, 0.35)
 Pd = (0.67, 0.17, 0.16) 0.144 0.112 0.087

 Pp = (-0.07, 0.53, 0.54)

 Note: Results were obtained using 10,000 Monte Carlo runs, with sample size 2000 and k = 0.5.

 TABLE A.3.-MoNTE CARLO EVIDENCE ON LEAST FAVORABLE DISTRIBUTION,

 CDF TEST

 PROBABILITY OF ACCEPTANCE

 Critical Region

 c(1) = - 1.96 c(1) = - 1.80 c(1) = - 1.65
 c(2) = - 1.96 c(2) = -2.20 c(2) = -3.30
 c(3) = - 1.96 c(3) = - 1.80 c(3) = - 1.65

 True Distribution c(4) = -1.96 c(4) = -1.80 c(4) = -1.65

 Pc = (0.25, 0.25, 0.50)
 Pd = (0.50, 0.50, 0.00) 0.969 0.961 0.949

 pp = (0.00, 0.00, 1.00)

 Pc = (0.20,0.20,0.60)
 Pd = (0.40, 0.40, 0.20) 0.963 0.957 0.948

 pp = (0.00, 0.00, 1.00)

 Pc = (0.30, 0.10, 0.60)
 Pd = (0.60, 0.20, 0.20) 0.965 0.959 0.950

 pp = (0.00, 0.00, 1.00)

 Pc = (0.25, 0.26, 0.49)
 Pd = (0.50, 0.50, 0.00) 0.973 0.960 0.945

 Pp = (0.00, 0.02, 0.98)

 Pc = (0.25, 0.30, 0.45)
 Pd = (0.50, 0.50, 0.00) 0.976 0.965 0.951

 pp = (0.00, 0.10, 0.90)

 Pc = (0.25, 0.25, 0.50)
 Pd = (0.50,0.49, 0.01) 0.970 0.961 0.948

 pp = (0.00, 0.01, 0.99)

 Pc = (0.25, 0.25, 0.50)
 Pd = (0.50, 0.25, 0.25) 0.973 0.961 0.947

 Pp = (0.00, 0.25, 0.75)

 Pc = (0.26, 0.26, 0.48)
 Pd = (0.50, 0.50, 0.00) 0.998 0.997 0.994

 Pp = (0.02, 0.02, 0.96)

 Pc = (0.30, 0.30, 0.40)
 Pd = (0.50, 0.50, 0.00) 1.000 1.000 1.000

 Pp = (0.10, 0.10, 0.80)
 Note: Results were obtained using 10,000 Monte Carlo runs, with sample size 2000 and k = 0.5.
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 write this restriction in terms of the probabilities defined above:

 Ho: P* (1) 2 0

 Pp (1) + Pp(2) ? 0

 Pp (2) + Pp (3) ? 0

 Pp(3) ? 0.

 Note that the condition

 Pp(1) + Pp(2) + P*(3)= 1

 is imposed automatically. We can proceed exactly as before. We obtain the
 vector of test statistics by forming the sample analogs of the four
 conditions above and dividing each by its standard error. The test is
 analogous to the one performed above.

 Note that the conditions imposed here are weaker than before. It is
 possible for Pp(2) to be negative but still satisfy this null hypothesis.
 However, if the previous conditions hold, then these conditions must hold
 as well.

 As before, the constraint can bind in at most only two of the cells, so we
 can appeal to our earlier argument. The only difference is that the
 correlations of the t-statistics will be somewhat different than before. The
 least favorable distribution will occur when the constraint binds in two of
 the cells. Notice that if the two constraints that bind are Pp(1) = 0 and
 Pp(3) = 0, then the correlation will be negative. For any other two
 constraints, the correlation will be positive. We know that the correlation is
 minimized at the least favorable distribution, so a least favorable distribu-
 tion must occur when Pp(l) = 0 and Pp(3) = 0. In this case the least
 favorable distribution will be exactly the same as the one derived above.

 We present Monte Carlo results for these test statistics in tables A.3 and
 A.4. Note that since the case Pp (1) = 0 and Pp (3) = 0 is analogous to the
 case Pp(1) = 0 and Pp(2) = 0 reported previously, we do not report it
 here.

 As in our previous results, the predicted probabilities are very close to
 their Monte Carlo analogues. For all three test statistics the least favorable
 distribution will occur when Pp*(1) = 0 and Pp*(3) = 0, where the
 probability of acceptance is 0.95. The advantage of the cdf test is that it
 should have more power against some alternatives. This result is borne out
 in table A.4, where the cdf test has more power against violations of the
 null hypothesis in both the first and the second cells.

 We now return to the original test but allow an arbitrary number of cells.
 In this case it is trivial to show that the constraint will bind in K - 1 of the
 cells for at least one least favorable distribution.

 TABLE A.4.-MONTE CARLO EVIDENCE ON POWER OF CDF
 TEST PROBABILITY OF ACCEPTANCE

 Critical Region

 c(1) = - 1.96 c(1) = - 1.80 c(1) = - 1.65
 c(2) = -1.96 c(2) = -2.20 c(2) = -3.30
 c(3) = -1.96 c(3) = -1.80 c(3) = - 1.65

 True Distribution c(4) = -1.96 c(4) = -1.80 c(4) = -1.65

 Pc = (0.24,0.25,0.51)
 Pd = (0.50, 0.50, 0.00) 0.814 0.794 0.770
 Pp = (-0.02, 0.00, 1.02)

 Pc = (0.24, 0.38, 0.38)
 Pd = (0.50, 0.25, 0.25) 0.850 0.811 0.766

 Pp= (-0.02,0.51,0.51)

 Pc = (0.24, 0.24, 0.52)
 Pd = (0.50,0.50, 0.00) 0.662 0.700 0.765
 Pp= (-0.02, -0.02, 1.04)

 Pc = (0.33, 0.33, 0.34)
 Pd = (0.67, 0.17, 0.16) 0.936 0.914 0.890

 Pp = (-0.01, 0.49, 0.52)

 Pc = (0.30, 0.35, 0.35)
 Pd = (0.67, 0.17, 0.16) 0.145 0.111 0.085

 Pp = (-0.07, 0.53, 0.54)

 Note: Results were obtained using 10,000 Monte Carlo runs, with sample size 2000 and k = 0.5.

 Suppose this were not the case. Suppose that the constraint binds in
 only K* < K - 1 of the cells. Asymptotically the probability of accepting
 the null hypothesis depends only on the K* cells for which the constraint
 binds. Since the cell probabilities in the other K - K* are irrelevant, we
 can change them arbitrarily without affecting the probability of accepting
 the null hypothesis. Therefore we can redefine a new least favorable
 distribution by taking all of the mass from the K - K* cells for which the
 constraint does not bind and putting it into a single one of those cells. The
 probability of accepting remains unchanged, but the constraint now binds
 in K - 1 of the cells. This new null hypothesis may be uninteresting, but it
 does demonstrate that in searching for the least favorable null hypothesis
 we can restrict ourselves to those in which the constraint binds in K - 1 of
 the cells.
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