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 Abstract—In difference-in-differences applications, identification of the
 key parameter often arises from changes in policy by a small number of
 groups. In contrast, typical inference assumes that the number of groups
 changing policy is large. We present an alternative inference approach for
 a small (finite) number of policy changers, using information from a large
 sample of nonchanging groups. Treatment effect point estimators are not
 consistent, but we can consistently estimate their asymptotic distribution
 under any point null hypothesis about the treatment. Thus, treatment point
 estimators can be used as test statistics, and confidence intervals can be
 constructed using test statistic inversion.

 I. Introduction

 THIS paper presents a new method of inference for difference-in-differences type fixed-effect regression
 methods for circumstances in which only a small number
 of groups provide information about treatment parameters of
 interest. In the difference-in-differences methodology, iden
 tification of the treatment parameter typically arises when a
 group changes some particular policy. We use N\ to denote
 the number of treatment groups that change their policy in
 the data and No to denote the number of control groups that
 do not change their policy. The usual asymptotic approxima
 tions assume that both N\ and No are large. However, even
 when the total number of observations is large, the number
 of actual policy changes observed in the data is often very
 small. For example, often only a few states change a law
 within the time span (T) of the data. In such cases, we argue
 that the standard large-sample approximations used for infer
 ence are not appropriate.1 We develop an alternative approach
 to inference under the assumption that Ni is finite, using
 asymptotic approximations that let No grow large (with T
 fixed). Point estimators of the treatment effect parameter(s)
 are not consistent since N\ and T are fixed. However, we
 can use information from the No control groups to consis
 tently estimate the distribution of these point estimators up
 to the true values of the parameter. This allows us to use
 treatment parameter point estimators as test statistics for any
 hypothesized true treatment parameter values and to construct
 confidence intervals by inverting these test statistics.
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 1 Of course in some special cases, the classical linear model assumptions
 will be satisfied, enabling small sample inference (see, e.g., Donald & Lang,
 2007). Here our methods remain useful as specification checks, but they will
 be most valuable when the classical model may not be applicable.

 The following simple model illustrates our basic problem
 and approach to its solution:

 Yjt - adjt + 0/ + Yr + t)jt,  (1)

 where djt is a policy variable whose coefficient a is the object
 of interest, 0/ is a time-invariant fixed effect for group j, y, is
 a time fixed effect that is common across all groups but varies

 across time t = 1,..., T, and r\j, is a group x time random
 effect.

 Suppose that only the j = 1 group experiences a treatment
 change and that it happens to be a permanent one-unit change
 at period t*. All other groups have a time-invariant policy:
 dj\ = ... = djT- Consider estimating model (1) by using
 ordinary least squares (OLS), controlling for group and time
 effects using dummy variables. Let olfe be this regression
 estimate of a. It is straightforward to show that oIfe can be
 written as a difference of differences:

 Under the usual assumption that x\j, has mean zero condi
 tional on the regressors, olfe is unbiased. However, it is not
 consistent. As the number of groups grows, only the term in
 parentheses vanishes; the term in brackets remains unchanged
 as No gets large (with T fixed), that is

 In other words, the olfe estimate is equal to the true parameter
 of interest a plus noise W. The key issue is that because T is
 fixed and the number of treatment groups is fixed at N\, the
 noise W does not vanish as the total number of groups grows
 larger.

 This problem is rarely acknowledged in empirical work,
 and researchers often ignore it when calculating standard
 errors. If the classical linear model were applicable, stan
 dard methods would yield the correct small sample inference
 (see Donald & Lang, 2007). However, for many applications,
 the classical model does not apply (e.g., due to nonnormal r\jt
 or serial correlation in ri;,). In such cases, classical inference
 can be misleading.

 (are-a) 4-W = •
 t=t*+\ t=l
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 Figure 1.—Example Estimate of CDF for W

 In this paper, we show that although aFE is not consis
 tent, we can still conduct inference and construct confidence

 intervals for a with a general r\jt distribution. The key idea
 behind our approach is that although the control groups are
 uninformative regarding a, they can still contain information
 about the distribution of the noise W, a linear combination
 of Vs. Thus, the large number of observations for the con
 trols may allow consistent estimation of the W distribution.
 To be precise, a necessary condition for our approach is that
 the distribution of W can be identified from the population of
 controls. A sufficient condition is random assignment of treat
 ment change conditional on group and time dummy variables,
 which implies common r] distributions for treatments and
 controls. Under such an assumption, we can use the residuals
 from the control groups to learn about the limiting distribu
 tion of W. Let f\j, denote residuals and Wj denote the function
 of residuals that is analogous to W:

 T t*
 1 _ 1

 !=1

 As N0 gets large, the Wj will have the same distribution as
 W. A test of the hypothesis that a = ao is easily conducted
 by comparing (olfe — ao) with the empirical distribution of

 {Wj}^2- The null hypothesis is rejected when (olfe — ao) is a
 sufficiently unlikely (tail) event according to this distribution.

 We illustrate this approach in figure 1 which is based on
 data from our empirical example in section IV. We present the

 empirical distribution of Wj, a consistent estimate of the dis
 tribution of (cIfe ~ oto) under the null hypothesis that a = ao.
 An acceptance region can be constructed by finding appro
 priate quantiles of this empirical distribution. For example,
 the interval —.11 to .09 in figure 1 corresponds to an approx
 imately 90% acceptance region. If (aFE — ao) does not fall
 within that range, the null hypothesis a = ao is rejected. The
 set of ao thats fails to be rejected provides an approximate

 90% confidence interval for a. In this example, a is approxi
 mately .08, which yields a 90% confidence interval for a of
 -.01 to.19.

 Our approach is related to a large body of existing work
 on difference-in-differences models and inference in more

 general group effect models.2 It is complementary to typ
 ical approaches focusing on situations where the numbers
 of treatment and control groups, N\ and No, are both large
 (Moulton, 1990) or both small (Donald & Lang, 2007). It
 is also in the spirit of comparisons of changes in treatment
 groups to changes in control groups often done by care
 ful applied researchers. For example, Anderson and Meyer
 (2000) examine the effect of changes in the unemployment
 insurance payroll in Washington State on a number of out
 comes using a difference-in-differences approach with all
 other states representing the control groups. In addition to
 standard analysis, they compare the change in the policy in
 Washington State to the distribution of changes across other
 states during the same period of time in order to determine
 whether it is an outlier consistent with a policy effect.3

 This approach is relevant for a wide range of applica
 tions. Examples include Gruber, Levine, and Staiger (1999)
 who use comparisons between the five treatment states that
 legalized abortion prior to Roe v. Wade versus the remain
 ing states. Our results apply directly, with N\ corresponding
 to the five initial movers. For expositional and motivational
 purposes, we focus on the difference-in-differences case,
 but our approach is appropriate more generally in treat
 ment effect models with a large number of controls and
 a small number of treatments.4 Hotz, Mullin, and Sanders

 2 There are so many examples of difference-in-differences style empirical
 work that we do not attempt to survey them. See Meyer (1995), Angrist
 and Krueger (1999), and Bertrand, Duflo, and Mullainathan (2004) for
 overviews of difference-in-differences methods. Wooldrige (2003) provides
 an excellent and concise survey of closely related group effect models.
 3 Though it does not appear in the published version, section 4.6 of

 Bertrand, Duflo, and Mullainathan (2002) describes a placebo laws exper
 iment that is related to some aspects of our approach. They use simulation
 experiments under specific joint hypotheses about the policy and distribu
 tion of covariates to assess the size and power of typical tests (based on
 large-No and large-yVi). Such experiments could also be used to recover the
 finite sample distribution of a treatment effect parameter under a particular
 null hypothesis.
 Abadie, Diamond, and Hainmuller (2010) (ADH) is another related paper

 that uses placebo laws to do inference. However, their main focus is on how
 to choose the best comparisons for the treated units using combinations of
 untreated units, which they call synthetic controls. They provide theoretical
 justification for the use of synthetic controls and compare estimates obtained
 for the treated units to estimated placebo effects for untreated units to test
 the null of no treatment effect. In contrast, our paper focuses on inference
 for treatment parameters after the important choice of controls has been
 made by the researcher.

 4 One can also find many studies that use a small number of treatments and
 controls. However, if there exist group x time effects, the usual approach for
 inference is inappropriate. An alternative sample design is to collect many
 control groups (with the inherent cost of a reduction of match quality).
 One could then use our methods for appropriate inference. For example,
 Card and Krueger (1994) examine the impact of the New Jersey minimum
 wage law change on employment in the fast food industry. Their sample
 design has only one control group (eastern Pennsylvania), but they could
 have collected data from many control states to contrast with the available
 treatment state. We view this not as a substitute for the analysis that they
 perform, but rather a complement to check the robustness of the results.
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 (1997) provide a good example outside the difference-in
 differences literature: they estimate the effect of teenage
 pregnancy on labor market outcomes of mothers. The key
 to their analysis is using miscarriage as an instrument for
 teenage motherhood. Of their sample of 980 women who
 had a teenage pregnancy, only 68 experienced miscarriages.
 Our basic approach could be extended to this type of applica
 tion, with the 68 miscarriages taken as fixed like N\ and the
 approximate distributions of estimators calculated treating
 only the nonmiscarried pregnancies as a large sample.

 Our final example is the study of merit aid policies, which
 we use in section IV to illustrate our methods. Merit aid

 programs provide college tuition assistance to students who
 attend college in state and maintain a sufficiently high grade
 point average during high school. Some of the studies in the
 literature estimate the effect using only a single state that
 changed its law (Georgia), while newer studies make use of
 ten states.5 We demonstrate our methodology and show that
 accounting for the small number of treatment states is impor
 tant as the confidence intervals become substantially larger
 than those formed by the standard approach.

 The closest analog to our inference method in economet
 rics is work on testing for end-of-sample structural breaks—
 in particular, work such as that by Dufour, Ghysels, and Hall
 (1994) and Andrews (2003) on the problem of testing for a
 structural break over a fixed and perhaps very short interval
 at the end of a sample. They develop tests that are asymptoti
 cally valid as the number of observations before the potential
 break point grows, holding fixed the number of time periods
 after the break. Their exact models, hypotheses of interest,
 and structure of proofs differ considerably from ours, but we
 both use the same basic idea for inference. This idea is to use

 the small number of observations after the break or Ni chang
 ers as the basis for constructing a test statistic whose reference
 distribution can be well estimated using the large number of
 observations before the potential break or No controls.

 The remainder of this paper presents our approach in the
 simplest case of group x time data (e.g., collected at the
 state x year level) and a common treatment parameter in
 section II. Extensions to allow heterogeneity in treatment
 parameters across groups, individual-level data, and cross
 sectional dependence and heteroskedasticity are described in
 section III. In section IV, we present an illustrative example
 of our approach by studying the effect of merit scholarships.
 Section V presents the results of a small simulation study
 of our estimator's performance, followed by a brief con
 clusion in section VI. Proofs of propositions 1 and 2 are
 contained in an appendix; all other material is contained in a
 Web appendix available at the Review's Web site, http://www
 .mitpressjournals.org/doi/suppl/10.1162/REST_a_00049.

 II. Base Model

 Our base model is for situations where data are available

 at a group x time level:

 5 Our specifications are motivated by Dynarski (2004).

 Yjt — a djt + Xjfi + Qj + y, + r\jt,  (2)

 where dj, is the policy variable that need not be binary, Xj, is
 a vector of regressors with parameter vector p, 0/ is a time
 invariant fixed effect for group j, y, is a time effect that is
 common across all groups but varies across time t = 1,T,
 and x]j, is a group x time random effect. We take a to be the
 parameter of interest. We use the label "group" because in
 typical applications, j would index states, counties, or coun
 tries, though nothing precludes a group from being a single
 individual. This data could be either intrinsically group level
 or aggregates of individuals within a group. In section IIIB,
 we extend this framework to data with multiple individuals
 per group, retaining the feature that dj, varies only across
 group-time cells not within them.

 The key problem motivating our approach is that for many

 groups, there is no temporal variation in dj,. We adopt the con
 vention of indexing the N\ groups whose value of dj, changes
 during the observed time span with the integers 1 toN\. The
 integers from N\ + 1 to N\ + N0 then refer to the remaining
 groups for which djt is constant from t = 1 to T. We treat /V,
 and T as fixed, taking limits as No grows large. We assume
 throughout that at least one group changes its policy so that
 N\ > 1.

 It is convenient to partial out variation explained by indi
 cators for groups and times and to have notation for averages

 across groups and time. Therefore, for generic variable Zjt,
 we define Zj = ± £f=1 Zju Z, = zj" and u«e
 the notation Z for the average of Zj, across both groups and
 time periods. We define a variable Zj, that equals the resid
 ual from a projection of Zj, on group and time indicators:
 Zj, = Zjt—Zj—Z,-\-Z. The essence of difference in differences
 is that we can rewrite regression model (2) as

 Yjt = a dj, + X-fi + r\j,, (3)

 and wecan then estimate a by regressing Yj, on dj, and Xj,. Let
 a and p denote the OLS estimates of a and p in equation (3).
 We assume a set of regularity conditions stated as assump

 tion 1, most of them routine. The conditions need to imply
 that changes in ry, are uncorrected with changes in regres
 sors, and the usual moment and rank conditions hold. The

 only (slightly) unusual condition we use describes the cross
 sectional dependence of our data. We generalize the standard
 independence assumption to allow the data to be cross
 sectionally strong mixing (see Conley, 1999). This presumes
 the existence of a coordinate space in which our observations
 can be indexed. Mixing refers to observations approaching
 independence as their distance grows, a direct analog of the
 time series property with the same name. We omit an explicit
 notation for these coordinates for ease of exposition.

 Assumption 1. ((X/i, r];1),..., (Xjt, t]7t)) is strong mixing
 across groups; (r^i,..., r}7y) is expectation zero conditional
 on (dji,,djj) and (Xj\,...,Xjj); all random variables
 have finite second moments. The regressors in equation (3),
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 dp, Xjt, are linearly independent. Finally, we assume that after
 the projection o£X on time and group fixed effects, the resid
 ual regressors Xp still have variation in the limit, which we
 state as

 where £* is finite and of full rank.

 Assumption 1 is similar but weaker than the standard set of
 assumptions made in difference-in-differences applications.
 It is weaker in that we allow the data to be weakly dependent
 across groups rather than the usual assumption of indepen
 dence across groups. The key difference between our setup
 and the usual setting is that we are assuming N\ is small and
 fixed versus the usual assumption that it is large, and our cor
 responding assumption that there is temporal variation in dp
 only for A^i observations. In proposition 1, we state that OLS
 yields a consistent estimator of (3 (as N0 oo, N\,T fixed),
 and we derive the limiting distribution of a:

 Proposition 1. Under assumption 1, N0 —> oo : P P and
 a is unbiased and converges in probability to a + W, with:

 Proof. See the appendix.

 The proposition states that while a is unbiased, it is not con
 sistent (as No ->■ oo, NUT fixed). Its limiting distribution is
 centered at a, with deviation from a given by W, a linear com

 bination of (ry, — rjj) for j = 1 to N\ and t = 1 to T. The nice
 aspect of this result is that inference for a remains feasible if
 we can estimate relevant aspects of the distribution of W.

 Our approach is to estimate the conditional distribution of
 W given the observable dp for the treatment groups. Thus,
 we need to identify the conditional distribution of {(riy, — rj^)}
 for j = 1 to N\ and t = 1 to T given the corresponding set
 of dp values. In order to do so, we assume that the distribu
 tion of (r\p — l]j) given dp for the treatments is the same as
 that for the controls. The time-invariant dp for our controls
 cannot be informative about all forms of conditional r\p dis
 tributions given the treatments' time-varying dp series. Thus
 for feasibility, we must restrict ourselves to a model that is
 estimable with time-invariant dp. Random assignment of dp
 conditional on Xp, time dummies, and group dummies would
 be sufficient here, implying common (r\p — rj"y) distributions
 for treatments and controls. Assumptions implying common
 ri distributions for treatments and controls are beyond what
 is necessary for difference-in-differences applications with
 large N\. Large Ni allows more heterogeneity in the distribu
 tion of r] conditional on dp to be tolerated. Terms like W will
 vanish, and distribution approximations can exploit the large
 treatment sample size. However, in many cases, researchers

 1
 N0+N t T

 _ IC/ii Ylt=\(djt dj)(i\p Tfy)

 EjiELi {dp-dp
 (4)

 justify their difference-in-differences approach by arguing
 that it is reasonable to think of dj, as randomly assigned (con
 ditional on group and time dummy variables). When this is
 the case, our approach imposes no further restrictions.

 For ease of exposition, we first discuss estimation under
 a simple model in which the (r^i,..., r\/T) are independent
 of regressors and independent and identically distributed
 (i.i.d.) across groups, stated as assumption 2. This still allows
 arbitrary serial correlation in r\j,. It is important to note
 that assumption 2 is not necessary for our approach; it can
 be replaced by any model of cross-sectionally stationary
 data, with, for example, spatially correlated or condition
 ally heteroskedastic r\jt, that is, estimable given data from
 the controls.6 In the Web appendix, we present an example
 model that allows temporal and spatial dependence in r\j, and
 heteroskedasticity depending on group population.7

 Assumption 2. (r|yi,... ,f\jT) is i.i.d. across j and inde
 pendent of (dju ...,djT) and (Xju ..., XjT), with a bounded
 density.

 To see how the distribution of (r\jt — rjv) can be estimated
 under assumption 2, consider the residual for a member of
 the control group (j > Ni),

 The term involving Xj, vanishes since p is consistent, and the r]
 term simplifies because rj, and rf vanish. Thus, if {(%—r^-)}r=1
 is i.i.d. across groups, its distribution for the treatment groups,
 j < /Vi, is trivially identified using residuals for control
 groups 7 >

 We first consider estimators implied by the sample analog

 estimator of the distribution of {(r\j, — rjy)}^,, that is, the
 empirical distribution of residuals from control groups.8 This
 implies an estimator of the conditional distribution of W given
 the dj, for the treatment groups. Defining this distribution as
 T(w) ee Pr(W < w | {dj,,j = I,...,Nut - l,...,r}), its
 sample analog estimator is

 % - xfi - x;,(p - P) + (x]j, - Tij - rf, + rj)
 p /

 (y\jt - r\j)

 ll=Ni+l iNi=Ni+l

 < w

 6 Stationarity refers to the joint distribution of observations indexed in a
 Euclidean space being invariant to translation in their indexes. Observations
 have identical marginal distributions, and sets of observations with indexes
 that differ only by a translation have identical distributions.
 7 See Conley and Taber (2005) for an alternative model in this framework

 that allows for heteroskedasticity arising from variation in group popula
 tions along with arbitrary serial dependence but with spatial independence.
 8 Of course, the residuals could also be used to estimate any parametric

 model of their distribution. This may be a preferable practical strategy in
 applications with moderately large No
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 We state a consistency result for r(w) as proposition 2.

 Proposition 2. Under assumptions 1 and 2 and assuming (3
 is interior to a compact parameter space, as Nq —»■ oo, T (w)
 converges in probability to V(w) uniformly on any compact
 subset of the support ofW.

 Proof. See the appendix.

 Given the consistent estimator T(w), it is straightforward to
 conduct hypothesis tests regarding a using a as a test statistic.
 Under the null hypothesis that the true value of a = ao,
 the large sample (Nq large) approximation following from
 proposition 1 is that a is distributed as ao + W conditional on
 {dj,,j = 1,... ,N\,t = 1,..., T). Therefore, we consistently
 estimate the distribution function Pr(a < c) via f(c—ao) and
 use its appropriate quantiles to define an asymptotically valid
 acceptance region for this null hypothesis.9 For example, a
 90% acceptance region could be estimates as [a;01v<,r,awe,r]
 with these end points being the 5th and 95th percentiles of this

 distribution: r(aiower - oi0) ~ .05 and f(aupper - a0) .95.10
 A 90% confidence interval for the true value of a can then be

 constructed as the set of all values of ao where one fails to
 reject the null hypothesis that ao is the true value of a.

 This might look complicated, but it is actually easy to
 implement. To see this, consider the example in which we
 have only one treatment (N\ = 1) and want to test the null
 hypothesis that a = 0. We use the following procedure:

 1. Run the regression of Y on X.
 2. Take the residuals of the regression for the controls

 from group j and call them f\jr.
 3. Use these to form the empirical distribution of

 E,=\(dn ~d\)r\j,

 YJt=\(du ~d\)2 '

 4. If a is in the tails of this empirical distribution, reject
 the null hypothesis.

 With more than one treatment group or a different null
 hypothesis, it is only marginally more difficult; step 3 is
 conducted with a different linear combination of residuals.

 An alternative, asymptotically equivalent estimator is
 heuristically motivated by the literature on permutation or
 randomization inference (see Rosenbaum, 2002). In random
 ization inference, random assignment of the treatment is the
 basis for inference, and the exact, small sample distributions
 statistics are computable. The applications we have in mind
 are not situations with random assignment of treatment; at
 best, they could be described as having treatment randomly
 assigned conditional on X. In this scenario, even if recentering

 9 We note that no test in this framework can be consistent as N] -* oo
 since a finite number of observations are informative regarding a. We also
 make no claim that this test is optimal.

 10 We cannot obtain exact equality in these expressions because T is a
 step function, but we can choose the closest point, and asymptotically the
 coverage probability will converge to 90%.

 by subtracting X'fi were sufficient to accomplish condition
 ing on X, this would still not be enough to implement exact
 inference because p must be estimated. However, we antic
 ipate that if P is a good estimate of p, then plugging (3 into
 a permutation estimator in place of P should provide good
 approximations of the small sample distribution of W. Such
 an estimator requires forming residual^ under the null hypoth

 esis for the treatment groups (Ytjt —aodejt — X'e.t$), using them
 along with residuals from controls and using the distribution
 of Ni draws without replacement from N{ + N0 residuals as
 the underlying reference distribution in place of the empirical
 distribution of control residuals. This gives us an estimator:

 r» = 1
 (N0 + Nl)(N0 + Nl - 1)... (N0)

 E E - E
 £ie[l:/Vi-WVo] *2€[1:JVi+AW e[l:Wi+Wo]

 eNim

 /Eji ELi(d]t- dj){Yljt- CL0dejt- X'tj$) \
 \ E?ii HlM'-dj)2 <wj

 The summations are over all possible assignments of treat
 ment status to N\ of the N\ +N0 total groups. While r*(w) is
 motivated by (infeasible) estimators with known exact dis
 tributions, we note that it is not an exact estimate of the
 distribution of W. The rigorous justification of F*(w) is that
 it is asymptotically equivalent (as No -» oc,/Vi, T fixed) to
 f(w)."

 III. Extensions

 This section presents extensions of our base model
 to accommodate treatment parameter heterogeneity and
 individual-level data. Extensions of our model to accommo

 date spatial dependence are presented in the Web appendix.

 A. Treatment Parameter Heterogeneity

 It is straightforward to modify equation (2) to allow
 heterogeneity in treatment parameters across groups.

 11 We expect r*(w) to outperform r(w) in situations for which p is^well
 estimated but N\ is still small enough for the empirical distribution in r(w)
 to perform poorly. There are certainly applications where this is likely to
 be the case. For example, suppose that data are collected at the state level
 and that demographic regressors like income or population have substantial
 variation. With such large-variance regresssors, p may be well estimated
 with, say, N\ — 20 states, while with only twenty observations, the empir
 ical distribution will do a mediocre job at best of estimating conventional
 critical values. This situation will also arise when the model is extended to
 individual-level data in section III. With only individual-level regressors,
 coefficients analogous to f5 will be estimated extremely well regardless of
 N\ if there are many individuals within each group. This situation is rou
 tine with repeated cross-section data and arises in our empirical example to
 merit aid programs discussed in section IV.
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 Consider the extension to allow group-specific treatment
 parameters:

 Yj, — QLjdjt + X'jfi + 0ij + y, + y\jt. (6)

 Using the notation defined above, we can rewrite this as

 Yj, = CLjdjt + X-fi + T]jt.

 Note that dp is 0 for all of the control groups; thus, we estimate
 treatment parameters only for 7" = 1 to N\ and stack these
 estimable parameters in the vector A — [otj,..., a,V| ]'. We
 define Dj, to be the N1 x 1 vector of interactions between dj,
 and group indicators. That is, the l\h element of the vector
 Dj, = dj, if j = I and is zero otherwise. We can then write

 Yj, = D'jtA+X;tP + j)Jt.

 We refer to OLS estimates of (A, |3) in this regression as (A, P).

 Proposition 3. If assumption 1 holds, then as No -» 00,
 P P and A converges in probability to A + W, where W is
 an N1 x 1 random vector with generic element

 = SL,(4.-4>(y-ii,->
 ElM.-diy

 Proof. See the Web appendix, section A. 1.

 Testing and inference can proceed exactly as in section II.
 A consistent sample analog estimator of the distribution of
 A under the null hypothesis that A0 is the true value of A
 can be constructed with residuals from controls. This allows

 testing any point null hypothesis about the heterogeneous
 treatment effects, and inversion of this test provides a joint
 confidence set for the elements of A. Alternatively, the distri
 bution of any function of the elements of A (e.g., their mean
 across groups) can also be consistently estimated, allowing
 analogous hypothesis testing and confidence set construction.

 We have restricted the form of the treatment effect het

 erogeneity to vary only with j for ease in exposition. Our
 method can be extended to allow ajt to vary across j and t
 by inverting a corresponding set of point hypotheses tests on

 the aj, for a set of groups and time periods. Extensions to
 situations where treatment effects depend on an observable
 covariates, such as the time since the policy was adopted, are
 also straightforward.12

 B. Individual-Level Data

 Our approach can easily be applied with repeated cross
 sections or panels of individual data, the relevant data type

 12 A common example would be an event study analysis such as in Jacob
 son, LaLonde, and Sullivan (1993). In this approach, one would let the effect
 of the treatment be time varying relative to when it was introduced—that is,
 the effect of the policy one year after it was passed may be different from
 the effect five years later.

 for many situations. We restrict ourselves to repeated cross
 sections for ease of exposition. Let i index an individual who
 is observed in group j(i) at a single time period t(i). Allowing
 individual-specific regressors Z, (for example, demographic
 characteristics) and noise swe arrive at a model:

 Yi — \j(i)t(i) + Z-8 + £,- (7)

 \j, = adj, + Xjfi + 0<j + y, + r|j,. (8)

 In equation (8), i subscripts have been dropped because its
 components vary only at the group x time level: >,(,) = \j,
 for all individuals i in group j at time t. The difference between

 Z, and Xjt is that we assume that Z, varies within a group x time
 cell, while Xj, does not.

 There are at least three ways to approach estimation of the
 above model. A one-step approach would plug equation (8)
 into equation (7), and the resulting model could be estimated
 by least squares under the assumption that the error terms s, ri
 were orthogonal to the regressors. The Web appendix, section
 A.2.4, contains a rigorous demonstration that our methods
 extend to this approach, and we use this in our empirical
 example below. Another option would be to first aggregate
 the data within the group-time cell and proceed to estimate
 our base model as in section II.

 Here, we focus on the third approach: the well-known two
 step approach to estimation.13 We obtain estimates for a by
 first estimating \j, in equation (7) for all groups and time
 periods using a regression of K,- on a full set of indicators for

 group x time and Z,. In the second step, the estimated kj, are
 then used as the outcome variable in equation (8), and the
 inference procedures described in section II can be applied
 directly to this second-step regression. The main difference
 between the three approaches is in the estimation of 8. Esti
 mating 8 in the one-step approach uses all variation, averaging
 first uses only between variation, and the two-step estimator
 we suggest uses only within variation. Our preference for this
 two-step approach is driven by its ease of exposition and that
 it is more flexible than the one-step estimator because it does
 not require orthogonality between Z and ri.

 A variety of assumptions could be made about the behav
 ior of the number of individuals per group. Let M(j, t) be the
 set of individuals observed in group j at time t and \M(j,t)\
 denote the number of individuals in this set. We focus on

 the case in which \M(j,t)\ is growing with No and con
 tinue to assume T is fixed. However, in the Web appendix
 (section A.2.3) we provide a rigorous demonstration that our
 test procedures remain asymptotically valid when the number
 of individuals per group x time is fixed but common across
 group x time cells.14

 Let /,- be a set of fully interacted indicators for all group x
 time cells. Now consider a regression of Y, on Z, and /,. Let

 13 See, e.g., Hanushek (1974) or Amemiya (1978), who discuss aspects of
 this approach.

 14 In Conley and Taber (2005) we present a complementary strategy with
 fixed sample sizes that vary across group x time cells. This is considerably
 more difficult because of the need to solve a deconvolution problem.
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 \j, be the regression coefficient on the dummy variable for
 group j at time t. It is straightforward to show that

 \t — \jt + -/r + V Z/(8-8) 1 \M(j,t)\ ^ ' 1 v 71 ieM(j,t)
 (9)

 where 8 is the regression coefficient obtained in the first step.
 As |M(j, 01 grows large, the term in brackets vanishes. The
 second step is then simply to plug in "kj, for \jt in equation
 (8) and run a fixed-effect OLS. We recycle notation and use p
 and a in this section to refer to the second-step OLS estima
 tors of equation (8). The results of section II apply to these
 estimators under a straightforward set of conditions. Aside
 from the usual orthogonality and rank conditions, we need to
 specify the rate at which |M(j, /)| grows; these are stated as
 assumption 3:

 Assumption3. e,- is i.i.d., independent of [Z, /, | and has a
 finite second moment. [Z, /,] is full rank. For all j, \M{j, t) \
 grows uniformly at the same rate as No

 Proposition 4. Under assumptions 1, 2, and 3 and assum
 ing P is interior to a compact parameter space, as Nq —> oo,
 the conclusions of propositions 1 and2 apply to the Amemiya
 (1978) second-step OLS estimators P and a of equation (8):

 P P and u. a -f- W, where W has exactly the same form
 given by equation (4). Using the notation Z to refer to the
 residual from a linear projection of a variable Z on a full set
 of time and group indicators, define T as

 r(w) converges in probability to T(w) uniformly on any
 compact subset of the support of W.

 Proof. The proof is in the Web appendix, section A.2.2.

 With access to data containing a large number of individ
 uals within group x time cells, it is straightforward to extend
 our approach to models with a nonlinear first step. For exam
 ple, consider the following latent variable model for a binary
 outcome Y,,

 / 1 \ N\ Nl+N0 N\+Nq Ni+N0

 ( Ej, £,=, (dp - dj) (lljt - X'e/) >
 1 2 < W
 \ E,r.i («- 4) J

 Yj — 1 Ckj(i)t(i) + Z(-8 + 6/ > 0)

 \j, = a dj, +X'jt P + Qj + y; + r\j,  (11)

 (10)

 Equation (11) is, of course, the same as equation (8), with
 i subscripts dropped because its components vary only at
 the group x time level. The parameters in equation (10) can
 easily be consistently estimated in a standard way such as,
 probit, logit, or even semiparametrically, depending on the
 assumption one is willing to make on e,-. The resulting \jt
 estimates, \jt, are simply the estimated group x time cell
 intercepts from the first step. Inference regarding a can then
 be conducted exactly as above with a linear first step. The
 \j, can used as outcome variables in equation (11), which
 can again be estimated using OLS and our test procedure
 applied to the resulting a estimates. We use a logistic first
 step procedure in our empirical application in the following
 section.

 IV. Empirical Example: The Effect of Merit Aid
 Programs on Schooling Decisions

 In the past fifteen years a number of states have adopted
 merit-based college aid programs that provide subsidies for
 tuition and fees to students who meet certain merit-based

 criteria. The largest and probably the best-known program
 is the Georgia HOPE (Helping Outstanding Pupils Educa
 tionally) scholarship, which started in 1993. This program
 provides full tuition as well as some fees to eligible students
 who attend in-state public colleges.15 Eligibility for the pro
 gram requires maintaining a 3.0 grade point average during
 high school. A number of previous papers have examined the
 effect of HOPE and other merit-based aid programs.16 Given
 the large amount of previous work on this subject, we leave
 full discussion of the details of these programs to these other
 papers and focus on our methodological contribution.

 Our work most closely relates to Dynarski (2004) by focus
 ing on the effects of HOPE and other merit aid programs on
 college enrollment of 18 and 19 year olds using the October
 CPS from 1989 to 2000. Our specifications are motivated by
 some of hers, but we do not replicate her entire analysis. Our
 goal is to illustrate the use of our method, and our analy
 sis falls well short of a complete empirical analysis of merit
 scholarship effects.

 During the 1989-2000 time period, 10 states initiated merit
 aid programs. We use two specifications, with the first focus
 ing on the HOPE program alone. In this case, we ignore data
 from the other 9 treatment states and use 41 controls (40
 states plus the district of Columbia). In the second case, we
 study the effect of merit-based programs together and use all
 51 units.17 The outcome variable in all cases is an indicator

 15 A subsidy for private colleges is also part of the program.
 16 Examples include Dynarski (2000, 2004); Cornwell, Mustard, and

 Sridhar (2006); Bugler, Henry, and Rubenstein (1999); and Henry and
 Rubenstein (2002).

 "Note that these merit programs are quite heterogeneous. This exercise
 does not necessarily mean that we are assuming that the impact of all of these
 programs is the same. One could interpret this as estimation of a weighted
 average of the treatment effects. Alternatively, we can think of this as a test
 of the joint null hypothesis that all of the effects are 0. We could estimate
 more general confidence intervals allowing for heterogeneous treatment
 effects, but we focus on the simplest case here.
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 Table 1.—Estimates for the Effect of Georgia HOPE Program on

 College Attendance

 A  B  C

 Linear  Population-Weighted
 Probability  Logit  Linear Probability

 Hope Scholarship  0.078  0.359  0.072

 Male  -0.076  -0.323  -0.077

 Black  -0.155  -0.673  -0.155

 Asian  0.172  0.726  0.173

 State dummies  Yes  Yes  Yes

 Year dummies  Yes  Yes  Yes

 95% confidence intervals for hope effect
 Standard cluster by  (0.025,0.130)  (0.119,0.600)  (0.025,0.119)

 State x Year  [0.030,0.149]
 Standard cluster  (0.058,0.097)  (0.274,0.444)  (0.050,0.094)

 by state  [0.068,0.111]
 Conley-Taber  (-0.010,0.207)  (-0.039,0.909)  (-0.015,0.212)

 [-0.010,0.225]

 Sample size
 Number of states  42  42  42

 Number of individuals  34,902  34,902  34,902

 Confidence intervals for parameters are presented in parentheses. We use the T* formula to construct the
 Conley-Taber standard errors. Brackets contain a confidence interval for the program impact on a person
 whose college attendance probability in the absence of the program would be 45%.

 variable representing whether the individual is currently
 enrolled in college.

 In constructing the confidence intervals, two issues arise
 due to the fact that we have only 41 control states. The first
 issue is whether 41 is large enough for the asymptotics to be
 valid. With that in mind, we use the T* estimator described
 in section II, motivated by its anticipated good finite sam
 ple properties. The second issue can be seen in figure 1. The
 estimated CDF is of course a step function, and with a single
 treatment state and 41 controls, its probability increments are
 limited to 1/41. To approximate intervals with conventional,
 say 95%, coverage probabilities, we use a conservative inter
 val so that the limiting coverage probability is at least 95%.
 As a practical matter, this is usually relevant only for the
 case of a single treatment group. With two or more treatment
 groups, the empirical CDF will have a number of steps on
 the order of the number of ways to choose the iVi treatment
 groups out of the total number of groups ')• Thus, the
 number of steps in the CDF is typically large for two or more
 treatments with corresponding small probability increments.

 In table 1 we present results for the HOPE program with
 Georgia as the only treatment state. We compare three esti
 mators: column A corresponds to the approach described
 in section IIIB, equations (7) and (8), and columns B and
 C present two natural alternatives. The estimates in both
 columns A and B are obtained from Amemiya's (1978) two
 step approach. The estimates reported in column A use a
 first-step linear probability model (OLS), and in column B,
 the first step is a logit; regressors in both case include demo
 graphics and state x year indicators. The second step in both
 A and B estimates equation (8) with OLS using the esti
 mated state x year coefficients as the dependent variable.
 Column C presents results from a one-step estimator, which
 is simply a linear probability model estimated using OLS
 using the entire sample. Thus, the column C treatment effect

 estimates will be population weighted across states, while
 in column A, states are equally weighted. The top panel of
 table 1 presents point estimates for all three estimators, and
 the bottom panel presents interval estimates for the treatment
 parameter, both using our methods with T* and the typical
 approaches clustering by state and state-by-time.

 Although results differ depending on the clustering used,
 interval estimates in column A using typical methods indicate
 significant treatment effects. An interval of 2.5% to 13.0%
 obtains with clustering by state and year, which allows the
 error terms of individuals within the same state and year to be
 arbitrarily correlated with each other. This interval shrinks to
 5.8% to 9.7% when clustering is done by state, which allows
 serial correlation in iy. Clearly one should be worried about
 the assumption that the number of states changing treatment
 status is large, which underlies these routine confidence inter
 val estimates since only one state, Georgia, contributes to the
 estimate of the treatment effect.

 The estimated confidence interval using our method
 reported in the last row of column A is —1% to 21%. This
 confidence interval informed by inverting the test statistic
 (a — ao) using our T* estimator. It is centered at a larger
 value and much wider than the intervals obtained with con

 ventional inference—wide enough to include 0 despite its
 shift in centering. To better understand these discrepancies,
 Figure 2 displays a kernel smooth estimate (solid line) of the
 distribution of (ct — a) under the null hypothesis that the true
 value of a is 0. This distribution is estimated from the con

 trol states. For comparison, the dashed line plots an estimate
 implied by the usual asymptotic approximation with cluster
 ing by state. This curve is a gaussian density centered at 0
 with a standard deviation equal to 0.0098: the standard error
 on a from a fixed-effect regression that clusters by state. The
 pronounced differences between the spread and symmetry
 (lack thereof) of these distributions are what drive our interval

 Figure 2.—Estimated Density of a under H0 : a0 = 0
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 lid line: Kernel-smoothed density estimate for Conley-Taber approach. Dashed line:
 using standard asymptotics.
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 estimates of a to differ from those resulting from conventional
 methods.

 In column B, we present a logit version of the model as
 in equations (10) and (11) with e,- logistic. The estimates in
 this column were obtained in exactly the same manner as for
 column A, except that in the first step, we use a logit model of
 the college attendance indicator so the predicted parameter
 has the interpretation of a logit index coefficient. The pat
 tern is very similar to column A. Intervals from our method
 are again centered higher than conventional ones, but enough
 wider that the HOPE treatment effect becomes marginally
 insignificant. This contrasts with effects that are highly sig
 nificant using standard inference methods. To display the
 magnitude of the program impact, we calculate a 95% confi
 dence interval for changes in college attendance probability
 for a particular individual. We consider an individual (with
 out the treatment) whose logit index puts his probability of
 college attendance at the sample unconditional average atten
 dance probability of 45% (i.e., an individual with a logit index
 of —.20). The bracketed intervals reported in column 2 are
 95% confidence intervals for the change in attendance prob
 ability for our reference individual (intervals in parentheses
 are 95% confidence intervals for a).18

 In column C we present results from a linear probabil
 ity that estimates equations (7) to (8) using OLS with all
 34,902 observations. The details for constructing the confi
 dence intervals are formally presented in the Web appendix
 (section A4.4). These results are close to those presented in
 column A. The difference between these two estimates is that

 in column A, the states are equally weighted, while in column
 C, they are population weighted.

 In table 2 we present results estimating the effect of merit
 aid using all ten states that added programs during this time
 period. The format of the table is identical to table 1. There
 are a few notable features of this table. First, the weighting
 matters substantially, as the effect is much smaller when we
 weight all the states equally as opposed to the population
 weighted estimates in column C. Second, in contrast to table
 1, the confidence intervals are quite similar when we clus
 ter by state compared to clustering by state x year. Most
 important, our approach changes the confidence intervals
 substantially, but less dramatically than in table 1. In partic
 ular, the treatment effect with equal weighting across states
 is still statistically significant at conventional levels.

 V. Monte Carlo

 In this section we discuss the results of a small Monte

 Carlo study evaluating the performance of our method and
 comparing it to typical approaches. The specification that we
 examine is

 18 These confidence intervals for changes in attendance probabilities are
 calculated directly from the 95% CI for a. Specifically, when the CI for a
 is [ci,c2], letting A denote the logistic CDF, we report an interval for the
 change in predicted probability for our reference individual of (A(—.2 +
 c,) - 45%) to (A(—.2 + c2) - 45%).

 Table 2.—Estimates for Merit Aid Programs on College Attendance

 A  B  C

 Linear  Population-Weighted
 Probability  Logit  Linear Probability

 Merit scholarship  0.051  0.229  0.034
 Male  -0.078  -0.331  -0.079
 Black  -0.150  -0.655  -0.150
 Asian  0.168  0.707  0.169

 State dummies  Yes  Yes  Yes

 Year dummies  Yes  Yes  Yes

 95% confidence intervals for merit aid program effect
 Standard cluster by  (0.024,0.078)  (0.111,0.346)  (0.006,0.062)

 State x Year  [0.028,0.086]
 Standard cluster  (0.028,0.074)  (0.127,0.330)  (0.008,0.059)

 by state  [0.032,0.082]
 Conley-Taber  (0.012,0.093)  (0.056,0.407)  (-0.003,0.093)

 [0.014,0.101]

 Sample size
 Number of states  51  51  51
 Number of individuals  42,161  42,161  42,161

 Confidence intervals for parameters are presented in parentheses. We use the T* formula to construct the

 Conley-Taber standard errors. Brackets contain a confidence interval for the program impact on a person
 whose college attendance probability in the absence of the program would be 45%.

 Yjt — adjt + fiXj, + Qj + yf + r\jt,

 in which we focus on the model of section II with group-level
 data since that is our base case. Note that we focus here on

 a single regressor. We assign a binary treatment, dp, that is 0
 for controls and at some point in the data turns permanently
 from 0 to 1 for each treatment group. We assume that the error
 term within group has a first-order autoregressive structure:

 = Ptyf-i + «/(»

 ujt ~ N(0,1).

 Finally, we want controlling for XJt to be important (as it often
 is in real data); therefore, we build in a correlation between
 X and the treatment:

 Xjt = axdJt + vJt,

 vjt~N( 0,1).

 In our base case model, we let the total number of groups
 (iVi + No) be 100, T = 10 and let five groups change treat
 ment status during the time period. The turn-on time periods
 for the base case are periods 2, 4, 6, 8, and 10. We set the
 remaining parameters to have the values a = 1, p = 0.5,
 ax = 0.5, p = 1.

 In table 3, we present the results of testing the true null
 hypothesis (a = 1) and a false one (a = 0) at the 5%
 level using 10,000 trials and present the percentage of times
 the hypothesis is rejected. Thus, if the test works well, we
 should reject the hypothesis a = 1 around 5% of the trials and
 reject a = 0 much more frequently. We present four different
 approaches: a standard /-test adjusted for degrees of freedom
 (as suggested by Donald & Lang, 2007), a cluster-by-group
 approach (as suggested by Bertrand, Duflo, & Mullainathan,
 2004), and then our approach using both the f and F*
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 Table 3.—monte Carlo Results: Size and Power of Test of at Most 5% Level
 Basic Model

 Yj, = a dj, + fiXj, + 9y + y, + x\j,
 % = P%-i + s/(, a = 1, Xj, = axdj, + Vj,

 Percentage of Times Hypothesis Is Rejected out of 10,000 Simulations

 Size of Test (Hg : a = 1)  Power of Test (Ho : a = 0)

 Classic  Conley  Conley  Classic  Conley  Conley
 Model  Cluster  Taber(r*)  Taber(P)  Model  Cluster  Taber (f*)  Taber(P)

 Base model8  14.23  16.27  4.88  5.52  73.23  66.10  54.08  55.90

 Total groups = 1000  14.89  17.79  4.80  4.95  73.97  67.19  55.29  55.38

 Total groups = 50  14.41  15.55  5.28  6.65  71.99  64.48  52.21  56.00

 Time periods = 2  5.32  14.12  5.37  6.46  49.17  58.54  49.13  52.37
 Number treatments = lb  18.79  84.28  4.13  5.17  40.86  91.15  13.91  15.68
 Number treatments = 2b  16.74  35.74  4.99  5.57  52.67  62.15  29.98  31.64

 Number treatments = 10b  14.12  9.52  4.88  5.90  93.00  84.60  82.99  84.21
 Uniform error0  14.91  17.14  5.30  5.86  73.22  65.87  53.99  55.32

 Mixture error11  14.20  15.99  4.50  5.25  55.72  51.88  36.01  37.49

 P = 0  4.86  15.30  5.03  5.57  82.50  86.42  82.45  83.79

 P = 1  30.18  16.94  4.80  5.87  54.72  34.89  19.36  20.71

 ax = 0  14.30  16.26  4.88  5.55  73.38  66.37  54.08  55.93

 ox = 2  14.18  16.11  4.82  5.49  73.00  65.91  54.33  55.76

 a* = 10  10.36  9.86  11.00  11.90  51.37  47.78  53.29  54.59

 In the results for the Conley-Taber (r*) with smaller sample sizes, we cannot get a size of exactly 5% due to the discreteness of the empirical distribution. When this happens, we choose the size to be the largest
 value possible that is under 5%.

 "For the base model, the total number of groups is 100, with five treatments, and ten periods. Parameter values: p = 0.5, ax = 0.5, P = 1,8y, ~ N(0,1), Vj, ~ N(0,1).
 bWith T treatments and five periods, the changes occur during periods 2,4,6, 8, and 10. For one treatment, it is in period 6; for two treatments, it is in periods 3 and 7; and for ten treatments, it is periods 2,2,3,4,5,

 6,7, 8,9, and 10.
 cThe range of the uniform is [—y/3, \/3] so that it has unit variance.
 dThe mixture model we consider is a mixtures of a N(0,1) and a N(2,1) in which the standard normal is drawn 80% of the time.

 formulas. The results for the base case are presented in the
 first row. One can see that our approach performs much better
 than either of the alternatives, both of which miss the size by
 a factor of about three.19

 We then consider other cases by altering some of the
 parameters in the data-generating process (DGP), one at a
 time. The labels in the left column indicate the parameters
 that differ from the base case setting. For example, the fifth
 row decreases the number of treatment groups from five to
 two, holding all other parameters at the base setting. This
 decrease in information results in a large drop in power for
 both the T and f* estimators with little size distortion. With

 treatments reduced to two, the classic estimator suffers a large
 drop in power and a small increase in size distortion, whereas
 the cluster estimator suffers a large increase in size distortion
 along with a small drop in power. In both the T — 2 and
 p = 0 lines, we see alternate specifications where our Monte
 Carlo DGP collapses to the classical linear model. However,
 T* appears to perform on par with the classical model here,
 and T does reasonably well too. Thus, our methods have com
 parable size and power characteristics to the classical test in

 some scenarios whjjre it is ideal.
 ^ As anticipated, T* does seem to work a little better than
 T with smaller samples, as seen in size in the Groups = 50
 row. However, across all scenarios, the similarities between
 the performance of r and T* are more salient than the slight
 size advantage of T*.

 19 Their power is higher here, but this is likely in large part because the
 size is too large; that is, the confidence intervals are tighter than they should
 be.

 We do not expect our approachesjo work well when there
 is a great deal of estimation error in p. This can be seen in our
 simulations as the parameter a* increases. We get a substantial
 size distortion for both T and T* with ax = 10. This means
 that the distribution of Xjt is N((), 1) without the treatment,
 butthenjumpstoyVXlO, 1) after the treatment is implemented.
 The classical and cluster methods also struggle here, so our
 method is not dominated by these alternatives even in this
 case.

 Perhaps the starkest result is how poorly the cluster
 approach works with a small number of treatment changers.
 The size in the base case is triple what it should be. Per
 formance here is very sensitive to the number of treatment
 groups. When this is decreased to one or two, the performance
 is terrible. However, it does better when one gets up to ten
 treatments and, in results not shown, it works well at forty
 treatments. However, even with ten treatments, although the
 size of the test is down to 9.52%, the power is not much
 better than for our approach. These results show that cluster
 standard errors can be very misleading when the number of
 groups changing status is small.

 VI. Conclusion

 This paper presents an inference method for difference-in
 differences fixed-effect models when the number of policy
 changes observed in the data is small. This method is an
 alternative to typical asymptotic inference based on a large
 number of policy changes and classical small sample infer
 ence. Our approach will be most valuable in applications
 where the classical model does not apply—for example, due
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 to nongaussian or serially correlated errors. We provide an
 estimator f * that is large-Wo asymptotically valid and appears
 to have good finite sample properties with serially dependent,
 cross-sectionally i.i.d. data. Our approach can also be applied
 with much weaker conditions on the data. Many forms of
 cross-sectional dependence and heteroskedasticity, for exam
 ple, can be readily accommodated. We provide an example
 application studying the effect of merit scholarship programs
 on college attendance for which our approach seems appro
 priate. It results in very different inference from conventional
 methods. We also perform a Monte Carlo analysis, which
 indicates that our approach fares far better than the standard
 alternatives when the number of treatment groups is small
 and performs well even in cases that are tailored to ensure
 good performance of these alternatives.
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 APPENDIX

 A1 Proof of Proposition 1. First, a standard application of the parti
 tioned inverse theorem makes it straightforward to show that

 \^N0+N, yV/ y y,
 2-,j=\ Zw= 1 Aj<Ajt

 No+Ni

 [EjT' EL dj.%] [E^r1 EL dj,x;,] \

 (/Vo + N,)E^r UlA? J
 ^N0+N] sr^T y ^
 2*r/=l Zw=l

 No + M

 [Eff r El, [E^r EL 4>%]v
 (.No + NriZ^'Zhdj,2

 Now consider each piece in turn.
 First, assumption 1 states that

 1

 Ng + Nt  E E^-^<oo.
 ;= 1 1=1

 (Al)

 The mixing components of assumption 1 imply that a strong law of large
 numbers (LLN) applies here (see, e.g., Jenish & Prucha, 2009). This LLN
 and the zero-conditional expectation component of assumption 1 imply that

 1
 N0+N, T

 N0 + N] E E*»%^£
 j=1 <=1

 = 0.

 For control groups j > A'i, the treatment does not vary over time, so djt = dj.
 Therefore,

 Wo+^l r «, r w,+w0 T

 E E^ = EE^-5,-5,+5)2+ e E^-^2
 7=1 /=1 7=1 /=1 j=N i +1 t=\

 where

 Nt +N0 T T

 E i>-^)2=tfoE
 y=yv,+i ,=i

 -+o.

 -E^x ~d,
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 Now consider the other term,

 E X>< - ~di - ~d<+^ E X>< - ^)2
 7=1 f=l j= 1 r=l

 since (J, — J) converges in probability to 0 due to the finite number of
 groups with intertemporal variation in treatments. Thus,

 No+Ni T Ni T

 E E ~dl ^ E E(4' - 4)2 > °.
 7=1 /=1 7= 1 /=1

 since Ni > 1.
 Now consider

 , A^o+Ni T . N{ T

 E E^ = -7ira:EE(4-w
 W,+M)

 ,=l VM> + «i ^ '

 P
 • 0 as ./Vo —» oo.

 This result follows because the first term involves a sum of a finite number

 of Op(l) random variables normalized by an 0(No) term and the second
 term is identically 0 due to differencing.

 Likewise,

 N0+N, T N, T

 E E = E E(4' " ^)(TV' - n, - T), + rD,
 7=1 r=l 7=1 /=1

 which is Op(l); thus,

 t N0+iV| T

 E E3^'4°
 ,=1

 Consistency for p follows on plugging the pieces back into equation (A 1)
 and applying Slutsky's theorem.

 From the normal equation for a, it is straightforward to show that

 Ej=tN' Eli dj>%> , [Eg* ElM,
 Ef=r el, df, j

 ct — ct + w ^— -f No+N\ ■sr-yT »2
 2-7=1 Z^t= l ajt

 (P-P). (A2)

 From above, we know that

 /Vu+iV, T N, T

 E E?4EI><-^)2
 7=1 r=l 7=1 r=l

 N0+N, T N\ T

 E E = E E(4<-4-s,+d)%,
 7=1 /=1 7=1 r=l

 (p-p)4>0.

 Thus,

 EWo+Wi j y' 7=1 Z^=i ajtAjt

 EAfo+Ni sr~T ~j2 7=1 2—it= 1 ajt

 We showed above that

 (P-P)4>0.

 Nq+Ni T Ni T

 E E4'% = E E(rf" ~ — n?—+td
 7=1 /=1 7=1 f=l

 The variables rj, and r\ both converge to 0 in probability as No —► oo;
 therefore,

 N, +N0 7* Ni T

 E E(4' ~ ^ E Ew*_ ^)(Tij' - v
 j=N\ +1 f=l 7=1 r=l

 Plugging these pieces into equation (A2) gives the result.

 A2 Proof of Proposition 2. Since F is defined conditional on dj, for
 j = 1 Ni, t = 1,..., T, every probability in this proof conditions on
 this set. To simplify the notation, we omit this explicit conditioning. Thus,
 every probability statement and distribution function in this proof should
 be interpreted as conditioning on dj, for / = 1,... ,N\, t = 1,..., T.

 It is convenient to define

 PA
 {dj, - dj)

 SZfii 5Zt=i(^«' — de)2

 For each j = 1,..., N\, define the random variable

 T

 wj = Y. p

 Let Fj be the distribution of Wj forj =
 Then note that

 r(w) = Pr ^ J2 P/'% < wj

 We can also write

 -/.../. (jS«.) r(w)= / / 1 I }Wj<w\ dF] (W,; p)... dFNl (WNl; p),

 where /•)(■; P) is the empirical CDF one gets from the residuals using the
 control groups only. That is, more generally,

 1 No / t \
 Fj(Wj-, b) = — £ 1 £ Pj,(Ym, ~ X'mtb) <Wj\.

 0 m=\ \<=1 /

 To avoid repeating the expression, we define

 c|>j(Wj,b) = Pr pj,(r\mi ~ - b)) < w^j .

 Note that 4>j(Wj, P) = Fj{wf). The proof strategy is first to demonstrate that

 Fj(Wj\P) converges to 4>j(Wj, P) uniformly over Wj. We will then show that
 T(a) is a consistent estimate of T(a).

 Define

 T

 W; = ]T] P/'ffi' _ _ P))
 t=l

 Let £2 be a compact parameter space for w and 0 a compact subset of the
 parameter space for (P, co)•) in which (p, 0) is an interior point.
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 INFERENCE WITH "DIFFERENCE IN DIFFERENCES"

 For each j — . ,,N\, consider the difference between Fj(Wj;p) and
 P):

 SUp \Fj(Wj\ P) - <()j(Wy,P)|
 wj€Q

 = sup
 Wj€&

 No

 — 'y i No ^
 m=N, +1

 ^ — Tit — (Xm, ~ Xf)'(P ~ P)) < Wj ) - ((>j(Wj, P)

 No

 < sup
 Wj€&

 (&,o>,)€0

 1 '*0

 - T
 N0

 X pjt(r\m: - X'ml(P - b)) < Wj + C0jj - <t>;(Wj + a>j,b)
 + Pr((P, oo;) i 0) + sup \4>j(Wj + co;, P) - <|>j(Wj, P)|. (A3)

 First, consider sup„, |<)>j(w7-, p) — i>j(wj, P)|. Using a standard mean-value
 expansion of <|>, for some (55;, p),

 SUp |<j);(Wj -I- COj, P) - §j(w, p)|
 Wj€&

 = sup
 bj(Wj + Zj, p) 3(|)y(Wj,p)

 -(p - PH — (®/)
 3P 3 Wj

 To see that the derivative is bounded, first note that

 3<t>j(wj,b)
 3 b  = E[JjJ2<^j,

 where fj is the density associated with Fj. Since is bounded and Xj, has
 first moments, this term is bounded. Clearly 'is also bounded for the

 same reason. Thus, supH..6S2 |t|)y(iv + a>i,-, p) — tyiwj, p) | converges to 0 since

 P is consistent.
 Since (P,oo,) converges in probability to (p,0), an interior point of

 ©, Pr((P, ocij) £ ©) converges to 0.
 Next consider the first term on the right side of equation (A3). Note that

 the function

 1 (J2 p./'(?-« - K,b) <wj + Wj

 is continuous at each (b, w, co) with probability 1, and its absolute value
 is bounded by 1, so applying lemma 2.4 of Newey and McFadden (1994),
 Fj(wj\b) converges uniformly to cKw;, b). Thus, putting the three pieces of
 equation (A3) together gives

 sup |F{wf, P) - ^(Wj, P)| —> 0.
 WjeCl

 Now to see that r(w) converges to r(w), we can write

 |f(w) - r(w)|

 F, /
 N\

 w-^Wj
 J=2

 -F,

 xdF2(W2-£)... dFNl(WNl-,?,)\

 c

 /
 N,

 \  ( \
 N\

 /  f2  w-J2WJ  ;P  -f2  w-J2Wj
 \

 1=1
 '*2  /

 J=1
 V J*2

 x dFi (W,)dF3(W3;P)... dFm (WV,; P)

 ;pj -fNi

 xdFj(Wi)...dFNl.i(WNl)

 + ...

 ( c  " /  N\ — \

 \  fNi  w~y^wj
 r  _ V  j= i

 Since each Fj(w; P) converges uniformly to Fj(w), the right-hand side of
 this expression must converge to 0, so r(o) converges to T(o).
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