
Appendix 1: Data

A1.1 Sample Sizes By High School and Eighth Grade

Because of the complexity of the estimator of πp(τ) and its components, we use a block bootstrap method to

compute standard errors, confidence intervals, and bias corrections for most of the parameters. The method

accounts for correlation in the error terms among students who attend the same eighth grade and among the

students who attend the same high school. The blocks consist of students from each set of eighth grades who

sent at least one student to a common high school. For example, suppose that eighth grade A sent students

to high school 1, 2, and 3, eighth grade B sent students to high school 1 and 3, and no other eighth grades

represented in NELS:88 sent students to high school 1, 2, or 3. Then the students from eighth grade A and

eight grade B constitute a block for purposes of constructing bootstrap replication samples.

About 86% of the high schools have students from only 1 eighth grade. This is to be expected because

base year survey used eighth grade schools as strata. Among 39,000 schools containing the eighth grade in

the U.S., 1,052 schools were selected. Since students usually go to a nearby high school, it is not very common

in the sample for students from different eighth-grade schools to attend the same high school. About 58%

of the eighth grades have sample students in only 1 high school. About 28% have sample students in 2 high

schools and 10% in 3 high schools, with a small fraction sending sample members to 4 or more high schools.

The distribution of observations per re-sampling block is concentrated between 6 and 30, but there are a

few blocks with larger numbers of students. The largest block contains 965 students, and 7 blocks contain

more than 100 students. We chose to break up the blocks of more than 60 students into a separate block for

each high school involved on pragmatic grounds. In the cases we checked, we obtained similar confidence

interval estimates if we treat students from each high school as a block.

The distribution of Ns, the number of sample students in each high school is concentrated between 6 and

18 observations.

A1.2 Description of Variables

NELS:88 variables used in the creation of the measures are shown in italics. This section draws upon Altonji,

Elder, and Taber (2002).

Demographic Variables: These include indicators for female, Hispanic, black, and whether Catholic,
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which is created from parental responses concerning religion (byp29 ).

School Sector: Eighth Grade Sector (g8ctrl1 ), High School Sector (g10ctrl1 )

Family Background Measures:

Household composition: 0-1 indicator for whether the student lives with his/her mother and father in

the base year. Created from byfcomp.

Log family income : Continuous variable created using the midpoints of the ranges of the categorical

variable base year variable byfaminc and $230,000 if families with income above $200,000 (the top category)

Missing value treatment: All family background variables are set equal to the sample mean when missing.

0-1 indicators for missing values are created for some of original variables as indicated in the tables.

Geographic Variables:

Region indicators and the Urban and Suburban indicators: Constructed from g8region and g8urban and

refer to location of the 8th grade school the student attended. Missing values are dropped.

Distance to the nearest Catholic high school: This variable is constructed from the population weighted

center of the zip code of the 8th grade school and the population weighted centers of the zip codes of all the

Catholic high schools reported in Ganley’s Catholic Schools in America, 1988 addition. See Altonji, Elder

and Taber (2005). The units are 100,000 meters. A missing value indicator is included in the school choice

equation.

Fraction black (p008002/p001001 ), fraction Hispanic (p0100001/p0010001), an indicator for whether

fraction black is missing, median income, the fraction of the population below the poverty line ((p1210001+p1210002+p121000

and the fraction of the population with income more than double the poverty line (p1210009/p0010001 ) are

from the 1990 Census for the zip code of the high school. Missing values are set to the sample mean.

Eighth Grade Test Score Measures:

We use the Item Response Theory scaled scores for reading, math, science, and history, civics and

geography—by2xrstd, by2xmstd, by2xsstd, and by2xhstd. Missing values are set to the sample mean, and an

indicator that is one when all of the tests are is included in the models. (With a few exceptions, the tests

are either all missing or all available.)

Eighth Grade Behavioral and Performance-in-School Measures:

Delinquency Index: This variable is the sum of two variables and ranges from 0 to 4. The first is (bys55a),
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which is 1 if the student reports being sent to the office once or twice and 2 if sent more then 2 times. The

second is bys55e, which is 1 if the student reports that his parents were contacted once or twice because of

a behavior problem and 2 if they were contacted more than twice.

Student got in a fight: Created from student self-reported variable bys55f : 0 (never) 1 (once or twice)

and 2 (more than twice) in the past semester.

Student performs below ability: 0-1 indicator variable taken from teacher surveys (byt1_2 and byt4_2 ).

Student rarely completes homework: 0-1 indicator variable taken from teacher surveys (byt1_3 and

byt4_3 ).

Student frequently absent: 0-1 indicator variable taken from teacher surveys (byt1_4 and byt4_4 ).

Student inattentive in class: 0-1 indicator variable taken from teacher surveys (byt1_6 and byt4_6 ).

Student frequently disruptive in class: 0-1 indicator variable taken from teacher surveys (byt1_8 and

byt4_8 ).

Student Behavior Variables Missing: 0-1 indicator for whether any of the previous 5 variables are missing.

Trouble-Maker: 0-1 indicator variable created from bys56e, and coded as 1 if the student report indicates

that other students see the respondent as a "very big" trouble-maker.

Behavior problem: 0-1 indicator variable created from byp50, regarding whether the parent considers

their child to have a behavior problem in school.

Parents Contacted About Behavior: Created from byp57e, which measures the number of times parents

report being contacted about behavior problems in the past school year. The values are 0 (never), 1 (once

or twice), 2 (three or four time) and 3 (more than four times).

Limited English Proficiency Composite: 0-1 indicator variable (bylep). The NELS composite variable is

based on student and teacher reports.

Repeated Grade: 0-1 indicator of whether a student repeated any grade 4-8, taken as the maximum of

the student (bys74e-bys74i) and parent (byp46e-byp46i) reports.

Lack of Effort index: The base year student variable bys75 measures “How many days of school did you

miss over the past four weeks? The values are 0 (none) 1 (1 to 2) 2 (3 or 4) 3 (5 to 10) 4 (more than 10).

bys76 measures “How often do you cut or skip classes?” 0 (0) 1 (< once per week), 2 ( at least once per week),

3 (daily). bys77 is the response to “how many times were you late for school over the past four weeks?”: 0
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(0), 1 ( 1 or 2 days) 2 ( 3 or 4) 3 (5-10) 4 (more than 10). bys78a, bys78b and bys78c are responses to “How

often do you come to class without pencil or paper when needed?”, “How often do you come to class without

books”, and “How often do you come to class without homework. Each is coded as 3 (usually), 2 (often), 1

(seldom), 0 (never).The index is [bys75 + bys76 + bys77 + (4 − bys78a) + (4 − bys78b) + (4 − bys78c)] and

ranges from 0 to 20.

Dropout risk index: This is NELS composite variable byrisk, ranging from 0-6. It is the sum of binary

indicators for risk factors for dropout risk. The indicators are based on byfcomp, bypared, byp6, bys41, bylep,

and byfaminc.

Grade Index: Based on bygrads, ranging from 0-4.

Gifted: 0-1 indicator for parent report of whether the student is currently enrolled in a gifted/talented

program (byp51 ).

Missing values of all variables are set to the sample mean.

Outcome Measures:

High School Graduation: 0-1 indicator for whether received high school diploma as of the third follow-up.

One if hsstat=1.

College Attendance: 0-1 indicator for whether enrolled in a 4-year college as of April 1994. One if

enrl0494=15 or 16.

Log earnings in 1999: The log of the response to the question “First, including all of the wages, salaries,

and commissions you earning in 1999, about how much did you earn from employment before taxes and

other deductions?”(f4hi99 ). The sample is restricted to individuals with positive earnings when considering

this outcome measure.

12th grade Math Test Score and 12th grade reading test score: We use the item response theory scaled

scores). Missing value treatment: Observations with missing values on an outcome are excluded from the

equation for that outcome.

Milwaukee School Data

We obtain our data from an online data archive (http://www.disc.wisc.edu/archive/choice/index.html) from

Witte and Thorn (1995). We used all waves of the Choice sample, but only wave 1991 of the Control sample

since that is the only year that the survey data were available. We used only observations for which we had
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all variables (except for father’s education, for which we also included an indicator for missing values). We

deleted records for individuals who applied to the choice program but did not enroll because we had very

few of those observations after deleting individuals with missing data.

Appendix 2: Formal Justification for Linear Index Assumptions

The X ′γ index Model

As we state in the text, we use the X ′γ index restriction because we find it intuitively appealing and because

the parameter δX′γ is easy to interpret. However, it can be formally justified by assuming that student body

effects take the form of a pure “endogenous effect model” in the sense of Manski (1993). In our notation,

when Si = s,

Yi (τ) =X
′
iγ + δyY (Si, τ) +Q′

siΘ
∗
Q + ξ∗si + εi

=X ′
iγ + δX′γ

(
X(Si, τ)

′γ + ε(s, τ)
)
+Q′

siΘQ + ξSi
+ εi

where

δX′γ =
δy

1− δy

ΘQ =
Θ∗

Q

1− δy

ξs =
ξ∗s

1− δy
.

This model is analogous to the model with unobservables in Section 6 of the paper described by equation

(25) with g=1.

In the simpler version of the model (16) in which student body effects are assumed to only involve

observed student characteristics Xi, the X ′γ index restriction can be justified if in addition school choice

does not depend upon unobservables that affect Yi. That is, if ui is independent of εi (and maintaining the

assumptions that Xi and QSi
are independent of ui and ǫi) then

ε(s, τ) =E
(
εi | Si = s,X ′

iβ +Q′
Si
βQ + t(τ) + ui ≥ 0

)

=E (εi | Si = s) .
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Since ε(s, τ) does not depend on τ it can be incorporated into ξs. Thus we can treat the model as

Yi (τ) =X
′
iγ + δx′γX(s, τ)′γ +Q′

sΘQ + ξ̃s + εi

where ξ̃s = ξs + δx′γE (εi | Si = s) .

The X ′β Index Model

For a given school s, consider a nonparametric regression of Z ′
iδ on X ′

iβ

Z ′
iδ =ds (X

′
iβ) + eZi,

where ds (X
′
iβ) = E (Z ′

iδ | X ′
iβ, Si = s) so E (eZi | X ′

iβ, Si = s) = 0. A first order approximation to this is

ds (X
′
iβ) ≈cs + δXβX

′
iβ.

Assume further that the coefficient δXβs does not vary across s.53 Then one obtains

ds (X
′
iβ) ≈cs + δXβX

′
iβ.

Now recall that

πp(τ) =E(ψ(τ, χi)[Zi − Z (Si, 0)]
′δ|P 0

i = 1)

=E(ψ(τ, χi)Zi
′δ|P 0

i = 1)− E(ψ(τ, χi)Z (Si, 0)
′δ|P 0

i = 1)(A2-1)

We can write

E(ψ(τ, χi)Zi
′δ|P 0

i = 1) =E
(
E
[
ψ(τ, χi)Zi

′δ|X ′
iβ,Si, X

′
iβ +Q′

Si
βQ + t(τ) + ui ≥ 0

]
| P 0

i = 1
)

=E
(
ψ(τ, χi)dSi

(X ′
iβ) | P 0

i = 1
)
.

≈E
(
ψ(τ, χi)cSi

) | P 0
i = 1

)
+ δXβE

(
ψ(τ, χi)X

′
iβ | P 0

i = 1
)
,

where the first equality comes from the law of iterated expectations. The second equality uses the definition

of ds and the fact that conditional on X ′
iβ and Si, neither QSi

nor ui have predictive power. The third

applies the approximation.

53Allowing for a random coefficient that is orthogonal to other aspects of the model would be straight forward. If it was not
orthogonal, it would be more difficult. This seems feasible, but we have not worked out the details.
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For the second term of (A2-1) first note that

Z (s, 0) ′δ =E{Z ′
iδ|P 0

i = 1, Si = s}

=E{E
(
Z ′
iδ | X ′

iβ, P
0
i = 1, Si = s

)
|P 0

i = 1, Si = s}

=E{ds (X ′
iβ) |P 0

i = 1, Si = s}

≈E{cs|P 0
i = 1, Si = s}+ δXβE{X ′

iβ|P 0
i = 1, Si = s}

=cs + δXβX (Si, 0)
′β.

The first equality comes from the definition of Z (s, 0) . The second uses the law of iterated expectations.

The third uses the definition of ds (incorporating the fact that P 0
i has no predictive power conditional on

X ′
iβ and Si). The fourth equality uses the approximation and the fifth simplifies the expression.

Thus

E(ψ(τ, χi)Z (Si, 0)
′δ|P 0

i = 1) ≈E
(
ψ(τ, χi)cSi

) | P 0
i = 1

)
+ δXβE

(
ψ(τ, χi)X (Si, 0)

′β | P 0
i = 1

)
.

Replacing the two terms of (A2-1) with the approximations leads to

πp(τ) ≈E
(
ψ(τ, χi)cs | P 0

i = 1
)
+ δXβE

(
ψ(τ, χi)X

′
iβ | P 0

i = 1
)

−
[
E(ψ(τ, χi)cs|P 0

i = 1) + δXβE(ψ(τ, χi)X (Si, 0)
′β|P 0

i = 1)
]

=δX′βE
(
ψ(τ, χi)

(
X ′

iβ −X (Si, 0)
′β
)
| P 0

i = 1
)
,

which is what we wanted to show.

The argument above would be fine if we didn’t need to estimate δX′β . However, we need an additional

assumption to establish consistency of the IV estimator that we use to estimate δX′β . As mentioned in the

text, we assume that

cs =Q
′
sδs +̟s,

with ̟s independent of Qs and the process determining Xi within a school.

Extension to Incorporate Unobservables

This argument generalizes to the equation (26). Write Z ′
iδ as

Z ′
iδ =ds (X

′
iβ, ui) + eZi
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where ds (X
′
iβ, ui) = E (Z ′

iδ | X ′
iβ, ui, Si = s). Analogous to the base case above, we use the linear approxi-

mation

ds (X
′
iβ, ui) ≈cs + δX′βX

′
iβ + gδX′βui

where gδX′β is the coefficient on the index ui of unobservable student characteristics that influence school

choice. Then as above

πp(τ) =E(ψ(τ, χi)[Zi − Z (Si, 0)]
′δ|P 0

i = 1)

=E(ψ(τ, χi)Zi
′δ|P 0

i = 1)− E(ψ(τ, χi)Z (Si, 0)
′δ|P 0

i = 1)

A major difference from the base case model is that now ui is part of χi. The first term of this expression is

E(ψ(τ, χi)Zi
′δ|P 0

i = 1) =E
(
E
[
ψ(τ, χi)Zi

′δ|X ′
iβ, ui,Si, X

′
iβ +Q′

Si
βQ + ui ≥ 0

]
| P 0

i = 1
)

=E
(
ψ(τ, χi)dSi

(X ′
iβ, ui) | P 0

i = 1
)
.

≈E
(
ψ(τ, χi)cSi

) | P 0
i = 1

)
+ δXβE

(
ψ(τ, χi)X

′
iβ | P 0

i = 1
)

+ gδX′βE
(
ψ(τ, χi)ui | P 0

i = 1
)
.

The second term of πp(τ) may be approximated as

Z (s, 0) ′δ =E{Z ′
iδ|P 0

i = 1, Si = s}

=E{E
(
Z ′
iδ | X ′

iβ, ui, P
0
i = 1, Si = s

)
|P 0

i = 1, Si = s}

=E{ds (X ′
iβ, ui) |P 0

i = 1, Si = s}

≈E{cs|P 0
i = 1, Si = s}+ δXβE{X ′

iβ|P 0
i = 1, Si = s}+ gδXβE{ui|P 0

i = 1, Si = s}

=cs + δXβX (Si, 0)
′β + gδXβu (Si, 0) .

Plugging this into our expression

E(ψ(τ, χi)Z (Si, 0)
′δ|P 0

i = 1)

≈E
(
ψ(τ, χi)cSi

) | P 0
i = 1

)

+ δXβE
(
ψ(τ, χi)X (Si, 0)

′β | P 0
i = 1

)
+ gδXβE

(
ψ(τ, χi)u (Si, 0) | P 0

i = 1
)
.
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Putting it all together

πp(τ) ≈E
(
ψ(τ, χi)cs | P 0

i = 1
)
+ δXβE

(
ψ(τ, χi) [X

′
iβ + gui] | P 0

i = 1
)

(A2-2)

−
[
E(ψ(τ, χi)cs|P 0

i = 1) + δXβE(ψ(τ, χi)
[
X (Si, 0)

′β + gu (Si, 0)
]
|P 0

i = 1)
]

=δXβE
(
ψ(τ, χi)

(
X ′

iβ + gui −X (Si, 0)
′β − gu (Si, 0)

)
| P 0

i = 1
)

As in the observable case we further assume that

cs =Q
′
sδs +̟s

with ̟s independent of Qs as well as (µ1
s, µ

2
s, v

1
s , v

2
s) and the distribution of (η1i , η

2
i , ω

1
i , ω

2
2) for individuals

in the school district.

Appendix 3: Estimation with Student Body Composition Effects on

School Choice.

In this appendix we describe the estimation of the model when peers influence school choice, which is

considered in Section 5. We first discuss estimation of the model when peers affect demand through the

X (s, τ)
′
γ index, and then explain how the X (s, τ)

′
β case differs. The data comes from the “no voucher”

regime, and we suppress the indicator for the voucher program regime unless it is needed for clarity.

To simplify the expressions below, define the conditional expectation µ2
(
τ, µ1

s, µ
2
s

)
≡ E (X ′

iγ | Si = s, P τ
i = 1).

Keep in mind that we denote the absence of a voucher program as τ = 0, with t(0) = 0. We use φ to denote

a univariate or bivariate normal density and Φ to denote a univariate or bivariate normal cdf with specified

variance. If no variance argument is given, they refer to standard normals.

The X ′γ Case

We first estimate γ using the fixed effect for the base model. We then estimate the education outcome

parameters δX′γ and (δQ +ΘQ) using the JIVE estimator discussed in Section 4.2.

Partition the rest of the parameters that affect school choice into four subsets,

A: β, βQ and ϕδX′γ

B: α1 and α2

C: Ση and Σe.
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D: µ2
(
0, µ1

s, µ
2
s

)
over the support of

(
µ1
s, µ

2
s

)
that we use in simulation

Note that we are treating ϕδX′γ as one estimated parameter since this product enters as the coefficient in

front of µ2
(
τ, µ1

s, µ
2
s

)
in the school choice equation.

We estimate the model by iterating on the following procedure. In each iteration we update the param-

eters in the following steps, taking parameters from the previous step as given.

Step 1, Given B,C,D estimate A: Given the other parameters, we estimate β, βQ, and ϕδX′γ using

the likelihood for private and public schools. The log likelihood for individual i is

P 0
i wi log(

(A3-1)

[
´

Φ
(
X ′

iβ +Q′
Si
βQ + ϕδX′γµ

2
(
0, µ1

s, µ
2
s

))
φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s, X
′
iγ − µ2

s; Ση

)
dΦ(µ1

s, µ
2
s;WSi

,Σe)
´

φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s, X
′
iγ − µ2

s; Ση

)
dΦ(µ1

s, µ
2
s;WSi

,Σe)




+
(
1− P 0

i

)
wilog(1−

´

Φ
(
X ′

iβ +Q′
Si
βQ + ϕδX′γµ

2
(
0, µ1

s, µ
2
s

))
φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s, X
′
iγ − µ2

s; Ση

)
dΦ(µ1

s, µ
2
s;WSi

,Σe)
´

φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s, X
′
iγ − µ2

s; Ση

)
dΦ(µ1

s, µ
2
s;WSi

,Σe)


 ,

where wi is the sample weight for individual i. We treat public and private school students symmetrically

and in particular do not use the data on public peers to help update β in this step.54 Instead, we fix β∗ and

β∗
Q in the above equation at the estimated value from the previous iteration of Step 1 rather than letting it

change as we maximize the above likelihood function with respect to β, βQ, and ϕδX′γ . This means that the

update for β̂ and β̂Q is chosen to maximize the likelihood of the school choice model rather than to make

the X ′
iβ distribution look approximately normal.

To see the intuition behind Step 1, note that if we knew µ2
(
0, µ1

s, µ
2
s

)
we would just run a probit of public

school choice on Xi and µ2
(
0, µ1

s, µ
2
s

)
. Because we do not know it, we have to use the model to integrate

out its distribution conditional on Ws.

Step 2 Given A,C,D estimate B: This step is quite simple. We can estimate α1 and α2 by regressing

X ′
iβ +Q′

Si
βQ and X ′

iγ on WSi
. Thus we only need to know β and γ for this step.

Step 3 Given A,B,D estimate C: Taking the rest of the model as given, we estimate Ση and Σe using

54This is inefficient but still consistent. We cannot use the model to group private school students because the model does
not say which private school students attending private school choose.
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the likelihood for public students only:

(A3-2)

´

Ls

(
Ση | µ1

s, µ
2
s

)
Φ

(
µ1
s+ϕδX′γµ

2(0,µ1
s,µ

2
s)√

1+ση11

)
dΦ(µ1

s, µ
2
s;WSi

,Σe)

´

Φ

(
µ1
s+ϕδX′γµ

2(0,µ1
s,µ

2
s)√

1+ση11

)
dΦ(µ1

s, µ
2
s;WSi

,Σe)

where

Ls

(
Ση | µ1

s, µ
2
s

)
=

∏

{i:Si=s}



Φ
(
X ′

iβ +Q′
Si
βQ + ϕδX′γµ

2
(
0, µ1

s, µ
2
s

))
φ
(
X ′

iβ +Q′
Si
βQ − µ1

s, X
′
iγ − µ2

s; Ση

)

Φ

(
µ1
s+ϕδX′γµ

2(0,µ1
s,µ

2
s)√

1+ση11

)




To see where the above equation comes from, one must consider the NELS sampling frame. In particular

schools with larger values of Φ

(
µ1
s+ϕδX′γµ

2(0,µ1
s,µ

2
s)√

1+ση11

)
tend to be bigger. We make the simplifying assumption

that the NELS sampling frame fixes the number of interviews at each public high school independent of the

size of the school, but then oversamples bigger schools. In this case, Ls should be the likelihood of observing

a particular realization of the vectors of values of X ′
iβ and X ′

iγ for a particular sample of students from the

school. Then, being loose with notation, the likelihood for a particular school takes the form

ˆ


 ∏

{i:Si=s}
f(X ′

iβ +Q′
Si
βQ, X

′
iγ | P 0

i = 1, µ1
s, µ

2
s)


 gs

(
µ1
s, µ

2
s |Ws

)
dµ1

sdµ
2
s

where gs is the probability density given the sampling scheme.

Then using Bayes’ theorem

f(X ′
iβ +Q′

Si
βQ, X

′
iγ | P 0

i = 1, µ1
s, µ

2
s)

=
Pr(P 0

i = 1 | X ′
iβ +Q′

Si
βQ, X

′
iγ, µ

1
s, µ

2
s)f(X

′
iβ +Q′

Si
βQ, X

′
iγ, µ

1
s, µ

2
s)

Pr(P 0
i = 1 | µ1

s, µ
2
s)

=
Φ
(
X ′

iβ +Q′
Si
βQ + ϕδX′γµ

2
(
0, µ1

s, µ
2
s

))
φ
(
X ′

iβ +Q′
Si
βQ − µ1

s, X
′
iγ − µ2

s; Ση

)

Φ

(
µ1
s+ϕδX′γµ

2(0,µ1
s,µ

2
s)√

1+ση11

)

and

gs
(
µ1
s, µ

2
s |Ws

)
= g

(
µ1
s, µ

2
s |Ws, P

0
i = 1

)

=
Pr
(
Pi = 1 |Ws, µ

1
s, µ

2
s

)
g
(
µ1
s, µ

2
s |Ws

)

Pr (P 0
i = 1 |Ws)

=

Φ

(
µ1
s+ϕδX′γµ

2(0,µ1
s,µ

2
s)√

1+ση11

)
φ(µ1

s, µ
2
s;Ws,Σe)

´

Φ

(
µ1
s+ϕδX′γµ

2(0,µ1
s,µ

2
s)√

1+ση11

)
dΦ(µ1

s, µ
2
s;Ws,Σe)

.
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In reality, NELS:88 follows 8th grade sample members into high schools, and so the number of students

sampled from high school s will depend on Φ

(
µ1
s+ϕδX′γµ

2(0,µ1
s,µ

2
s)√

1+ση11

)
. Furthermore, up to a sample size of

11, the probability that s is included at all is increasing in the number of NELS:88 8th graders who start

at the high school. Consequently, the probability that a particular student is followed depends on the

Φ

(
µ1
s+ϕδX′γµ

2(0,µ1
s,µ

2
s)√

1+ση11

)
of other students. We do not address this. However, we use the average of the

sample weights for the students who attend s to weight the value of the likelihood.

Step 4 Given A,B,C simulate D: Taking all parameters as given, we solve µ2
(
0, µ1

s, µ
2
s

)
as a fixed

point for the equation

µ2
(
0, µ1

s, µ
2
s

)
=µ2

s + E
(
η2i | µ1

s + η1i + ϕδX′γµ
2
(
0, µ1

s, µ
2
s

)
+ εi > 0, µ1

s, µ
2
s

)

=µ2
s +

ση12√
1 + ση11

λ

(
µ1
s + ϕδX′γµ

2
(
0, µ1

s, µ
2
s

)
√
1 + ση11

)

We iterate on this four-step procedure until we find a fixed point estimate of β, βQ, and ϕδX′γ . Each

iteration is time consuming, in part because we must compute µ2
(
0, µ1

s, µ
2
s

)
for a large number of values of

(
µ1
s, µ

2
s

)
.55 However, the parameter estimates converge fairly quickly.

We then use the model estimates to simulate the effects of the voucher policy. The key to this is the

construction of the weights ψ(τ, χi), which are a function of the probability that Pi = 1 under both the

current regime and the alternative (τ) regime. The crucial element in this calculation is

Pr(P τ
i = 1 |WSi

, X ′
iβ, Z

′
iγ)

=

ˆ

Φ
(
X ′

iβ +Q′
Si
βQ − t(τ) + ϕδX′γµ

2
(
τ, µ1

s, µ
2
s

))
dF (µ1

s, µ
2
s | WSi

, X ′
iβ +Q′

Si
βQ, X

′
iγ)

where

dF (µ1
s, µ

2
s |WSi

, X ′
iβ +Q′

Si
βQ, X

′
iγ) =

φ
(
X ′

iβ +Q′
Si
βQ − µ1

s, X
′
iγ − µ2

s; Ση

)
dΦ(µ1

s, µ
2
s;WSi

,Σe)
´

φ
(
X ′

iβ +Q′
Si
βQ − µ1

s, X
′
iγ − µ2

s; Ση

)
dΦ(µ1

s, µ
2
s;WSi

,Σe)
.

55Specifically µ1s = W ′

sα1 + e1s,µ
2
s = W ′

sα2 + e2s and we approximate the marginal distribution of each e
j
S

using 6 points of

Gauss-Hermite quadrature. That means for each school
(
µ1s , µ

2
s

)
takes on 36 values, and these values differ over the different

public schools in our sample.
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We then construct

ψ(τ, χi) =

Pr(P τ
i =1|WSi

,X′

iβ+Q′

Si
βQ,X′

iγ)

Pr(P 0
i =1|WSi

,X′

iβ+Q′

Si
βQ,X′

iγ)

´ Pr(P τ
i =1|WSi

,X′

iβ+Q′

Si
βQ,X′

iγ)

Pr(P 0
i =1|WSi

,X′

iβ+Q′

Si
βQ,X′

iγ)
dG(WSi

, X ′
iβ +Q′

Si
βQ, X ′

iγ | P 0
i = 1)

=

[
´

Φ(X′

iβ+Q′

Si
βQ+ϕδX′γµ

2(τ,µ1
s,µ

2
s)−t(τ))dF(µ1

s,µ
2
s|X′

iβ+Q′

Si
βQ,X′

iγ,WSi)
´

Φ(X′

iβ+Q′

Si
βQ+ϕδX′γµ

2(0,µ1
s,µ

2
s))dF

(
µ1
s,µ

2
s|X′

iβ+Q′

Si
βQ,X′

iγ,WSi

)

]

´

´

Φ(X′

iβ+Q′

Si
βQ+ϕδX′γµ

2(τ,µ1
s,µ

2
s)−t(τ))dF

(
µ1
s,µ

2
s|X′

iβ+Q′

Si
βQ,X′

iγ,WSi

)

´

Φ(X′

iβ+Q′

Si
βQ+ϕδX′γµ

2(0,µ1
s,µ

2
s))dF

(
µ1
s,µ

2
s|X′

iβ+Q′

Si
βQ,X′

iγ,WSi

) dG(Xi,WSi
|P 0

i = 1)

Note that χi contains of WSi
as well as Xi.

The X ′β Case

We use the same iterative procedure for the X ′
iβ model, but the equations are simpler. In this case define

µ1
(
τ, µ1

s

)
≡ E

(
X ′

iβ | P τ
i = 1, µ1

s

)
. Given our model and distribution assumptions,

µ1
(
τ, µ1

s

)
= µ1

s + E
(
η1i | µ1

s + η1i − t(τ) + ϕδX′βµ
1
(
τ, µ1

s

)
+ εi > 0

)

= µ1
s +

ση11√
1 + ση11

λ

(
µ1
s − t(τ) + ϕδX′βµ

1
(
τ, µ1

s

)
√
1 + ση11

)

The analogue of likelihoods (A3-1) and (A3-2) in the X ′
iβ case are simpler than in the X ′

iγ case. They

take on the forms

P 0
i wi log



´

Φ
(
X ′

iβ +Q′
Si
βQ + ϕδX′βµ

1
(
0, µ1

s

))
φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s;ση11
)
dΦ(µ1

s;WSi
, σe11)

´

φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s;ση11

)
dΦ(µ1

s;WSi
, σe11)




+(1− P 0
i )wi×

log


1−

´

Φ
(
X ′

iβ +Q′
Si
βQ + ϕδX′βµ

1
(
0, µ1

s

))
φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s;ση11
)
dΦ(µ1

s;WSi
, σe11)

´

φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s;ση11

)
dΦ(µ1

s;WSi
, σe11)


 ,

and the likelihood for a school is

´


∏{i:Si=s}


Φ(X′

iβ+Q′

Si
βQ+ϕδX′βµ

1(0,µ1
s))φ(X′

iβ
∗+Q′

Si
β∗

Q−µ1
s;ση11)

Φ

(
µ1
s+ϕµ1(0,µ1

s)√
1+ση11

)




Φ

(
µ1
s+ϕδX′βµ

1(0,µ1
s)√

1+ση11

)
dΦ(µ1

s;WSi
, σe11)

´

Φ

(
µ1
s+ϕδX′βµ

1(0,µ1
s)√

1+ση11

)
dΦ(µ1

s;WSi
, σe11)

,

where σe11 is the variance of e1s. The final piece is

Pr(P τ
i = 1 | Wi, X

′
iβ +Q′

Si
βQ)

=

ˆ

Φ
(
X ′

iβ +Q′
Si
βQ − t(τ) + ϕδX′βµ

1
(
τ, µ1

s

))
dF (µ1

s |WSi
, X ′

iβ +Q′
Si
βQ)

=

´

Φ
(
X ′

iβ +Q′
Si
βQ − t(τ) + ϕδX′βµ

1
(
τ, µ1

s

))
φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s;ση11
)
dΦ(µ1

s;WSi
, σe11)

´

φ
(
X ′

iβ
∗ +Q′

Si
β∗
Q − µ1

s;ση11

)
dΦ(µ1

s;WSi
, σe11)

,
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and again

ψi(τ, χi) =

Pr(P τ
i =1|WSi

,X′

iβ+Q′

Si
βQ,Z′

iγ)

Pr(P 0
i =1|WSi

,X′

iβ+Q′

Si
βQ,Z′

iγ)

´ Pr(P τ
i =1|WSi

,X′

iβ+Q′

Si
βQ,Z′

iγ)

Pr(P 0
i =1|WSi

,X′

iβ+Q′

Si
βQ,Z′

iγ)
dG(WSi

, X ′
iβ +Q′

Si
βQ, Z ′

iγ | P 0
i = 1)

.

Appendix 4: Unobservable School Effects and Unobservable Peer

Characteristics

In this appendix we discuss estimation of the unobservable student body effect model we describe in the text.

In practice there are two issues that need to be addressed. The first is estimation of the variance/covariance

components of the model. This turns out to be quite similar to the case discussed in Appendix 3.

The second issue is estimation of δX′β or δX′γ which differs from the rest of the paper. For the other cases

we estimate δX′β using a two stage least squares approach. Here we rely on the structure of our nonlinear

model so the first stage is nonlinear, but then we use OLS in the second in much the same way as in the

second stage of 2SLS.

In this appendix we first discuss the general strategy and then go step by step through the details. We use

φ to denote a normal density and Φ to denote a normal cdf with specified variance. If no variance argument

is given, they refer to standard normals. Also note that all of our calculations use the NELS weights. In this

appendix we ignore the weighting for expositional reasons.

To see the main complication, let X−i be the matrix of values of X ′
j for a random sample of individuals

j who actually attend school Si , j 6= i and define

Xβγ
i ≡

(
X ′

−iβ,X
′
−iγ, P

0
i = 1, X ′

iβ,X
′
iγ,QSi

)
. From equation (2)

E
(
θ(Si, τ) | Xβγ

i

)
=E

(
Z(Si, τ)

′δ | Xβγ
i

)
+Q′

Si
ΘQ.

We use this equation in the second stage to obtain a consistent estimate of δX′β by regressing the estimate

of the school specific fixed effect on QSi
and a consistent estimate of E

(
Z(s, τ)′δ | Xβγ

i

)
.
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Consider the first stage. In model (26)

E
(
Z(s, τ)′δ | Xβγ

i

)
(A4-1)

=Q′
sδQ + δX′βE

(
X(s, τ)′β +Q′

Si
βQ + gū(s, τ) | Xβγ

i

)
+̟s

=Q′
sδQ + δX′βE

(
X ′

jβ +Q′
sjβQ + guj | Pj = 1, Sj = Si, X

βγ
i

)
+̟s

=Q′
sδQ + δX′β

ˆ ˆ

E
(
µ1
s + η1j + g

[
v1s + ω1

j

]
| Pj = 1, µ1

s, v
1
s

)
fµ1v1(µ1

s, v
1
s | Xβγ

i )dµ1
sdv

1
s +̟s

=Q′
sδQ + δX′β

ˆ ˆ

(
µ1
s + gv1s +

ση11 + gσω11√
ση11 + σω11

λ

(
µ1
s + v1s√

ση11 + σω11

))
fµ1v1(µ1

s, v
1
s | Xβγ

i )dµ1
sdv

1
s +̟s

where fµ1v1 denotes the density of
(
µ1
s, v

1
s

)
conditional on Xβγ

i . Thus to implement this we need to estimate

(ση11, σω11) as well as fµ1v1(µ1
s, v

1
s | Xβ

i ).

Similarly for model (25)

E
(
Z(s, τ)′δ | Xβγ

i

)
(A4-2)

=δX′γE
(
X(s, τ)′γ + gε̄(s, τ) | Xβγ

i

)
(A4-3)

=δX′γ

ˆ

E
(
µ2
s + η2j + g

[
v2s + ω2

j

]
| Pj = 1, µ1

s, µ
2
s, v

1
s

)
fµv1(µ1

s, µ
2
s, v

1
s | Xβγ

i )dµ1
sdµ

2
sdv

1
s

=δX′γ

ˆ

(
µ2
s +

gσv12v
1
s

σv11
+
ση12 + gσω12√
ση11 + σω11

λ

(
µ1
s + v1s√

ση11 + σω11

))
×

fµv1(µ1
s, µ

2
s, v

1
s | Xβγ

i )dµ1
sdµ

2
sdv

1
s

where fµv1 denotes the density of
(
µ1
s, µ

2
s, v

1
s

)
conditional onXβγ

i . To implement this we need (ση11, σω11, σv11, σv12, ση12, σω12)

as well as fµv1(µ1
s, µ

2
s, v

1
s | Xβγ

i ).

Our procedure is as follows.

1. We obtain β from a standard probit model for public school choice.

2. We estimate γ using fixed effects regression on the public school sample, but we correct for sample

selection by including the inverse Mills-ratio term for public school choice in the regression.

3. We normalize all random variables to be mean zero, other than (µ1
s, µ

2
s). Given β and γ we can estimate

the mean and variance of (X ′
iβ,X

′
iγ). From this we know that

a =
1

var(X ′
iβ)

since V ar(ui) = 1.
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4. Next we estimate variance/covariance matrices Σµ,Ση,Σv, and Σω. Note that given information from

above, knowledge of Σµ is sufficient for the other parameters since

Ση =var(X ′
iβ +Q′

Si
βQ, X

′
iγ)− Σµ

Σv =aΣµ

σω11 =aση11

σω12

(
ω1
i , ω

2
i

)
=aση12

We estimate Σµusing maximum likelihood but only using public school students. We assume that

schools are sampled based on the population of students who attend (i.e. all else equal, public schools

in districts with fewer students attending private schools will show up in the data more frequently).56

This gives the likelihood function for school s:

´ ´ ´

L
(
s | v1s , µ1

s, µ
2
s

)
Φ

(
µ1
s+v1

s√
ση11(Σµ)+σω11(Σµ)

)
dΦ
(
v1s ;σ

2
v1 (Σµ)

)
dΦ(µ1

s, µ
2
s; Σµ)

´ ´ ´

Φ

(
µ1
s+v1

s√
ση11(Σµ)+σω11(Σµ)

)
dΦ (v1s ;σv11 (Σµ)) dΦ(µ1

s, µ
2
s; Σµ)

where

L
(
s | v1s , µ1

s, µ
2
s

)
=

∏

{i:Si=s}



Φ

(
X′

iβ+Q′

Si
βQ+v1

s√
σω11(Σµ)

)
φ
(
X ′

iβ +Q′
Si
βQ − µ1

s, X
′
iγ − µ2

s,Ση

)

Φ

(
µ1
s+v1

s√
ση11(Σµ)+σω11(Σµ)

)




where the notation ση11 (Σµ) ,σω11 (Σµ) , and σv11 (Σµ) denotes the fact that these objects are known

functions of Σµ.

5. In this step we obtain our estimate of fµv1(µ1
s, µ

2
s, v

1
s | Xβγ

i ) for all public school observations. Using

independence of v1s from (µ1
s, µ

2
s) and Bayes’ theorem,

fµv1(µ1
s, µ

2
s, v

1
s | Xβγ

i )

=
fxβγ (Xβγ

i | µ1
s, v

1
s)φ(µ

1
s , µ

2
s; Σµ)φ

(
v1s ;σ

2
v1

)
´ ´ ´

fxβγ (Xβγ
i | µ1

s, v
1
s)φ(µ

1
s, µ

2
s; Σµ)φ

(
v1s ;σ

2
v1

)
dµ1

sdµ
2
sdv

1
s

,

56Our assumption is that in the school attended by i, data on a random set of students are available and the number of
students is not related to the school choice probability. We account for selection in who chooses to attend the public school.
However, in practice the number of students available depends on public school choice. This is because NELS:88 follows
eighth graders into high schools and does not draw a random sample in high school. Furthermore, the probability that a high
school attended by NELS:88 eighth graders is included in the first followup survey is increasing in the number who attend
up until a school sample of 11. Consequently, the probability that student i is sampled depends on the choices of the other
NELS:88 sample members from the same eight grade, which depend on µ1Si

. This is not accounted for in the expression for

fµv1 (µ1Si
, µ2

Si
, v1

Si
| Xβ

−i, Pi = 1, Xi). However, we use the average of the sample weights for the students who attend s to
weight the value of Ls.
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where the definition of X ′
−iβ and X ′

−iγ implies that

fxβγ (Xβγ
i | µ1

s, µ
2
s, v

1
s) =

∏
{j:Sj=Si}

Φ

(
X′

jβ+v1
Si

σω1

) ∏
{j:Sj=Si}

φ
(
X ′

jβ +Q′
Si
βQ − µ1

s, X
′
jγ − µ2

s; Ση

)

∏
{j:Sj=Si,j 6=i}

Φ

(
µ1
s+v1

s√
σ2

η1
+σ2

ω1

) .

Given knowledge of fµv1(µ1
s, µ

2
s, v

1
s | Xβγ

i ) one can obtain fµ1v1(µ1
s, v

1
s | Xβγ

i ) by integrating out µ2
s.

6. Using this density, for each g we obtain a consistent estimates of

E
(
X(s, τ)′β +Q′

Si
βQ + gū(s, τ) | Xβγ

i

)

and

E
(
X(s, τ)′γ + gε̄(s, τ) | Xβγ

i

)

using equations (A4-1) and (A4-3), respectively. We then regress the estimate of the school spe-

cific fixed effect on Qs and E
(
X(s, τ)′β +Q′

Si
βQ + gū(s, τ) | Xβγ

i

)
to estimate δX′β and on Qsand

E
(
X(s, τ)′γ + gε̄(s, τ) | Xβγ

i

)
to estimate δX′γ .

7. Finally, we calculate the treatment effect. In the text we derive πp
(
τ ;µ1

s, v
1
s

)
for two models. (See (27)

for the X ′β index model and (28) for the X ′γ model.) To obtain the average cream skimming effect,

we have to integrate πp
(
τ ;µ1

s, v
1
s

)
over the distribution of the unobservables µ1

s, v
1
s of those who stay

in public school. In the X ′β model the average value of the cream skimming effect may be written as

E
[
πp
(
τ ;µ1

s, v
1
s

)
| P τ

i = 1
]

=
E
[
πp
(
τ ;µ1

s, v
1
s

)
P τ
i

]

Pr [P τ
i = 1]

=

´

πp
(
τ ;µ1

s, v
1
s

) Φ((X′

iβ+Q′

Si
βQ−t(τ)+v1

s)/
√
σω11)

Φ
((

X′

iβ+Q′

Si
βQ+v1

s

)
/
√
σω11

) fµ1v1(µ1
s, v

1
s | Xβγ

i )dµ1
sdv

1
sdG

(
Xβγ

i | P 0
i = 1

)

´ Φ
((

X′

iβ+Q′

Si
βQ−t(τ)+v1

s

)
/
√
σω11

)

Φ
((

X′

iβ+Q′

Si
βQ+v1

s

)
/
√
σω11

) fµ1v1(µ1
s, v

1
s | Xβγ

i )dµ1
sdv

1
sdG

(
Xβγ

i | P 0
i = 1

) ,

where we use normality in the last line. One obtains an analogous expression for the X ′γ model. We

approximate with sample analogues.
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Table A1
Probit Model for Public School Attendance

Full Sample

Probit Coefficient Confidence Interval Marginal Effect
Constant 6.9115 ( 5.2224,8.3849) -
Male -0.0850 (-0.2148,0.0499) -0.0088
Hispanic 0.2217 (-0.0457,0.6413) 0.0199
Black 0.0998 (-0.2244,0.4734) 0.0097

Parental Background
Catholic -0.5134 (-0.7277,-0.3341) -0.0533
Both Parents Present -0.2170 (-0.3689,-0.0704) -0.0225
Father’s Education -0.0511 (-0.0920,-0.0161) -0.0053
Mother’s Education -0.0480 (-0.0757,-0.0166) -0.0050
log Income -0.2873 (-0.4044,-0.1598) -0.0299
Limited English Proficiency -0.2668 (-0.8844,0.7181) -0.0277

8th Grade Tests and Grades
Reading Score -0.0160 (-0.0250,-0.0053) -0.0017
Math Score 0.0019 (-0.0097,0.0099) 0.0002
Science Score 0.0095 (-0.0000,0.0198) 0.0010
History Score -0.0090 (-0.0185,0.0027) -0.00093
Grades Composite 0.0240 (-0.1135,0.1868) 0.0025
8th Grade Behavior and Performance in School Measures
Delinquency Index 0.0149 (-0.0801,0.1063) 0.0016
Student Got into a Fight 0.0146 (-0.1302,0.1446) 0.00151
Student Performs Below Ability -0.1561 (-0.4008,0.1181) -0.01620
Student Rarely Completes Homework 0.3329 (0.0382,0.7047) 0.0346
Student Frequently Absent 0.0949 (-0.2655,0.4729) 0.0090
Student Inattentive in Class -0.1446 (-0.3916,0.1069) -0.0150
Student Frequently Disruptive -0.2273 (-0.5195,0.1177) -0.0236
Parent Believes Child has a
Behavioral Problem in School 0.1683 (-0.0987,0.5492) 0.01747
Repeated a Grade 0.1652 (-0.1687,0.4966) 0.0172
Dropout Risk Composite 0.0358 (-0.0570,0.1503) 0.0037
Lack of Effort Index 0.0072 (-0.0226,0.0403) 0.0008
Enrolled in Gifted Program 0.3878 (0.1982,0.6438) 0.0402

Location Measures
North East -0.1204 (-0.4706,0.2537) -0.0125
North Central 0.1106 (-0.3199,0.4863) 0.0115
South -0.1605 (-0.5984,0.1804) -0.0167
Urban -0.7436 (-1.0679,-0.4267) -0.0772
Suburban -0.2776 (-0.5373,-0.0102) -0.0288
Distance 0.9138 (0.2829,2.5733) 0.0949
Distance Squared -0.1779 (-0.7485,-0.0593) -0.0185

Notes: The sample size is 16483. Column 1 reports MLE probit coefficient estimates.Columns 2
and 3 report bootstrap estimates of the lower and upper bound of the 95% confidence interval. The
estimates account for correlation across students who attended the same 8th grades and/or high
schools. They are based on 1,000 bootstrap replications. The fourth column reports marginal effects
on the probability of attending public high school when X′β is 1.27588, which corresponds to the value
at which the probability of attending public high school equals the weighted mean (.899). The mode
also contains missing indicators for Distance,log family income in 1987 and an indicator that is one if
all test scores are missing. There is one indicator for missing data on Student performs below ability,
Student rarely completes homework, Student frequently absent, Student inattentive in class, and/or
Student frequently disruptive. NELS:88 base year to third year follow up panel weights are used.
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Table A2
Effects of Students Own Characteristics on Public High School Graduation

Linear Probability Models with HS Fixed Effects

Coefficient Confidence Interval
Male 0.0217 (0.0067,0.0371)
Hispanic 0.0076 (-0.0262,0.0461)
Black 0.0641 (0.0278,0.0940)

Parental Background
Catholic 0.0297 (0.0121,0.0445)
Both Parents Present 0.0119 (-0.0077,0.0324)
Father’s Education 0.0044 (0.0013,0.0074)
Mother’s Education 0.0008 (-0.0030,0.0045)
Log Family Income 0.0196 (0.0039,0.0341)
Limited English Proficiency 0.0827 (0.0284,0.1290)

8th Grade Tests and Grades
Reading 0.0003 (-0.0009,0.0013)
Math 0.0009 (-0.0002,0.0020)
Science 0.0004 (-0.0006,0.0015)
History 0.0003 (-0.0009,0.0014)
Grades Composite 0.0339 (0.0188,0.0490)
8th Grade Behavior and Performance in School Measures
Delinquency Index -0.0167 (-0.0290,-0.0044)
Student got Into a Fight -0.0175 (-0.0403,0.0039)
Student Performs Below Ability -0.0252 (-0.0640,0.0108)
Student Rarely Completes Homework -0.0900 (-0.1418,-0.0402)
Student Frequently Absent -0.1695 (-0.2213,-0.1185)
Student Inattentive in Class -0.0313 (-0.0707,0.0125)
Student Frequently Disruptive -0.0206 (-0.0652,0.0186)
Parent Believes Child has a
Behavioral Problem in School -0.0430 (-0.0794,-0.0044)
Repeated a Grade -0.1483 (-0.1950,-0.1041)
Dropout Risk Composite -0.0240 (-0.0363,-0.0116)
Lack of Effort Index -0.0012 (-0.0046,0.0021)
Enrolled in Gifted Program 0.0135 (-0.0032,0.0307)

Notes: Column 1 of the table reports weighted least squares estimates from a regression of high school
graduation with high school fixed effects included. Column 2 report the lower and upper bounds of
the 95 percent confidence interval. They are calculated from 1000 bootstrap replications. The model
also includes three missing data indicators see the note to Table A1. The sample is restricted to public
high school students, and the sample size used in the calculation is 10795. Schools with only one
sampled student are dropped. NELS:88 base year to 3rd follow up panel weights are used.
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