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Economy is a Village

The Roy Model

There are two occupations

hunter
fisherman

Fish and Rabbits are going to be completely homogeneous

No uncertainty in number you catch

Hunting is “easier” you just set traps



Let

πF be the price of fish
πR be the price of rabbits
F number of fish caught
R number of rabbits caught

Wages are thus

WF = πF F
WR = πRR

Each individual chooses the occupation with the highest wage

Thats it, that is the model
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Key questions:

Do the best hunters hunt?
Do the best fisherman fish?

It turns out that the answer to this question depends on the
variance of skill-nothing else

Whichever happens to have the largest variance in logs will
tend to have more sorting.

In particular demand doesn’t matter



To think of this grahically note that you are just indifferent
between hunting and fishing when

log(πR) + log(R) = log(πF ) + log(F )

which can be written as

log(R) = log(πF )− log(πR) + log(F )

If you are above this line you hunt

If you are below it you fish



a0 = log(πF )− log(πR)





Case 1: No variance in Rabbits

Suppose everyone catches R∗

If you hunt you receive W ∗ = πRR∗

Fish if F > W∗
πF

Hunt if F ≤ W∗
πF

The best fisherman fish
All who fish make more than all who hunt





Case 2: Perfect correlation

Suppose that
log(R) = α0 + α1 log(F )

with α1 > 0
var(log(R)) = α2

1var(log(F ))

Fish if

log(WF ) ≥ log(Wr )

log(πF ) + log(F ) ≥ log(πR) + log(R)

log(πF ) + log(F ) ≥ log(πR) + α0 + α1 log(F )

(1− α1) log(F ) ≥ log(πR) + α0 − log(πF )



If α1 < 1 then left hand side is increaing in log(F ) meaning that
better fisherman are more likely to fish

This also means that the best hunters fish

If α1 > 1 pattern reverses itself







Case 3: Perfect Negative Correlation

Exactly as before

(1− α1) log(F ) ≥ log(πR) + α0 − log(πF )





Best fisherman still fish

Best hunters hunt



Case 4: Log Normal Random Variables

Lets try to formalize all of this

assume that
(log(R), log(F )) ∼ N (µ,Σ)

where

µ =

[
µF
µR

]
Σ =

[
σFF σRF
σRF σRR

]
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Normal Random Variables

Lets stop for a second and review some properties of normal
random variables

Sum of Normals is Normal
Described by first and second moments perfectly
If u ∼ N(0,1)then

E(u | u > k) =
φ(k)

1− Φ(k)

≡ λ(−k)

the inverse mills ratio



Putting the first two together there is a regression interpretation

Take any two normal variables (u1,u2) we can write

u2 = α0 + α1u1 + ξ

as a regression with ξ normally distributed with 0 mean and
independent of u1

Notice that by definition

cov(u1,u2) = cov(u1, α0 + α1u1 + ξ)

= α1var(u1)

Therefore

α1 =
cov(u1,u2)

var(u1)

α0 = E(u2)− α1E(u1)



This last thing is the basis of the Heckman Two step

Suppose that

Y ∗1 = X ′β + u1

Y2 = Z ′γ + u2

we observe d which is one if Y ∗1 > 0 and zero otherwise.



Assume first part is a probit so u1 ∼ N(0,1)

So
Y2 = Z ′γ + α0 + α1u1 + ξ

Furthermore α0 = 0 if E(u1) = E(u2) = 0

Then

E(Y2 | X ,Z ,d = 1)

=E(Y2 | X ,Z ,u1 = −X ′β)

=Z ′γ + α1E(u1 | X ,Z ,u1 = −X ′β) + E(ξ | X ,Z ,u1 = −X ′β)

=Z ′γ + α1λ(X ′β)



Back to the Roy Model

Lets use this idea for the Roy model

Fish if
log (πF ) + log (F ) > log (πR) + log (R)

The question is what is

E (log (πF ) + log (F ) | log (πF ) + log (F ) > log (πR) + log (R))?

If it is bigger than log (πF ) + µF then best fishermen fish (on
average)



For j ∈ {R,F} ,let

aj = log
(
πj
)

+ µj

uj = log(j)− µj

Then

E (log (πF ) + log (F ) | log (πF ) + log (F ) > log (πR) + log (R))

= E (aF + uF | aF + uf > aR + uR)

= af + E (uF | uF − uR > aR − aF )



Now think of the regression of uF on uF − uR

uF = α (uF − uR) + ω

where

α =
cov(uF ,uF − uR)

var(uF − uR)

=
σFF − σFR

σ2

σ2 = var(uF − uR)



So

E (uF | uF − uR > aR − aF ) =E (α (uF − uR) + ω | uF − uR > aR − aF )

=ασE
(

uF − uR

σ
| uF − uR

σ
>

aR − aF

σ

)
=ασλ

(
aF − aR

σ

)
=
σFF − σFR

σ
λ

(
aF − aR

σ

)
The question boils down to the sign of this object.



If it is positive then positive selection into fishing

But σ > 0 and λ () > 0,so the question is about the sign of

σFF − σFR



Notice that

Var(log(F )− log(R)) = σFF + σRR − 2σFR

= [σFF − σFR] + [σRR − σFR]

> 0

One of these must be positive.

Thus if σFF > σRR there is positive selection into fishing

Hunters could go either way depending on σRR − σFR

If covariance is negative or zero, positive selection into
hunting
If correlation between the two is high enough, selection is
negative
In particular if they are perfectly correlated

σFR =
√
σRR
√
σFF > σRR
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How do we think about identifying this model?

This is discussed in Heckman and Honore (EMA, 1990)

We will follow the discussion of this in French and Taber (HLW,
2011) fairly closely

Lets think about how we would estimate the model

Suppose we have data on Occupation and Wages from a cross
section

with

WF = πF F
WR = πRR

Can we identify G(F ,R)- the joint distribution of F and R?



First a normalization is in order.

We can redefine the units of F and R arbitrarily

Lets normalize
πF = πR = 1

This still isn’t enough in general



From the data we can observe

G(R | R > F )

G(F | R ≤ F )

Lets think more generally about what identification means



Why is thinking about nonparametric identification
useful?

Speaking for myself, I think it is. I always begin a research
project by thinking about nonparametric identification.
Literature on nonparametric identification not particularly
highly cited-particularly by labor economists
At the same time this literature has had a huge impact on
the field. A Heckman two step model without an exclusion
restriction is often viewed as highly problematic these
days-presumably because of nonparametric identification
It is useful for telling you what questions the data can
possibly answer. If what you are interested is not
nonparametrically identified, it is not obvious you should
proceed with what you are doing



Definition of Identification
We follow Matzkin’s (2007) formal definition of identification and
follow her notation exactly

Let ς represent a model or data generating process. It is essentially a
combination of parameters, functions, and distribution functions
where S is the space of functions in which ς lies.

As an example consider the semiparametric regression model

Yi = X ′i β + εi

with
E(εi | Xi) = 0

In this case ς = (β,FX ,ε) where FX ,ε is the joint distribution
between Xi and εi

S is the set of permissible β and FX ,ε



The data we can potentially observe is the full joint distribution
of (Yi ,Xi)

Define

ΓY ,X (ψ,S) = {FY ,X (·; ς) | ς ∈ S and Ψ(ς) = ψ}.

ψ∗ ∈ Ω is identified in the model S if for any ψ ∈ Ω,[
ΓY ,X (ψ,S) ∩ ΓY ,X (ψ∗,S)

]
= ∅



So what the heck does that mean?

Basically Ψ(ς). Measures some feature of the model.

Interesting examples in our case are:

Ψ(ς) = ς

Ψ(ς) = β

Ψ(ς) = the effect of some policy counterfactual

From this, ΓY ,X (ψ,S) is the set of possible data distributions
that are consistent with the model and a given value Ψ(ς) = ψ

ψ∗ ∈ Ω is identified when there is no other value of ψ that is
consistent with the joint distribution of the data
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Before thinking about nonparametric identification, lets think
about parametric estimation

If you understand that, it will turn out that the nonparametric
identification is analogous.

French and Taber focus on the labor supply case, and we will
as well

That is let

Yfi = X ′0iγ0f + X ′fiγff + εfi

Yhi = X ′0iγ0h + X ′hiγhh + εhi[
εfi
εhi

]
= N

([
0
0

]
,

[
σ2

f σfh
σfh σ2

h

])
.

But we will take Yfi to be market production and Yhi to be
market production so the individual works if Yfi > Yhi



The econometrician gets to observe whether the individual
works, and if they work they observe the wage

The key distinction between this and the more general Roy
model is that the econometrician does not observe Yhi for
people who do not work (which seems reasonable in the labor
supply problem)

We can estimate this model in 4 steps:

We could also just estimate the whole thing by MLE, but looking
at the steps makes what is going on clearer (at least for me)



Step 1: Estimation of Choice Model

The probability of choosing Ji = f is:

Pr ( Ji = f | Xi = x) = Pr (Yfi > Yhi | Xi = x)

= Pr
(
x ′0γ0f + x ′fγff + εfi > x ′0γ0h + x ′hγhh + εhi

)
= Pr

(
x ′0 (γ0f − γ0h) + x ′fγff − x ′hγhh > εhi − εfi

)
= Φ

(
x ′0 (γ0f − γ0h) + x ′fγff − x ′hγhh

σ∗

)
= Φ

(
x ′γ∗

)
where Φ is the cdf of a standard normal, σ∗ is the standard
deviation of (εhi − εfi) (recall that if εfi , εhi normal, then (εhi − εfi)
normal) and

γ∗ ≡
(
γ0f − γ0h

σ∗
,
γff

σ∗
,
−γhh

σ∗

)
.



From the choice model alone we can only identify γ∗

This is referred to as the “reduced form probit”

can be estimated by maximum likelihood as a probit model

Let γ̂∗ represent the estimated parameter.



Step 2: Estimating the Wage Equation
This is essentially the second stage of a Heckman two step. To
review the idea behind that, let

ε∗i =
εhi − εfi

σ∗

Then consider the regression

εfi = τε∗i + ζi

where cov
(
ε∗i , ζi

)
= 0 (by definition of regression) and thus:

τ =
cov

(
εfi , ε

∗
i
)

var
(
ε∗i
)

= E
[
εfi

(
εfi − εfi

σ∗

)]
=

σ2
f − σfh

σ∗



Now notice that

E (Yi | Ji = f ,Xi = x) = x ′0γ0f + x ′fγff + E (εfi | Ji = f ,Xi = x)

= x ′0γ0f + x ′fγff + E
(
τε∗fi + ζi | ε∗i > x ′γ∗

)
= x ′0γ0f + x ′fγff + τE

(
ε∗fi | ε

∗
i > x ′γ∗

)
= x ′0γ0f + x ′fγff + τλ

(
x ′γ∗

)
where λ (x ′γ∗) = φ(x ′γ∗)

(1−Φ(x ′γ∗)) is the inverse Mills ratio.

OLS of Yi on X0i , Xfi , and λ
(

X ′i γ̂∗
)

gives consistent estimates
of γ0f , γff , and τ

Since λ is a nonlinear function we don’t have to have an
exclusion restriction



Step 3: The Structural Probit

Our next goal is to estimate γ0h and γhh. Note that at this point
we have shown how to obtain consistent estimates of

γ∗ ≡
(
γ0f − γ0h

σ∗
,
γff

σ∗
,
−γhh

σ∗

)
But from the Heckman Two step we got a consistent estimates
of γ0f and γff

Thus analogous to Method 1 above, as long as we have an
exclusion restriction Xfi we can identify σ∗

Once we have σ∗ it is easy to see how to identify γhh and γ0h

In terms of estimation of these objects the typical way is like the
second step described above.



We can estimate the “structural probit:”

Pr(Ji = f | Xi = x) = Φ

(
1
σ∗
(
x ′0γ0f + x ′fγff

)
− x ′0

γ0h

σ∗
− x ′h

γhh

σ∗

)
.

(1)
That is one just runs a probit of Ji on

(
X ′0i γ̂0f + X ′fi γ̂ff

)
, X0i , and

Xhi .

Again for identification we need an Xfi



Step 4: Identification of the Variance Covariance
Matrix of the Residuals

Lastly, we identify all the components of Σ, (σ2
f , σ

2
h, σfh) as

follows. First, we have identified (σ∗)2 = σ2
f + σ2

h − σ2
fh. Second,

we have identified τ =
σ2

f −σfh
σ∗ . This gives us two equations in

three parameters. We can obtain the final equation by using the
variance of the residual in the selection model since as
Heckman and Honore point out

σ2
f = Var(Yi | Ji = f ,Xi = x)− τ2

(
λ(x ′γ∗)x ′γ∗ − λ2(x ′γ∗)

)
σfh = σ2

f − τσ
∗

σ2
h = σ∗2 − σ2

f + 2σfh.
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Nonparametric Identification

Next we consider nonparametric identification of the Roy model

We consider the model

Yfi = gf (Xfi ,X0i) + εfi

Yhi = gh(Xhi ,X0i) + εhi ,

where the joint distribution of (εfi , εhi) is G.



The formal assumptions can be found in Heckman and Honore
or my chapter with French, but let me mention two

I get some normalizations, I am going to normalize the medians
of εfi and εfi − εhi to zero

The really strong assumption is
supp(gf (Xfi , x0),gh(Xhi , x0)) = R2 for all x0 ∈ supp(X0i).



Step 1: Identification of Choice Model

This part is well known in a number of papers (Manski and
Matzkin being the main contributors) We can write the model as

Pr(Ji = f | Xi = x) = Pr(εih − εif ≤ gf (xf , x0)− gh(xh, x0))

= Gh−f (g∗(x)),

where Gh−f is the distribution function for εih − εif and
g∗(x) ≡ gf (xf , x0)− gh(xh, x0).



Given data only on choices, the model is only identified up to a
monotonic transformation. Let M be any strictly increasing
function, then

g∗(Xi) ≥ εih − εif

if and only if
M(g∗(Xi)) ≥ M(εih − εif ).



A very convenient normalization is to choose the uniform
distribution for εih − εif .

Note that for any random variable ε with cdf F ,

F (x) ≡ Pr(ε ≤ x)

= Pr(F (ε) ≤ F (x))

Thus F (ε) has a uniform distribution.



This is a really nice normalization, we let M be Gh−r and define

ε̂i = Gh−r (εih − εif )

ĝ∗(x) = Gh−r (g∗(x))

Then

Pr(Ji = f | Xi − x) = Pr(εih − εif < g∗(x))

= Pr(Gh−r (εih − εif ) < Gh−r g∗(x))

= Pr(ε̂i < ĝ∗(x))

= ĝ∗(x).

Thus we have thus established that we can write the model as
Ji = f if and only if ĝ∗(Xi) > ε̂i where ε̂i is uniform (0,1) and
that ĝ∗ is identified.



Step 2: Identification of the Wage Equation gf

Next consider identification of gf . This is basically the standard
selection problem.

Notice that we can identify the distribution of Yf conditional on
(Xi = x , Ji = f .)

In particular we can identify

Med(Yi | Xi = x , Ji = f ) =gf (xf , x0)

+ Med(εfi | ε̂i < ĝ∗(x)).



An exclusion restriction is key.

For any (xa
f , x

a
0 ) and (xb

f , x
b
0 ) if I can find values of xa

h and xb
h

such that
ĝ∗(xa) = ĝ∗(xb)

where xa = (xa
0 xa

f , x
a
h ) and xb = (xb

0 xb
f , x

b
h )

then

Med(Yi | Xi = xa, Ji = f )−Med(Yi | Xi = xb, Ji = f )

=gf (xa
f , x

a
0 )− gf (xa

f , x
a
0 )

+ Med(εfi | ε̂i < ĝ∗(xa))−Med(εfi | ε̂i < ĝ∗(xb))

=gf (xa
f , x

a
0 )− gf (xa

f , x
a
0 )



Identification at Infinity

What about the location?

Notice that

lim
ĝ∗(x)→1

Med(Yfi | Xi = x , J = f )

= gf (xf , x0) + lim
ĝ∗(x)→1

Med(εfi | ε̂i < ĝ∗(x))

= gf (xf , x0) + Med(εfi | ε̂ < 1)

= gf (xf , x0) + Med(εfi)

= gf (xf , x0).

Thus we are done.



Another important point we want to make is that the model is
not identified without identification at infinity.

To see why suppose that ĝ∗(Xfi ,Xri ,X0i)) is bounded from
above at gu then if ε̂i > gu, Ji = r . Thus the data is completely
uninformative about the distribution of Yfi conditional on ε̂i > gu

so the model is not identified.

Parametric assumptions on the distribution of the error term is
an alternative.

Really this is the same point as in the regression example we
talk about to undergraduates-you can not predict outside the
range of the data.

Whether it is a big deal or not depends on the question of
interest.



Step 3: Identification of gh

What will be crucial is the other exclusion restriction (i.e. Xfi ).

Recall that

Pr(Ji = f | Xi = (xf , xr , x0)) = Pr (εhi − εfi ≤ gf (xf , x0)− gh(xh, x0))

But note that this is a cdf and that the median of εhi − εfi is 0

This means that when

Pr(Ji = f | Xi = (xf , xr , x0)) = 0.5,

gh(xh, x0) = gf (xf , x0).

Since gf is identified, clearly gh is identified from this
expression.



Step 4: Identification of G

To identify the joint distribution of (εfi , εhi) note that from the
data one can observe

Pr(Ji = f , log(Yfi) < s | Xi = x)

= Pr(gh(xh, x0) + εhi ≤ gh(xh, x0) + εhi ,gf (xf , x0) + εfi ≤ s)

= Pr(εhi − εfi ≤ gf (xf , x0)− gh(xh, x0), εfi ≤ s − gf (xf , x0))

which is the cumulative distribution function of (εhi − εfi , εfi)
evaluated at the point (gf (xf , x0)− gr (xr , x0), s − gf (xf , x0))

Thus we know the joint distribution of (εhi − εfi , εfi)

from this we can get the joint distribution of (εfi , εhi).


	Basic Model
	Implications of Model
	Normal Random Variables
	Identification
	Parametric Roy Model
	Nonparametric Identification of Roy Model

