Explaining Rising Wage Inequality: Explorations With a Dynamic General Equilibrium Model of Labor Earnings with Heterogeneous Agents

James J. Heckman, Lance Lochner, and Christopher Taber

February 17, 2014

Large increase in earnings inequality in last 20-30 years due to increases in the "Returns to Skill"

In response to these changes, many polices that promote skill formation have been formulated

We develop a dynamic GE model of schooling and OJT

- Skill-biased technical change yields results that match the recent rise in wage inequality
- Prices do not equal wages inequality growth largest for young workers
- Cross-section estimates of rates of return are misleading

Outline

"Micro" model of schooling and On-The-Job Training

Extending the model to general equilibrium

Empirical methodology and estimates of the model

The changing wage structure

Conclusions and Extensions

A model of Schooling and On the Job Training

An individual chooses human capital investment through school and on the job to maximize the present value of after-tax earnings

$$V^{S}(\theta) = \sum_{a=1}^{\overline{a}} \left(\frac{1}{1+r}\right)^{a} E_{a}$$

We allow individuals to choose between two schooling levels, High School and College. We follow them at the end of high school.

Once they enter the labor force they spend a fraction of their time, I_a^S , on the job investing in human capital, and the rest working.

The earnings in school group S at age a are

$$E_a^S = R_a^S H_a^S \left(1 - I_a^S\right),$$

where R_a^S is the rental rate on human capital and H_a^S is the stock of human capital.

Human capital on the job is produced according to the production function

$$H_{a+1}^{\mathcal{S}} = A^{\mathcal{S}}(\theta)I_a^{\alpha_{\mathcal{S}}}H_a^{\beta_{\mathcal{S}}} + (1 - \sigma^{\mathcal{S}})H_a^{\mathcal{S}}.$$

We add heterogeneity to the model by assuming that persons can be indexed by θ . We allow the initial stock of human capital in each schooling group, $H_0^S(\theta)$ and the productivity parameter in human capital $A^S(\theta)$ to depend on θ .

For each θ we can solve for the optimal level of human capital investment over the lifecycle and form $V^S(\theta)$.

People choose schooling to maximize lifetime utility

$$\hat{S} = \operatorname{argmax}[V^{S}(\theta) - D^{S} - \varepsilon^{S}],$$

where D^S is the present value of direct costs of schooling, and ε^S is the nonpecuniary benefits of schooling.

The distribution of ε^{S} may depend on θ .

Individuals make savings and consumption choices to maximize utility

$$\sum_{a=1}^{\overline{a}} \delta^a \frac{C_a^{\gamma} - 1}{\gamma}$$

subject to the budget constraint,

$$\sum_{a=1}^{a} \left(\frac{1}{1+r}\right)^{a} C_{a} = V^{S}(\theta) - D^{S}.$$

Embedding the model in a General Equilibrium Framework

- Skill is perfectly substitutable across ages, but not substitutable across schooling groups.
- There are three factors of production High School Human Capital, College Human Capital, and Physical Capital.
- The model is embedded in an Auerbach- Kotlikoff style overlapping generations model.

Each period there are \overline{a} cohorts.

We assume that the distribution of heterogeneity θ is identical within cohorts.

We obtain aggregate stocks according to

$$\begin{split} \bar{H}^{S}_{t} &= \sum_{t_{c}=t-a_{R}}^{t-1} \int H^{S}_{t-t_{c}}(\theta, P_{t_{c}}) (1 - I^{S}_{t-t_{c}}(\theta, P_{t_{c}})) N^{S}(\theta, t_{c}) dG(\theta) \\ \bar{K}_{t} &= \sum_{t_{c}=t-a_{R}}^{t-1} \int \sum_{s=1}^{\bar{S}} K^{S}_{t-t_{c}}(\theta, P_{t_{c}}) N^{S}(\theta, P_{t_{c}}) dG(\theta). \end{split}$$

Demand Side of Model

We assume a competitive economy with aggregate production function

$$F_t\left(\bar{H}_t^1,\bar{H}_t^2,\bar{K}_t\right)$$
.

The rental rates in each period thus take the form,

$$\partial \mathcal{F}_{t}\left(ar{\mathcal{H}}_{t}^{1},ar{\mathcal{H}}_{t}^{2},ar{\mathcal{K}}_{t}
ight)$$

$$R_t^1 = rac{\partial F_t\left(ar{H}_t^1, ar{H}_t^2, ar{K}_t
ight)}{\partial ar{H}_t^1}$$

$$egin{array}{lcl} R_t^1 &=& rac{\partial F_t \left(ar{H}_t^1, ar{H}_t^2, ar{K}_t
ight)}{\partial ar{H}_t^1} \ R_t^2 &=& rac{\partial F_t \left(ar{H}_t^1, ar{H}_t^2, ar{K}_t
ight)}{\partial ar{H}_t^2} \ r_t &=& rac{\partial F_t \left(ar{H}_t^1, ar{H}_t^2, ar{K}_t
ight)}{\partial ar{K}_t} \end{array}$$

Estimating the Human Capital Production Function

- We use wage and schooling data on white males from the NLSY
- We assume that there are four observable θ types which we define according to AFQT quartile.
- We assume that the interest rate is fixed at r = 0.05 and that rental rates are fixed and normalized to one.

For any given (a, θ, S) and any set of parameters π we can calculate the optimal wage

$$w(a, \theta, S; \pi)$$
.

We assume that these wages are measured with error and we estimate the parameters, π , using nonlinear least squares, minimizing

$$\sum_{i=1}^{N} \sum_{a} \left(w_{i,a}^* - w(a,\theta,S;\pi) \right)^2$$

where $w_{i,a}^*$ is the observed wage.

S=1,2	, , ,
High School $(S=1)$	College $(S=2)$
0.945(0.017)	0.939(0.026)

Human Capital Production $H_{a+1}^{S} = A^{S}(\theta)I_{as}^{\alpha_{S}}H_{as}^{\beta_{S}} + (1-\sigma)H_{as}^{S}$

$$0.832(0.253)$$
 $0.871(0.343)$ $0.081(0.045)$ $0.081(0.072)$

 α β

A(1)

A(2)

A(4)

 $H_{a_R}(4)$

 $H_{a_R}(1)$

 $H_{ap}(2)$ A(3) $H_{a_{R}}(2)$

<i>3.000(0.003)</i>	13.022(0.
0.085(0.053)	0.082(0.0
12.074(0.403)	14.759(0.

12.650(0.534)

0.000(0.000)	0.002(0.011)
12.074(0.403)	14.759(0.931)
0.087(0.056)	0.082(0.077)

12.01 1(0.100)	14.703(0.301)		
0.087(0.056)	0.082(0.077)		
13 525(0 477)	15 614(0 909)		

18.429(1.095)

Figure 1: Predicted vs Actual Hourly Wages (in 1992 dollars) by AFQT Quartile (High School Category)

Figure 2: Predicted vs Actual Hourly Wages (in 1992 dollars) by AFQT Quartile (College Category)

Figure 3A: Comparison of Mincer vs. Estimated Investment Profiles High School

Figure 3B: Comparison of Mincer vs. Estimated Investment Profiles College

school graduates, $\widehat{V_{\scriptscriptstyle A}^{\mathcal{S}}}$.

Given these estimated parameters, we can obtain the present value of earnings for each type as college graduates or high

and Schooling Decision Units are thousands of Dollars

TT . O '4 1 D 1 4'

	numan Capital Production	
	High School $(S=1)$	College $(S=2)$
$H^S(1)$	8.042(0.0.094)	11.117(0.424)
0		

 $H^{S}(2)$ 10.0634(0.118) 12.271(0.325) $H^{S}(3)$ 11.1273(0.155) 12.960(0.272) $H^{S}(4)$ 10.361(0.234) 15.095(0.323)

Present Value Earnings 1

Present Value Earnings 2

Present Value Earnings 3

Present Value Earnings 4

325.966(5.075)

College Decision: Attend College if

260.304(3.939)

335.977(8.453)

360.717(6.352)

289.618(12.539)

319.302(10.510)

337.260(9.510)

393.138(11.442)

We assume that the nonpecuniary tastes for college are normally distributed, so

$$\mathsf{Pr}\left(\mathsf{Coll}\mid D^{\mathcal{S}}, heta
ight) = \Phi\left(rac{(\mathsf{1}- au)\left(V_{ heta}^2 - V_{ heta}^{\mathsf{1}}
ight) - D^{\mathcal{S}} + \mu_{ heta}}{\sigma_{arepsilon}}
ight)$$

Using data on state tuition we estimate this model as a probit.

Probit **Parameters**

College Choice Equation $P(\delta^2 = 1) = \Lambda(-\lambda D^2 + \alpha(\theta))$

λ 0.166(0.062) $\alpha(1)$

-1.058(0.097)-0.423(0.087)

 $\alpha(2)$ $\alpha(3)$ 0.282(0.089) $\alpha(4)$

1.272(0.101)

Sample Size:

Persons

Person Years

869 7996

(1) D^2 is the discounted tuition cost of attending college.

(2) $\alpha(\theta)$ is the nonparametric estimate of $(1-\tau)[V^2(\theta)-V^1(\theta)]$ the monetary

Average

Derivatives

-0.0655(0.025)

0.249(0.037)

0.490(0.029)

0.715(0.018)

$(1-\tau)V^{2}(\theta) - D^{2} + \varepsilon_{i} \ge (1-\tau)V^{1}(\theta)$ $\varepsilon_{\theta} \sim N(\mu_{\theta}, \sigma_{\varepsilon})$			
σ_{ε} (Std. deviation of ε)	22.407(8.425)		
Nonpecuniary costs by ability level			
μ_1 (Lowest Ability Quartile)	-53.0190(16.770)		
μ_2	-2.8173(12.760)		

College Decision: Attend College if

(Second Ability Quartile) 29.7712(11.540) μ_3 (Third Ability Quartile)

(1) $V^{i}(\theta)$ is the monetary value of going to schooling level i for a person of AFQT quartile t

-28.6494(16.966) μ_4

(Highest Ability Quartile)

Estimating/Calibrating Utility and Aggregate Production Parameters

We take

$$\delta = 0.96$$

$$\gamma = 0.10$$

We calibrate the model to "look like" the NLSY in the original steady state:

$$r = 0.05$$

 $R^1 = 2.00$
 $R^2 = 2.00$

In order to match the capital-output ratio, we need a transfer from old cohorts to young. We take an exogenous transfer from a cohort as it retires and give it to a new cohort as it is born. This transfer is approximately \$30,000.

We estimate a nested CES production function allowing for a linear time trend in $log[a_1/(1-a_1)]$

$$a_3 \left(a_2 \left(a_1 (ar{H}_t^1)^{
ho_1} + (1-a_1) (ar{H}_t^2)^{
ho_1}
ight)^{
ho_2/
ho_1} + (1-a_2) ar{K}_t^{
ho_2}
ight)^{1/
ho_2}$$

duction Function ations (III-1) and (III-2)

Table 3

(Standard Errors in Parentheses)

Time

Trend

0.036

(0.004)

0.039

(0.005)

0.041

(0.004)

0.036

(0.006)

 ρ_2

-0.034

(0.200)

-0.036

(0.200)

-0.171

(0.815)

0.364

(1.150)

Implied

Elasticity of

Substitution (σ_2)

0.967

(0.187)

0.965

(0.187)

0.854

(0.594)

1.572

(2.842)

Time

Trend

-0.004

(0.007)

-0.004

(0.007)

-0.008

(0.024)

0.007

(0.034)

Implied

Elasticity of

Substitution (σ_1)

1.441

(0.185)

1.264

(0.215)

1.186

(0.175)

1.484

(0.400)

Estimates of Ag	gregate Prod
Estimated from Factor 1	Demand Equa
	1965_1990

 ρ_1

0.306

(0.089)

0.209

(0.134)

0.157

(0.125)

0.326

(0.182)

Instruments

OLS (Base Model)

Percent Working Pop. < 30

& Defense Percent of GNP

Percent Working Pop. < 30

Defense Percent of GNP

Allowing for Technical Progress Through a Linear Trend

We use $\rho_1 = 1.441$ and $\rho_2 = 0$ based on those estimates.

We calibrate (a_1, a_2, a_3) and the transfer to yield prices (r, R^1, R^2) and a capital-output ratio of 4 in the initial steady state.

Skill-Biased Technical Change

- Economy Starts in Steady State based on NLSY
- Unexepected shock resulting in a constant decline in $log[a_1/(1-a_1)]$ for 30 years
- Declines by 3.6% as in our estimates
- Perfect foresight
- Transition period of 200 years

Figure 5: Estimated Trend in a_1 for 30 years

Figure 6: Estimated Trend in a_1 for 30 years

In response to change in relative demand for college graduates

- Increased enrollment in college
- Adjustment occurs only for Young, old do not return to college
- Young "overcompensate" for old
- As old die off, there is an oversupply of college graduates
- Return to College Falls
- This Yields Cycles

Figure 11A: Estimated Trend in a_1 for 30 years

Figure 11B: Estimated Trend in a_1 for 30 years

Figure 10: Estimated Trend in a_1 for 30 years

Figure 20: Estimated Trend in a_1 for 30 years Baby boom (Expansion of Cohort Size by 32%) between years 1965-80

TABLE I

TABLE I U. S. Real Weekly Wage Changes For Full-Time Workers, 1963–1987				
	Change in log average real weekly wage (multiplied by 100)			
Group	1963–1971	1971–1979	1979–1987	1963–1987
All	19.2	-2.8	-0.3	16.1
Gender:				
Men	19.7	-3.4	-2.4	13.9
Women	17.6	-0.8	6.1	22.9
Education (years of schooling):				
8–11	17.1	0.3	-6.6	10.9
12	16.7	1.4	-4.0	14.1
13–15	16.4	-3.4	1.5	14.4
16+	25.5	-10.1	7.7	23.1
Experience (men):				
1–5 years	17.1	-3.5	-6.7	6.8
26–35 years	19.4	-0.6	0.0	18.8
Education and Experience (men): Education 8–11				
Experience 1–5	20.5	1.5	-15.8	6.2
Experience 26–35	19.3	-0.4	-1.9	17.0
Education 12				
Experience 1–5	17.4	0.8	-19.8	-1.6
Experience 26–35	14.3	3.2	-2.8	14.7
Education 16+				
Experience 1–5	18.9	-11.3	10.8	18.4
Experience 26–35	28.1	-4.0	1.8	25.9

The Effects of Skill-Biased Technology Change

- Movements in measured wages are different from movements in skill prices, especially for young workers
- Without intervention, economy converges to a new steady state with lower wage inequality than before the technology change
- In the long run, society is richer and all types are better off.
 In the short run, low ability/low skilled workers caught in the transition are worse off.
- In the new steady state, there are more high skilled workers, but human capital per skilled worker is lower
- During transition periods, cross-section estimates of "returns" to skill are substantially different from the actual returns faced by cohorts making educational decisions

Summary

- We develop an empirically-grounded dynamic overlapping generations general-equilibrium model of skill formation with heterogeneous human capital
- Model roughly consistent with changing wage structure
- We distinguish between effects measured in a cross-section and the effects on different cohorts