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Difference in Differences

We want to address one particular problem with many
implementations of Difference in Differences

Often one wants to evaluate the effect of a single state or a
few states changing/introducing a policy

A nice example is the Georgia HOPE Scholarship Program-a
single state operated as the treatment



Simple Case

Assuming simple case (one observation per state×year no
regressors):

Yjt = αTjt + θj + γt + ηjt

Run regression of Yjt on presence of program (Tjt), state
dummies and time dummies



Simple Example

Suppose there is only one state that introduces the program at
time t∗

Denote that state as j = 1

It is easy to show that (with balanced panels)
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If
E (ηjt | djt, θj, γt,Xjt) = 0.

it is unbiased.



However, this model is not consistent as N →∞ because the
first term never goes away.

On the other hand, as N →∞ we can obtain a consistent
estimate of the distribution of
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so we can still do inference (i.e. hypothesis testing and
confidence interval construction) on α.

This places this work somewhere between small sample
inference and Large Sample asymptotics



Base Model

Most straightforward case is when we have 1 observation per
group×year as before with

Yjt = αTjt + X′jtβ + θj + γt + ηjt



Generically define Z̃jt as residual after regressing Sjt on group
and time dummes

Then
Ỹjt = αT̃jt + X̃′jtβ + η̃jt.

“Difference in Differences” is just OLS on this regression
equation



We let N0 denote the number of “treatment” groups that change
the policy (i.e. djt changes during the panel)

We let N1 denote the number of “control” groups that do not
change the policy (i.e. Tjt constant)

We allow N1 →∞ but treat N0 as fixed



Proposition

Under Assumptions 1.1-1.2, As N1 →∞ : β̂
p→ β and α̂ is

unbiased and converges in probability to α+ W, with:
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Bad thing about this: Estimator of α is not consistent

Good thing about this: We can identify the distribution of
α̂− α.

As a result we can get consistent estimates of the distribution of
α̂ up to α.



To see how the distribution of
(
ηjt − ηj

)
can be estimated, notice

that for the controls

Ỹjt − X̃′jtβ̂ = X̃′jt(β̂ − β) +
(
ηjt − ηj − ηt + η

)

p→
(
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)

So the distribution of
(
ηjt − ηj

)
can be approximated by using

residuals from control groups



Practical Example

To keep things simple suppose that:

There are two periods (T = 2)
There is only one “treatment state”
Binary treatment (T11 = 0,T12 = 1)



Now consider testing the null: α = 0

First run DD regression of Yjt on Tjt, Xjt,time dummies and
group dummies
The estimated regression equation (abusing notation) can
just be written as

∆Yj = γ̂ + α̂∆Tj + ∆X′j β̂ + vj

Construct the empirical distribution of vj using control
states only
now since the null is α = 0 construct

v1(0) = ∆Y1 − γ̂ −∆X′1β̂

If this lies outside the 0.025 and 0.975 quantiles of the
empirical distribution you reject the null







With two control states you would just get

v1(α∗) + v2(α∗)

and simulate the distribution of the sum of two objects

With T > 2 and different groups that change at different points
in time, expression gets messier, but concept is the same



Model 2

More that 1 observation per state×year

Repeated Cross Section Data (such as CPS):

Yi = αTj(i)t(i) + X′iβ + θj(i) + γt(i) + ηj(i)t(i) + εi.



We can rewrite this model as

Yi = λj(i)t(i) + Z′iδ + εi

λjt = αTjt + X′jtβ + θj + γt + ηjt

Suppose first that the number if individuals in a (j, t) cell is
growing large with the sample size.

In that case one can estimate the model in two steps:

First regress Yi on Zi and (j, t) dummies-this gives us a
consistent estimate of λjt

Now the second stage is just like our previous model



Application to Merit Aid programs

We start with Georgia only

Column (1)

As was discussed above:

Run regression of Yi on Xi and fully interacted state×year
dummies
Then run regression of estimated state×year dummies on
djt, state dummies and time dummies
Get estimate of α̂
Using control states simulate distribution of α̂ under
various null hypothesese
Confidence intervals is the set of nulls that are not rejected



Table 1

Estimates for

Effect of Georgia HOPE Program on College Attendance
A B C

Linear Logit Population Weighted
Probability Linear Probability

Hope Scholarship 0.078 0.359 0.072

Male -0.076 -0.323 -0.077

Black -0.155 -0.673 -0.155

Asian 0.172 0.726 0.173

State Dummies yes yes yes

Year Dummies yes yes yes

95% Confidence intervals for Hope Effect

Standard Cluster by State×Year (0.025,0.130) (0.119,0.600) (0.025, 0.119)
[0.030,0.149]

Standard Cluster by State (0.058,0.097) (0.274,0.444) (0.050,0.094)
[0.068,0.111]

Conley-Taber (-0.010,0.207) (-0.039,0.909) (-0.015,0.212)
[-0.010,0.225]

Sample Size

Number States 42 42 42

Number of Individuals 34902 34902 34902

Note: Confidence intervals for parameters are presented in parentheses. We use the �Γ∗ formula to
construct the Conley-Taber standard errors. Brackets contain a confidence interval for the program
impact upon a person whose college attendance probability in the absence of the program would be
45%.



Table 2

Estimates for

Merit Aid Programs on College Attendance
A B C

Linear Logit Population Weighted
Probability Linear Probability

Merit Scholarship 0.051 0.229 0.034

Male -0.078 -0.331 -0.079

Black -0.150 -0.655 -0.150

Asian 0.168 0.707 0.169

State Dummies yes yes yes

Year Dummies yes yes yes

95% Confidence intervals for Merit Aid Program Effect

Standard Cluster by State×Year (0.024,0.078) (0.111,0.346) (0.006,0.062)
[0.028,0.086]

Standard Cluster by State (0.028,0.074) (0.127,0.330) (0.008,0.059)
[0.032,0.082]

Conley-Taber (0.012,0.093) (0.056,0.407) (-0.003,0.093)
[0.014,0.101]

Sample Size

Number States 51 51 51

Number of Individuals 42161 42161 42161

Note: Confidence intervals for parameters are presented in parentheses. We use the �Γ∗ formula to
construct the Conley-Taber standard errors. Brackets contain a confidence interval for the program
impact upon a person whose college attendance probability in the absence of the program would be
45%.
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Monte Carlo Analysis

We also do a Monte Carlo Analysis to compare alternative
approaches

The model we deal with is

Yjt =αTjt + βXjt + θj + γt + ηjt

ηjt =ρηjt−1 + ujt

ujt ∼N(0, 1)
Xjt =axdjt + νjt

νjt ∼N(0, 1)



In base case

α = 1

5 Treatment groups
T = 10

Tjt binary
turns on at 2,4,6,8,10
ρ = 0.5

ax = 0.5

β = 1



Table 3

Monte Carlo Results

Size and Power of Test of at Most 5% Levela

Basic Model:

Yjt = αdjt + βXjt + θj + γt + ηjt

ηjt = ρηjt−1 + εjt,α = 1,Xjt = axdjt + νjt

Percentage of Times Hypothesis is Rejected out of 10,000 Simulations
Size of Test (H0 : α = 1) Power of Test (H0 : α = 0)

Classic Conley Conley Classic Conley Conley

Model Cluster Taber (�Γ∗) Taber (�Γ) Model Cluster Taber (�Γ∗) Taber (�Γ)

Base Modelb 14.23 16.27 4.88 5.52 73.23 66.10 54.08 55.90
Total Groups=1000 14.89 17.79 4.80 4.95 73.97 67.19 55.29 55.38
Total Groups=50 14.41 15.55 5.28 6.65 71.99 64.48 52.21 56.00
Time Periods=2 5.32 14.12 5.37 6.46 49.17 58.54 49.13 52.37
Number Treatments=1c 18.79 84.28 4.13 5.17 40.86 91.15 13.91 15.68
Number Treatments=2c 16.74 35.74 4.99 5.57 52.67 62.15 29.98 31.64
Number Treatments=10c 14.12 9.52 4.88 5.90 93.00 84.60 82.99 84.21
Uniform Errord 14.91 17.14 5.30 5.86 73.22 65.87 53.99 55.32
Mixture Errore 14.20 15.99 4.50 5.25 55.72 51.88 36.01 37.49
ρ = 0 4.86 15.30 5.03 5.57 82.50 86.42 82.45 83.79
ρ = 1 30.18 16.94 4.80 5.87 54.72 34.89 19.36 20.71
ax = 0 14.30 16.26 4.88 5.55 73.38 66.37 54.08 55.93
ax = 2 1418 16.11 4.82 5.49 73.00 65.91 54.33 55.76
ax = 10 1036 9.86 11.00 11.90 51.37 47.78 53.29 54.59

a) In the results for the Conley Taber (�Γ∗) with smaller sample sizes we can not get exactly 5% size
due to the discreteness of the empirical distribution. When this happens we choose the size to be
the largest value possible that is under 5%.
b) For the base model, the total number of groups is 100, with 5 treatments, and 10 periods. The parameters have
values: ρ = 0.5, ax = 0.5, β = 1, εjt ∼ N(0, 1), νjt ∼ N(0, 1).
c) With T treatments and 5 periods, the changs occur during periods 2,4,6,8, and 10. For 1 treatment it is in period
6, for 2 treatments it is in periods 3 and 7, and for 10 treatments it is periods 2,2,3,4,5,6,7,8,9, and 10.
d) The range of the uniform is [−

√
3,
√

3] so that it has unit variance.
e) The “Mixture Model” we consider is a mixtures of a N(0, 1) and a N(2, 1) in which the standard normal is drawn
80% of the time.
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