
Structural Estimation

Christopher Taber

University of Wisconsin

November 21, 2016



Structural Models

So far in this class we have been thinking about the “evaluation
problem”

Yi =αTi + εi

However, this always required data on Ti

What do we if we don’t have data on the treatment or policy we
are interested in?

Most interesting reason is because it is a proposed policy-one
that has never been previously implemented.

We need to estimate a “structural model” and use the structure
to simulate the policy



Quote from Frank Knight

The existence of a problem in knowledge depends on
the future being different from the past, while the
possibility of a solution of a problem of knowledge
depends on the future being like the past



What does structural mean?

No obvious answer, it means different things to different people

3 Definitions:

Parameters are policy invariant
Estimation of preference and technology parameters in a
maximizing model (perhaps combined with some
specification of markets)
The structural parameters a simultaneous equations model



For that matter what does reduced form mean

Now for many people it essentially means anything that is not
structural

What I think of as the classic definition is that reduced form
parameters are a known function of underlying structural
parameters.

fits classic Simultaneous Equation definition
might not be invertible (say without an instrument)
for something to be reduced form according to this
definition you need to write down a structural model
this actually has content-you can sometimes use reduced
form models to simulate a policy that has never been
implemented (as often reduced form parameters are
structural in the sense that they are policy invariant)



Advantages and disadvantages of “structural" and
“design-based”

Two caveats first

To me the fact that there are advantages and
disadvantages makes them complements rather than
substitutes
These are arguments that different people make, but
obviously they don’t apply to all (or maybe even most)
structural work or non-structural work-there are plenty of
good and bad papers of any type



Differences between “structural" and “design-based”
approaches

Structural Design-Based
More emphasis on External Validity More emphasis on Internal Validity
Tends to be more complicated Focuses on estimation of a single

involving many parameters (or small number of) parameters
Map from parameters Map from data to parameters

to implications clearer more transparent
Formalizes conditions for Requires fewer assumptions

external validity
Forces one to think about Might come from somewhere else

where data comes from



Steps for writing a structural paper for policy evaluation

1 Identify the policy question to be answered
2 Write down a model that can simulate policy
3 Think about identification/data (with the goal being the

policy counterfactual)
4 Estimate the model
5 Simulate the policy counterfactual



Formalization

Lets use our notation from the identification notes

In the current state of the world the data is generated by

Xi ∼H(Xi)

ui ∼F(ui; θ)

Υ0i =y(Xi, ui; θ)

Assume that under the policy regime π the data generation
process is

Xπi ∼Hπ(Xπi)

uπi ∼Fπ(uπi; θ)

Υπi =yπ(Xπi, uπi; θ)

where Hπ,Fπ, and yπ are known up to θ



The counterfactual is often an expected difference in some
outcome in the two regimes

ψ(θ) =E (Γ(Υπi)− Γ(Υi))

=

∫ ∫
Γ(yπ(Xπi, uπi; θ))dFπ(u; θ)dHπ(X)

−
∫ ∫

Γ(y(Xi, ui; θ))dF(u; θ)dH(X)

(there is nothing special about expected values, it could be
some other function of the data but this covers most cases)



We can go beyond that and consider functions of things not
observed in the data (most obvious example utility) where

Vi =v(Xi, ui; θ)

Vπi =vπ(Xπi, uπi; θ)

ψ(θ) =E(Vπi)− E(Vi)



The most standard way to identify the policy effect is though the
use of the full structural model.

If θ is identified, ψ(θ) is identified

This takes 2 main assumptions

1 Hπ,Fπ, and yπ are known up to θ
we require that either the data generating process is policy
invariant, or we know precisely how it will change with the
policy
this is in some sense the classic definition “structure," its
generally not testable

2 θ is identified
That is we have point identified the data generating process
and the θ that determine F0 and y0 are the same θ that
determine Fπ and yπ

One can see how these relate to the Knight quote at the
beginning



Sometimes you don’t always need to identify the full structural
model but only part of it

That is you might only be able to partially identify θ but thats all
you need

These cases are rare but important

I want to focus on estimation of the full structural model



Example 1

Lets consider to the classic simultaneous equations model

Model for gas:

Supply Curve

Qt =αsPt + X′1tβ + u1t

Demand Curve

Qt =αdPt + X′2tγ + u2t



So Xt = (X1t,X2t), ut = (u1t, u2t), Υt = (Pt,Qt)

We can solve for prices and quantities as

(Pt,Qt) =y(Xi, ui; θ)

=

[ Z′t γ−X′1tβ+u2t−u1t
αs−αd

αs
X′2tγ+u2t
αs−αd

− αd
X′1tβ+u1t
αs−αd

]



Now consider a gas tax imposed on consumers, so now

Aπt =αd (1 + π) Pπt + Z′tγ + vt

The equilibrium effect is

(Pπt,Qπt) =yπ(Xi, ui; θ)

=

[ Z′t γ−X′tβ+vt−ut
αs−αd(1+π)

αs
Z′t γ+vt

αs−αd(1+π)
− αd (1 + π) X′tβ+ut

αs−αd(1+π)

]

Note that you are taking the model seriously here-all of the
parameters are policy invariant



Example 2

Lets think about the Generalized Roy Model

For

Uji =Yji + ϕj(Zi,X0i) + νji

Yji =gj(Xji,X0i) + εji

But now let j = hs represent high school and j = col represent
college

Υi = (j, yji)

=y0(Xi, ui; θ)

=

{
(hs,Yhsi) Uhsi ≥ Ucoli

(col,Ycoli) Uhsi < Ucoli



Now suppose we subsidize college by lowering the cost of
college by π We are going to ignore equilibrium effects

Υπi =yπ(Xi, ui; θ)

=

{
(hsπ,Yhsi) Uhsi ≥ Ucoli + π

(colπ,Ycoli) Uhsi < Ucoli + π



What will this do to average wages?

ψ (π) =E (1 (Uhsi ≥ Ucoli + π) Yhsi + 1 (Uhsi < Ucoli + π) Ycoli)

− E (1 (Uhsi ≥ Ucoli) Yhsi + 1 (Uhsi < Ucoli) Ycoli)



Other Examples

Effects of Affordable Care Act on labor market outcomes
(Aizawa and Fang, 2015)
Tuition Subsidies on Health (Heckman, Humphries, and
Veramundi, 2015)
Effects of extending length of payment for college loan
programs on college enrollment (Li, 2015)
Peer effects of school vouchers on public school students
(Altonji, Huang, and Taber, 2015)
Tax credits versus income support (Blundell, Costa Dias,
Meghir, and Shaw, 2015)
Effects of immigration on short and long run wages of
natives (Colas, 2016)
Welfare effects of alternative designs of school choice
programs (Calsamiglia, Fu, and Guell, 2016)



Other reasons to write structural models

While this is the classic use of a structural model it is not the
only one.

Other motivations:

Further evaluation of an established policy: we might want
to know welfare effect (Vi)

Basic Research-we want to understand the world better
Use data to help understand model
Use model to help understand data (use structural model
as a lens)
A policy doesn’t really have to be an actual policy
One methodological step in estimation of model



Estimation

So how do we estimate the counterfactual?

I want to focus on the following procedure:

1 Specify full data generating process (as above)
2 Estimate θ
3 Calculate ψ(θ̂)

There are special cases that don’t do this exactly-but this is the
typical case

The part of this I want to focus on for the rest of these lecture
notes is estimating θ



Lets focus on a simple parametric version of the generalized
Roy model

di =1
(
Z′itγ + α(Yi1 − Yi0) + ui

)
Yi0 =X′iβ0 + εi0

Yi1 =X′iβ1 + εi1



Background maximum likelihood

For some random vector Y, let f (Y; θ) be the density of Y if it is
generated by a model with parameter θ

The likelihood function just writes the function the other way:

`(θ; Y) =f (Y; θ).

Let θ0 represent the true parameter



We use Jensen’s inequality which implies that for any random
variable Xi, the fact that log is concave implies that:

E(log(Xi)) ≤log(E(Xi))

We apply this with

Xi =
`(θ; Yi)

`(θ0; Yi)

The key result is that

E
(
`(θ; Yi)

`(θ0; Yi)

)
=

∫
`(θ; Yi)

`(θ0; Yi)
f (Yi; θ0)dYi

=

∫
f (Yi; θ)

f (Yi; θ0)
f (Yi; θ0)dYi

=

∫
f (Yi; θ)dYi

=1

because f (Yi; θ) is a density.



Thus

E
(

log
(
`(θ; Yi)

`(θ0; Yi)

))
=E (log (`(θ; Yi)))− E (log (`(θ0; Yi)))

≤log(1)

or

E (log (`(θ; Yi))) ≤E (log (`(θ0; Yi)))

thus we know that the true value of θ maximizes E (log (`(θ; Yi)))



Maximum likelihood is just the sample analogue of this

Choose θ̂ as the argument that maximizes

1
N

N∑
i=1

log(`(θ; Yi))



With our model we take Yi = (Xi,Υi) and being loose with
notation

θ̂ =argmax
1
N

N∑
i=1

log(`(θ; Xi,Υi))

=argmax
1
N

N∑
i=1

log(`(θ; Υi | Xi)H(Xi))

=argmax
1
N

N∑
i=1

log(`(θ; Υi | Xi)) + log(H(Xi))

=argmax
1
N

N∑
i=1

log(`(θ; Υi | Xi))



Example
Lets think of a binary variable so Yi = 1 with probability p and 0
with probability (1− p)

The true value is p0

Then

E (log (`(p; Yi))) =p0log (`(p; 1)) + (1− p0)log (`(p; 0))

=p0log(p) + (1− p0)log(1− p)

this is maximized at

p0

p
=

1− p0

1− p

or

p =p0



The sample analogue will be

1
N

N∑
i=1

Yilog(p) + (1− Yi)log(1− p) =Ȳlog(p) + (1− Ȳ)log(1− p)

and the solution will be

p̂ =Ȳ



Cramer-Rao Lower Bound

The most important result for MLE is that it is efficient

In particular no alternative estimator can have a lower
asymptotic variance



The Likelihood function for the Generalized Roy Model

Its a real mess-I want to go through with it just to demonstrate
as an example how you calculate the likelihood function

Its easier to break it down into two pieces.

If di = 1 we observe Yi1 but not Yi0

The messy thing here is that we can’t identify the joint
distribution of εi0 and εi1



First consider the case in which di = 1

di =1
(
Z′itγ + α(Yi1 − X′iβ0) + ui − αεi0

)
≡1
(
Z′itγ + α(Yi1 − X′iβ0) + vi1

)
Yi1 =X′iβ1 + εi1

Let Σ1 be the variance/covariance matrix of (vi1, εi1) so

`(θ; Yi1, 1) =

∫ ∞
−Z′itγ−α(Yi1−X′iβ0)

φ(v,Yi1 − X′iβ1; Σ1)dv

(where θ is all of the parameters of the model)



and analogously for di = 0

di =1
(
Z′itγ + α(X′iβ1 − Yi0) + ui + αεi1

)
≡1
(
Z′itγ + α(X′iβ1 − Yi0) + vi0

)
Yi0 =X′iβ0 + εi0

Let Σ0 be the variance/covariance matrix of (vi0, εi0) so

`(θ; Yi0, 0) =

∫ −Z′itγ−α(X′iβ1−Yi0)

−∞
φ(v,Yi0 − X′iβ0; Σ0)dv



Thus the log-likelihood function is

1
N

N∑
i=1

[
di

∫ ∞
−Z′itγ−α(Yi1−X′iβ0)

φ(v,Yi1 − X′iβ1; Σ1)dv

+(1− di)

∫ −Z′itγ−α(X′iβ1−Yi0)

−∞
φ(v,Yi0 − X′iβ0; Σ0)dv

]



Often in these models the integral is a big problem in
calculating the model.

To see an interesting version of this, consider a panel data
version of the treatment effect model

dit =1
(
Z′itγ + µd

i + εit
)

Y1it =X′itβ1 + µ1
i + v1

it

Y0it =X′itβ0 + µ0
i + v0

it

and take a simple version of the model where the εit, v1
it, and v0

it
are all jointly independent and normal



Write the likelihood function as if µi were known:

˜̀i(θ;µi) ≡
T∏

t=1

[
ditΦ(Z′itγ + µd

i )φ(Y1it − X′itβ1 − µ1
i ;σ2

1)

+(1− dit)(1− Φ(Z′itγ + µd
i ))φ(Y0it − X′itβ0 − µ0

i ;σ2
0)
]

Then one can write

`i (θ) =

∫ ∫ ∫
˜̀i(θ;µ)dΦ(µ; Σθ)



Even though this is a relatively simple problem, approximating
this three dimensional integral is very difficult-and we have to
do it for every person in the data every time we evaluate the
likelihood function

Lets think about three solutions



Gauss Hermite Quadrature

Lets focus on the one dimensional case in which the error term
is normally distributed

We want to estimate something like E(F(ui)) where
ui ∼ N(µ, σ2) Then write

ui = µ+ σεi

Then

E(F(ui)) =

∫
F(µ+ σε)

1√
2π

e
−ε2

i
2



It turns out that we can approximate this well as∫
F(µ+ σε)

1√
2π

e
−ε2

i
2 ≈

K∑
`=1

F(µ+ σe`)p`

where one can look up the p` and the e`

This approximation is exact if F is a (K − 1)th order polynomial

My experience is that this works great with K ≈ 7



Higher dimensions are easy to incorporate since we can
generate model with

u1i = ε1i

u2i = a1ε1i + a2ε2i

u3i = b1ε1i + b2ε2i + b3ε3i

where the εs are iid normals

Even with three dimensions this is still pretty big: 73 = 343



“Heckman Singer” Heterogeneity

One way to make the problem simpler is to use a different
assumption about the distribution of θ.

Rather than assuming it is Normal assume it takes on a finite
number of values K each with probability pj.

Index each of those values as µ(j) = (µd
(j), µ

1
(j), µ

0
(j))

Then the likelihood function becomes a one dimensional
integral

`i (θ) =

K∑
j=1

pj ˜̀i(θ;µ(j))

When K is small this makes this pretty easy.



However, this often adds a lot of parameters and is not really
that flexible.

With K = 5 it still seems pretty restrictive

However you have 19 parameters (15 values of µ(j)+ 4 values
of pj) to estimate

Also often a lot of local optima making it even harder to find
maximum

If K increases with sample size it is semi-parametric (as in the
original Heckman Singer paper)



Simulation

Another way to evaluate the likelihood function is to simulate.

In particular suppose we drew random variables
µs ≡ (µd

s , µ
1
s , µ

0
s ) from a normal with mean zero and variance Σθ

then as S→∞

1
S

S∑
s=1

˜̀i(θ;µs)
p→E
[
˜̀i(θ;µi)

]
=

∫ ∫ ∫
˜̀i(θ;µ)dΦ(µ; Σθ)

=`i(θ)

This can be nice



One advantage is that we don’t need to waste time getting a
good estimate of integral in places in which the density is small

However notice that this is a law of large numbers that has to
hold for every single observation in our data every single time
we do a function evaluation

Might be pretty tricky



Generalized Method of Moments

Another way to estimate such a model is by GMM, simulated
method of moments, or indirect inference

I am not sure these terms mean the same thing to everyone, so
I will say what I mean by them but recognize it might mean
different things to different people.

Lets continue to use our data generation process above with
(Xi,Υi) the observed data



The standard GMM model would come up with a set of
moments

m(Xi,Υi, θ)

for which

E(m(Xi,Υi, θ0)) =0

the sample analogue comes from recognizing that

1
N

N∑
i=1

m(Xi,Υi, θ0) ≈0

But more generally we are overidentified so we choose θ̂ to
minimize [

1
N

N∑
i=1

m(Xi,Υi, θ)

]′
W

[
1
N

N∑
i=1

m(Xi,Υi, θ)

]



Relationship between GMM and MLE

Actually in one way you can think of MLE as a special case of
GMM

We showed above that

θ0 =argmax [E (log (`(θ; Xi,Υi)))]

but as long as everything is well behaved this means that

E
(
∂log (`(θ; Xi,Υi))

∂θ

)
=0

We can use this as a moment condition



In fact this is kind of equivalent to MLE

We choose θ̂ to maximize

1
N

N∑
i=1

log (`(θ; Xi,Υi))

and at the maximum

1
N

N∑
i=1

∂log
(
`(θ̂; Xi,Υi)

)
∂θ

=0

which is exactly what one would get out of GMM

The one very important caveat is that this is only true if the log
likelihood function is strictly concave

Otherwise there might be multiple solutions to the first order
conditions, but only one actual maximum to the likelihood
function

In that case “locally” they are identical but not globally



Simulated Method of Moments

The classic reference is “A Method of Simulated Moments of
Estimation of Discrete Response Models Without Numerical
Integration,” McFadden, EMA, 1989

However, I will present it in a different way

To simplify first consider the case without X

Take any function of the data that you like say g(Υi) (where the
dimension of g is Kg)



then notice that since y0 and F represent the data generating
process

E(g(Υi)) =

∫
(g(y(u; θ0))dF(u; θ0)

So this means that we do GMM with

m(Υi, θ) =g(Yi)−
∫

(g(y(u; θ))dF(u; θ)

So what?



Here is where things get pretty cool

1
N

N∑
i=1

[
g(Υi)−

∫
(g(y(u; θ))dF(u; θ)

]

=

[
1
N

N∑
i=1

g(Υi)

]
−
∫

(g(y(u; θ))dF(u; θ)

but we can approximate the thing on the right hand side by
simulating from the distribution function dF(u; θ)

Notice that if we simulate from the true value

1
N

N∑
i=1

g(Υi)−
1
S

S∑
s=1

(g(y(us; θ0)) ≈E(g(Υi))−
∫

(g(y(u; θ0))dF(u; θ0)

=0



The nice thing about this is that we didn’t need S to be large for
every N, we only needed S to be large for the one integral.

This makes this much much easier computationally



Adding X’s

Adding X′s back in is straight forward, just messier

Now let g be a function of Xi and Υi

E(g(Xi,Υi)) =E [E(g(Xi,Υi) | Xi)]

=E
[∫

g(Xi, y0(Xi, u; θ0))dF(u; θ0)

]



Now when we do the simulation, we draw us from F(·; θ) and Xs

from the empirical distribution of Xi, then

1
N

N∑
i=1

g(Xi,Υi)−
1
S

S∑
s=1

(g(Xs, y(us; θ0))

≈E(g(Xi,Υi))− E
[∫

g(Xi, y(Xi, u; θ0))dF(u; θ)

]
=0

In practice we minimize[
1
N

N∑
i=1

g(Xi,Υi)−
1
S

S∑
s=1

(g(Xs, y(us; θ))

]′
W[

1
N

N∑
i=1

g(Xi,Υi)−
1
S

S∑
s=1

(g(Xs, y(us; θ))

]

where us is simulated from F(u; θ)



Indirect inference

The classic reference here is “Indirect Inference” Gourieroux,
Monrort, and Renault, Journal of Applied Econometrics, 1993

Again I will think about this in a different way then them

Think about the intuition for the SMM estimator

1
N

N∑
i=1

g(Xi,Υi) ≈
1
S

S∑
s=1

(g(Xs, y(us; θ0))

If I have the right data generating model taking the mean of the
simulated data should give me the same answer as taking the
mean of the actual data



But we can generalize that idea

If I have the right data generating model the simulated data
should look the same as the actual data

That means whatever the heck I do to the real data-if I do
exactly the same thing to the simulated data I should get the
same answer



So we define auxiliary parameters as

β̂ = argminβF

(
1
N

N∑
i=1

g(Xi,Υi, β), β

)
.

Examples

Moments

β̂ = argminβ

(
1
N

N∑
i=1

g(Xi,Υi)− β

)2

Regression models

β̂ = argminβ
1
N

N∑
i=1

(
Υ− X′iβ

)2



Misspecified MLE

β̂ = argminβ
1
N

N∑
i=1

− log(l(Xi,Υi, β))

Misspecified GMM

β̂ = argminβ

[
1
N

N∑
i=1

m(Xi,Υi, β)

]′
W

[
1
N

N∑
i=1

m(Xi,Υi, β)

]

The most important thing: this can be misspecified, it doesn’t
have to estimate a true causal parameter

Creates a nice connection with reduced form stuff, we can use
2SLS or Diff in Diff as auxiliary parameters and it is clear where
identification comes from



Define the population value of β̂ to be

β0 ≡argminβF(E [g(Xi,Υi, β)] , β).

=argminβF
(∫

g(Xi, y(Xi, ui; θ), β)dF(u; θ), β

)
Then we define our simulated auxiliary model as

B̂(θ) ≡ 1
H

H∑
h=1

argminβF

(
1
S

S∑
s=1

g(Xhs,Υhs(θ);β), β

)

H does not need to get large but often people think it is better to
use H > 1

and we now get that

B̂(θ) ≈β0

as S gets large



We then do Indirect inference

θ̂ = argminθ
(

B̂(θ)− β̂
)′

Ω
(

B̂(θ)− β̂
)

It turns out that it is optimal to choose Ω to be the inverse of the
variance/covariance matrix for β̂

Often people just use the diagonal of this matrix



Panel Data Roy Model and Indirect Inference

So what parameters do we use as auxiliary parameters?

Important: you need to estimate the auxiliary model every time
you do a function evaluation, so keep it simple

Some moments to use:

Fixed Effect Linear Probability model for participation
Fixed Effect Wage Regressions
Variance Matrix of residuals from panel model



Maximum Likelihood versus Indirect Inference

MLE is efficient
Indirect inference you pick auxiliary model

Which is better is not obvious. Picking auxiliary model is
somewhat arbitrary, but you can pick what you want the data to
fit.

MLE essentially picks the moments that are most efficient-a
statistical criterion

Indirect inference is often computationally easier because
of the simulation approximation of integrals
With confidential data, Indirect Inference often is easier
because only need to use the actual data to get β̂
A drawback of simulation estimators is that they often lead
to nonsmooth objective functions


