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Papers

| am basically going to talk about three different papers here:

o “Selection on Observed and Unobserved Variables:
Assessing the Effectiveness of Catholic Schools, with J.
Altonji and T. Elder,Journal of Political Economy, Vol. 113,
February 2005.

o “An Evaluation of Instrumental Variable Strategies for
Estimating the Effects of Catholic Schooling," with J. Altonji
and T. Elder, Journal of Human Resources, Fall 2005.

o “Methods for Using Selection on Observed Variables to
Address Selection on Unobserved Variables,” with J.
Altonji, T. Conley, and T. Elder, 2012.



In giving these lectures | will start from the beginning and talk
about the basic framework, (which was done early), but | will
use our current notation (which was done later)

| will discuss the Catholic school work and describe where it fits
in and then discuss what is new.



The IV Model

To start lets think about a standard instrumental variables
model.

Yi=aT;i+ WT +u,.

The key assumption is that we have some instrument Z; which
is correlated with T;, but

cov(Z;, uj) = 0.

One can never verify this assumption but must take it on face
value

Of course a special case of this model is OLS in which Z; = T;.

Virtually all causal empirical work in economics makes some
assumption analogous to this in some place.



The best justification for the instrument is random assignment

However, if Z; were truly randomly assigned, it should not be
correlated with the observable covariates either

Researchers have recognized this for a long time

o Balancing tests are standard in randomized control trials

o Itis common to run a regression of Z; on W; and test
whether these are related



For the standard reasons, testing is not the right way to guide
empirical researchers. The problem manifests itself in two
ways:

o Just because we don’t reject the null does not mean that
the assumption is right (perhaps just low power)

o If we do reject the null that doesn’t mean the assumption is
not approximately true

In other words what we really care about is the magnitude of
the relationship not just the F-statistic

In order to judge the magnitude one needs a framework for
thinking about it



Basic Model

where W contains all possible covariates-those we get to see
and those we might not get to see

We can write this as

Wi = ZWi/r/

= ZSJV‘/IJFJ+Z —S)) Wl
= W,’F+u,-

where §; is an indicator for whether W is contained in the data
set.



We need some way to characterize what it means for “The
Observables to be like the Unobservables”

The most natural is to think of S; as i.i.d so that the observables
are just a random set of stuff that | could have observed.

This motivates the main idea: If Selection on the
unobservables is the same as selection on the observables
how large would the bias be?

Think about running a regression of Z; on the observable index
and unobservable:

Proj (Z; | Xi, W[T, uj)
= 6o + & X + ¢ (WIT) + dut;
It turns out that when §; is i.i.d.,

bur P



We actually want to think about this as an extreme case.
Imagine two types of data collectors:

@ An incompetent data collector would have no idea what he
was doing and choose S; at random. We show that yields
the condition that (asymptotically)

¢u:¢

o By contrast suppose we had a perfect data collector. That
person would collect all of the variables that were
correlated with Z; so that the only unobservables left would
be uncorrelated with Z;. In that case

¢u:0

The truth is probably somewhere in between.



We formalize this idea in two different ways.

The first is by adding the possibility of another unobservable &;
so that

K* K*
Vi=aTi+) SWili+) (1-8) Wil +¢
j=1 j=1

Without this variable we will get "observables like
unobservables”

It is there to pick up the fact that we think this is an extreme
assumption and that selection on observables is likely greater
than selection on unobservables.

Structurally it can represent measurement error or
unanticipated events that occur between the data collection on
Wj; and when the outcome Y is realized. That is if X;, W;, Z; are
all determined at time O,

E(Yi—aTi|Zo) = Xip + WT
Then



The second way we will formalize it is to allow the distribution of
(W, Z;,T;) conditional on S; = 1 to differ from the distribution of
(Wj, Z;,T;) conditional on S; = 0

This is the part of the approach | in progress and | won’t focus
on it

I will come back to that later, but forget about it for a little while



The Econometric Model

Lets formalize the model:

Since S; does not vary across people, to get bight from its
iidness we need our set of potential covariates to be growing
large, so this will be thought of as a sequence of models

Yi=aTi+ X+ Wil + &

1 &
e
It embodies the idea that a large number of factors are

important in determining outcomes in social science data and
that none dominate.



It will turn out that X; plays no important role in this going
forward, so we can use the same trick we used in the IV lecture
notes and regress everything else in the model on X; and
taking residuals and then just working with that.

Thus for generic variable Mj; define

M; = Mj — Proj(M; | X;; G)

The GX represents a two stage process:

@ First the micro data generation process is determined

@ Given the Data generation process GX, the data is
generated

Conditional on GK" (which is what we would observe in a
particular data set) the variance of elements of Wj; will differ.



Assumptions

K*
- ~ 1 —
YiZOCTi‘i‘,WIE_1 Wil + &

We need 4 basic assumptions which are essentially

@ variance of \/% Zj’-; W,-,-F,- doesn't blow up as K* gets

large
@ cov(Z,Y;) is well behaved as K* gets large
@ S isi.id.

@ ¢, is independent of everything else



Theorem

Define ¢ and ¢, such that
S 1 &
Proj| Zi | ——> SW;r;,——> (1-8) W, +¢&;6%
/) I|\/W;/U/\/W§( i) Wilj + &

1 & . 1 K i
=9 (\/WIE;S/VV//F/) + du (\/WIE;U - 5)) V\/,-,-r,-+§,-) .

Then under our assumptions , if the probability limit of ¢ is
nonzero, then

9 Koo (1— Pg) A+ 02

where

K*
A= Im E ( I <r,->2\ |



We can write this as:

Corollary

When 0 < Ps < 1 andag > 0,

either
0 < plim(¢y) < plim(e),

plim(¢) < plim(¢y) < O,

or
0 = plim(¢u) = plim(¢).

Lets not lose the forest for the trees-¢ tells us the
relationship between the instrument and the observables
so the closer is ¢ to zero the smaller is the possible range

~f | fearidla . Nsatlarmsme . N warlaimale Ao mnm on b oS b e Fon



Intuition:

Think about the linear projection:

K*
Zi=¢o+¢*ZWi/r/+8i
=1
Then
~ K* —~ K* o~
Zj=do+ " Y SWylj+ 6" Y (1 - §)Wilj+ i
=1 =1

Since Z]K; /V\/Vi'j/rj is orthogonal to ¢;, z}‘; S/-W,-,-F,- and
S/ (1= S) W will be as well.



Estimation of the Effects of Catholic Schools

o Goal: Measure Average Effect of Catholic High Schools on
Test Scores, HS Graduation, College Attendance

o Why?
o Assess merits of private schooling

o Lessons for public schools?
o Consequences of expansion of school choice, vouchers



Previous Literature:Very large.

Coleman, Hoffer and Kilgore (1982) and Coleman and Hoffer
(1987) find positive effects on HS GRAD, College, test scores

They essentially just regress these variables on a dummy
variable for attendance of a Catholic school

Result is highly controversial. Selection problem

Cain and Goldberger point out that Catholic school is not
randomly assigned.

In particular, parents who send their children to Catholic school
have shown an interest in their children by not picking standard
option

They may be different in a lot of other important ways.

Is positive relationship causal? A couple papers have tried IV
approaches.



Evans and Scwab and Neal

These guys want to estimate the effect of Catholic school on
outcomes

Ideally one would like to have instrumental variables

They use two:

o Catholic religion
o Proximity of a Catholic school

Both are presumably closely related to whether a students
attends a Catholic school or not

Neither should obviously be correlated with outcomes otherwise

(probably hard to believe that either are randomly assigned)



Both Evans and Schwab and Neal focus on high school
graduation and college attendance because that is where
effects seem strongest (not much with test scores)

Since dependent variable is binary they don’t want to use 2SLS
Problem with linear probability model is that

E(Y; | Xi) = Xip
but if Y; is binary

E(Yi| X)) = 1Pr(Yi=1|X;)+0Pr(Y;=0]| X))
= Pr(Yi=1]X)
SO
Pr(Yi=11]X)=Xp
But this is kind of weird



The probability has to be between 0 and 1, but this isn’t
guaranteed for a linear model

Instead use bivariate model

CH; 1(9(Xi) + uj > 0)
Y = 1(aCH,+ f(Z)+ e > 0)

This nonlinear/nonparametric model is identified if there is an
exclusion restriction: i.e. something in X; that isn’t in Z;

This is analogous to instrumental variables/selection



Evans and Schwab

Evans and Schwab focus on “Catholic” as an instrument

It is certainly correlated with whether one goes to Catholic
school

No obvious reason for it to be correlated with outcomes

They play around with some other instruments as well.



TABLE II

EbucATioNAL OUTCOMES OF HIGH SCHOOL STUDENTS BY SCHOOL TYPE

HIGH SCHOOL COLLEGE
GRADUATE ENTRANT?
Public Catholic Public  Catholic
Sample schools schools schools schools
Full sample 0.79 0.97 0.32 0.55
SOPHOMORE TEST SCORE
MISSING 0.71 0.98 0.22 0.50
SOPHOMORE TEST FIRST
QUARTILE 0.63 0.91 0.11 0.25
SOPHOMORE TEST SECOND
QUARTILE 0.80 0.96 0.19 0.40
SOPHOMORE TEST THIRD
QUARTILE 0.89 0.98 0.37 0.56
SOPHOMORE TEST FOURTH
QUARTILE 0.95 0.99 0.62 0.78

TADTATM TINTTA AMTIAAT ALTOIOTATAY
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TABLE 111
PrOBIT ESTIMATES OF HIGH SCHOOL GRADUATE AND
COLLEGE ENTRANT MODELS

HIGH SCHOOL COLLEGE
GRADUATE ENTRANT
Probit Marginal Probit Marginal
Independent variable? coefficient effect® coefficient effect®
CATHOLIC SCHOOL 0.777 0.117 0.384 0.144
(0.056) (0.014) (0.032) (0.012)
FEMALE 0.041 0.006 0.021 0.008
(0.029) (0.004) (0.026) (0.010)
BLACK 0.132 0.020 0.170 0.064
(0.045) (0.007) (0.042) (0.014)
HISPANIC 0.080 0.012 —0.160 —0.060
(0.037) (0.006) (0.036) (0.014)
OTHER RACE 0.346 0.052 0.316 0.118
0.067) (0.011) (0.060) (0.022)
FAMILY INCOME MISSING -0.111 -0.017 —0.382 -0.143

(0.068) (0.010) (0.055) (0.021)



TABLE VI
MaxXiMUM LIKELIHOOD ESTIMATES OF HIGH SCHOOL GRADUATE AND
COLLEGE ENTRANT BIVARIATE PROBIT MODEL UsING CATHOLIC RELIGION
AS AN INSTRUMENT

MLE estimates of bivariate probit model

Coefficient 2SLS estimate
on Average of coefficient
Model Other variables ~CATHOLIC ~Marginal ~ treatment on CATHOLIC
inXp SCHOOL effects effect 3 SCHOOL
HIGH SCHOOL GRADUATE*
0777 0.117 0.130 0.096¢
(0.056) 0014  (0.007) (0.008)
@) 0.859 0.133 0.141 —-0.053 0.127
(0.115) (0.022)  (0.014)  (0.067)  (0.024)
(3) 10TH GRADE 0.678 0078 0114 0028  0.103
TEST SCORE ©.126) 0018 (0017  (0.072)  (0.024)
AND TEST
MISSING
(4) STATE EFFECTS 0911 0.142 0144  —0050 0114
(0.121) 0027 (0015 (0072  (0.024)
(5) 10TH GRADE 0.746 0.124 0121 0025  0.134
TEST SCORE, (0.132) (0.028)  (0.016)  (0.077)  (0.030)
TEST MISSING,
AND STATE
EFFECTS
COLLEGE ENTRANT*
6 0.384 0.144 0.132 0.137¢
(0.032) (0.012) (0.011) (0.011)
@ 0.288 0.109 0098 0067  0.148
(0.079) 0.033)  (0.028)  (0.049)  (0.080
(8) 10TH GRADE 0211 0.078 0064 0124 0098
TEST SCORE (0.083) 0.034)  (0.026)  (0.052)  (0.024)
AND TEST
MISSING
(9) STATE EFFECTS 0.341 0.110 0115 0056  0.092
(0.084) (0.032) (0.029) (0.053) (0.024)
(10) 10TH GRADE 0277 0.071 0082 0113  0.098
TEST SCORE, (0.090) (0.026) (0.027) (0.046) (0.028)
TEST MISSING,
AND STATE

EFFECTS



Neal

Neal noticed that effects on high school graduation are larger
for urban students

He focuses on number of Catholics or density of Catholic
schools in county

Should be closely related to Catholic school attendance

No reason to expect it to be related to outcome



Table 4

Probit Analysis of High School Graduation

Urban Counties

Nonurban Counties

Blacks and Blacks and
Whites Hispanics Whites Hispanics
Black 211 236
(:059) (.079)
Female .107 .281 202 206
(.058) (.055) (:053) (.070)
Mom—high school graduate 364 257 547 361
(.070) (.066) (.062) (:097)
Dad—high school graduate 342 145 277 366
(072) (:069) (.063) (102)
Mom—college graduate 252 .30¢ 230 .36
(131) (197) (166) (312)
Dad—college graduate 113 265 148 411
(-100) (-155) (-124) (:328)
Mom—professional 149 .090 120 -.127
(126) (131) (124) (213)
Dad—professional 234 .099 175 —.051
(.082) (129) (.086) (213)
Two-parent family 506 1334 403 115
(.068) (.059) (.061) (.079)
Numerous family reading
materials 294 199 .207 197
(.062) (.067) (-060) (.101)
No family reading materials ~1600 —141 —'53 —367
(148) (083) (.097) (.082)
County population, 1980:
500,000-1,000,000 —.014 —.240
(.070) (:080)
County population, 1980:
>1,000,000 —.041 =370
(.075) (.078)
Percentage of families on
welfare—county, 1980 —1.524 —.786 -1.287 607
(577) (418) (.604) (:547)
Catholic school .361 854 255 511
(-120) (177) (:202) (431)
Sample graduation rate 76 64 74 70
Attending catholic schools 09 05 03 .01
Sample size 2,626 2,434 3,110 1,597




‘Table 6

Bivariate Probit Analysis of High School Graduation Students

from Urban Counties

Catholic School Attendance

High School Graduation

Black and Black and
White Hispanic White Hispanic
Black i35 179 220
(157) (.062)
Female 124 233 .100 277
(.081) (109) (.060) (.056)
Mom—high school
graduate 076 .303 .368 249
(121) (156) (073) (.069)
Dad— high school
graduate 180 333 132
(.120) (153) (073) (072)
Mom—college graduate 147 439 251 335
(133) (231) (139) (zos)
Dad—college graduate 194 1105
(.107) (.191) (.106) ( 160)
Mom— professional .032 -.017 163 .083
(151) (185) (.120) (132)
Dad— professional 1106 417 249 097
(.095) (162) (087) (144)
Two-parent family .070 284 474 321
(113) (129) (.069) (.062)
Numerous family reading
materials 128 1096 273 200
(.096) (121) (.064) (.066)
No family reading
materials 215 —.602 -.572 —.134
(267) (301) (.147) (.086)
County population, 1980:
500,000-1,000,000 104 386 —.053 —.246
(.105) (189) (071) (.082)
County population, 1980:
>1,000,000 093 446 -.097 -371
(.109) (188) (078) (.080)
Percentage of families on
welfare—county, 1980 1113 1.148 ~2.183 053
(961) (1.105) (617) (.566)
Catholic 1.034 831 . .
(092) (.140)
Catholics/county
population—1980 199 95 608
(274) (485) (210)
Catholic schools/square
mile—county 1.739 479 —.595
(534) (400) (243)
Catholic school s 724 1.122
(321) (686)
Error covariance -237 ~.125
(179) (:330)



Evaluation of Instrumental Variable Strategies

by Altoniji, Elder, and Taber

o Explore the validity of Catholic, Proximity, and the
interaction in three ways

o Face plausibility of validity of exclusion restrictions based
on observable factors

o Reduced-form estimates in the sample of those who attend
public grammar schools (8th graders)

o Altonji, Elder, and Taber methodology applied to
instrumental variables



Outline

o Data and differences in means of outcomes and
observables by Catholic religion.

o Single-equation and IV estimates of Catholic schooling
effects

o The effect of Catholic religion for students from public
eighth grades

o Using the observables to assess the bias from
unobservables

o Repeat for distance and the interaction C; x D;.



Data

©

NELS:88, restricted use file (eighth graders in 1988)
NLS-72 public use file (seniors in HS in 1972)
Dependent Variables:
o High School graduation by 1994 (GED’s considered
dropouts)
o College Attendance: Enrolled in 4-year college at 1994
survey
o College Attendance: Enrolled in 4-year college by 1976
survey (NLS-72)
o 12th grade math and reading test scores in both datasets

Catholic high school (CH;): 1 if current or last high school
attended was Catholic, 0 otherwise
Instruments:
o Catholic religion (C;): 1 if parents report being Catholic
church members, 0 otherwise
o Distance (D;): Set of indicators for distance to closest
Catholic high school
o Cj x Dj[Can put in main effects and use interactions as
instrument]

© O

©

©



Using Religion

Model:
Yi=aCH, + X/~ +¢i,

where X is uncorrelated with ¢;.

The problem is that CH; and potentially C; may be correlated
with the error term.



Table 1
Probit, Bivariate Probit, OLS, and 2SLS Estimates of Catholic Schooling Effects
NELS:88 and NLS-72
Weighted, Marginal Effects of Nonlinear Models Reported, (Huber-White Standard Errors in Parentheses)

Excluded Instruments

) 2 (€]
Catholic (C;) Distance (D;) Catholic x Distance (C; x D;)
HS Graduation (NELS:88)
Probit (controls 0.065 0.047 0.052
exclude “instrument”) (0.025) (0.025) (0.026)
Bivariate Probit 0.128 -0.007 -0.022
(0.032) (0.085) (0.119)
OLS 0.041 0.021 0.023
(0.014) (0.014) (0.015)
2SLS 0.34 -0.04 0.09
(0.08) (0.10) (0.11)
College in 1994 (NELS:88)
Probit (controls 0.094 0.085 0.077
exclude “instrument”) (0.022) (0.022) (0.022)
Bivariate Probit 0.170 0.103 -0.043
(0.055) (0.062) (0.070)
OLS 0.128 0.119 0.111
(0.026) (0.026) (0.026)
2SLS 0.40 031 -0.11
(0.10) (0.11) (0.12)
College in 1976 (NLS-72)
Probit (controls 0.068 0.070 0.067
exclude “instrument”) (0.016) (0.016) (0.016)
Bivariate Probit -0.002 -0.052 -0.080
(0.028) (0.035) (0.035)
OLS 0.071 0.075 0.072
(0.015) (0.016) (0.016)
2SLS 0.06 0.44 -0.25
(0.04) (0.20) 0.11)

Notes:




Table 2

OLS and 2SLS estimates of Catholic Schooling Effects
NELS:88 and NLS-72
Weighted, (Huber-White Standard Errors in Parentheses)

Excluded Instruments

M 2 ©)]
Catholic (C;) Distance (D;)  Catholicx Distance (C; x Dj)

12th Grade Reading Score (NELS:88)

OLS 1.16 (0.37) 1.03 (0.37) 1.14 (0.38)

2SLS 1.40 (1.54) -1.09 (1.84) 1.24 (1.82)
12th Grade Math Score (NELS:88)

OLS 1.03 (0.31) 1.00 (0.31) 0.92(0.32)

2SLS 2.64 (1.21) 243 (1.45) -2.63 (1.57)
12th Grade Reading Score (NLS-72)

OLS 2.06 (0.34) 2.54(0.37) 2.50(0.36)

2SLS -1.34(0.99) 8.69 (4.53) 0.50(2.32)
12th Grade Math Score (NLS-72)

OLS 1.52(0.33) 1.77 (0.35) 1.71 (0.36)

2SLS -0.07 (0.96) 11.05 (4.47) -3.94 (2.27)

Notes:



o OLS: Find positive effect of CH; on HS graduation (0.04),
college attendance (0.13 and 0.07) and test scores

o In NELS:88, IV estimates for HS grad and college are
implausibly large. Test scores also show “negative
selection”

o In NLS-72, IV estimates for college are roughly the same
as OLS, and test scores are negative

o Key question: Do IV estimates bolster probit and OLS
evidence? Is the true effect substantial?



Table 3a

Comparison of Means of Key Variables
by Value of Distance, Catholic, and their Interaction

NELS:88
) 2 3) “4)
Overall Mean _ Difference by C;  Difference by D;  Difference by C; x D;
Demographics
Female 0.50 0.01 0.00 0.00
Asian 0.04 0.01 0.04 -0.02
Hispanic 0.10 0.19 0.08 0.03
Black 0.13 -0.15 0.08 -0.13
‘White 0.73 -0.05 -0.20 0.12
Family Background
Mother’s education 13.14 -0.26 0.17 -0.36
Father’s education 13.42 -0.07 0.17 -0.31
Log of family income 10.20 0.11 0.12
Mother only in house 0.15 -0.04 0.02
Parent married 0.78 0.06 -0.02
Geography
Rural 032 -0.15 -0.44 0.05
Suburban 0.44 0.06 0.08 0.00
Urban 0.24 0.09 036 -0.05
Expectations
Schooling expectation 15.17 0.15 0.31
Very sure to graduate high school 0.83 -0.01 0.00
Parents expect some college 0.88 0.04 0.05
Parents expect college grad 0.78 0.03 0.06
Expect white collar job 0.46 0.03 0.06
8th Grade Variables
Delinquency Index 0.69 -0.05 0.03 -0.04
Got into fight 027 -0.01 0.01 0.05
Rarely completes homework 0.21 -0.05 0.00 0.00
Frequently disruptive 0.13 -0.02 -0.01 0.00
Repeated grade 4-8 0.08 -0.03 0.01 -0.03
Risk Index 0.72 -0.07 -0.01 0.01
Grades Composite 2.89 0.04 0.00 0.07
Unpreparedness Index 10.82 0.00 0.08 -0.09
8th Grade reading score 50.32 0.40 0.03 1.15
8th Grade math score 5033 0.55 0.45 0.06




Table 3b

Comparison of Means of Key Variables
by Value of Distance, Catholic, and their Interaction

NLS-72
[0) @ ® @
Overall Mean  Difference by C;  Difference by D;  Difference by C; x D;
Demographics
Female 0.50 -0.01 0.03 0.03
Hispanic 0.04 0.11 0.01 -0.07
Black 0.15 -0.15 0.04 -0.08

Family Background

Mother’s education 12.19 -0.13 0.16 -0.33
Father’s education 12.43 0.06 0.40 -0.32
Log of family income 8.93 0.07 0.11 -0.03
Father Blue Collar 0.24 0.01 -0.03 -0.01
Low SES Indicator 0.29 -0.05 -0.06 0.00
English Primary Language 0.92 -0.06 -0.02 0.03
Family Receives Daily Newspaper 0.88 0.04 0.06 0.01
Mother Works 0.50 -0.06 0.03 0.01
Geography
Rural 0.23 -0.14 -0.30 0.05
Suburban 0.48 0.06 0.02 -0.04
Urban 0.29 0.08 0.28 -0.01
Expectations
Decided to go to college pre-HS 0.41 -0.01 0.04 -0.06
Outcomes
Enrolled in college by 1976 0.38 0.01 0.05 -0.06
Reading Score 50.01 0.30 0.46 0.55
Math Score 49.98 0.58 0.40 -0.10
Years of Academic PSE, 1979 1.61 0.03 0.22 -0.23

Attended Catholic HS 0.06 0.19 0.07 0.15




Means by Catholic religious affiliation

o Differences by C; appear in variables measured prior to 8th
grade enrollment

@ Overall picture: use of C; as an IV will likely positively bias
estimates in NELS:88, and perhaps in NLS-72



Effect of Catholic Religion for Public Eighth Graders

o Starting point: identify a sample of persons for whom
Catholic high school is not a serious option.

@ Only 0.3% of public school 8th graders attend Catholic
high school

o Interpret the coefficient on C; in a single equation model as
an estimate of the direct effect of Catholic religion on the
outcome



Bias Formula
To figure out bias you can use partitioned regression.

That is if
Y:X{ﬁ1 +X§Bg+ v

then running Y on X is equivalent to running X; on X taking
residuals and then running Y on those residuals (that is 31 is
identical)

Suppose
PI’Oj (CH,' | X;, C,) = X,’ﬁ + AC;
CH; = Proj(CH;| X;,C;) — X8 — AC;
Proj(Ci| X) = Xim
6,- = Ci—X/m

Then think about regression Y; on X/3 + AC; and X;.



First think of regressing X/3 + AC; on X; and taking residual

XiB+XCi = Proj (X8 +ACi | X;) = XiB+XCi— X3 —\Xm
= AC

Now use the fact that for a simple regression model, the
coefficient on the slope coefficient is Cov(Y, X)/Var(X).

So regression of Y; on )\5,- can be written as

5 Cov(AC;, Y))

Var()\éi)
COV(E,’, « [X,,ﬁ + )\Xi/ﬂ' + )\6,‘ + /E/H,} + X,-"y + 6,‘)
a AVar(C;)
— adt COV(C,'L{:‘,')

AVar(C;)



How do we estimate the bias?

@ Suppose there is an event p; for which
PI’(CH,' =1 | p,) =0.

o In our application this event is attendance of a public eighth
grade by individual /.

o Consider a regression of Y; on X; and C; conditional on p;.
Coefficient on C; in this regression will converge to
Cov(Ciei)

Var(C;)
o Obtain a consistent estimate of the bias v by taking the
W//\ or by estimating the parameter v in the

regression model

ratio

Yi = Xiv+ [CAlY + wi
on the public eighth grade sample.
o This isn’t perfect. There is still a problem of Selection bias,
public school eigth graders are a selected sample—

however, positive selection into Catholic 8th grades among
CAathAalicr ctiridante \Mill hiae o/, AwnwiavrA



Table 4

Comparison of 2SLS Estimates® and Bias Implied by OLS Estimation of Y; = X/~ + [Z;X]‘l/f + w;
on the Public Eighth Grade SubsampleZ; Various O and instr NELS:88 Sampl
Weighted, (Huber-White Standard Errors in Parentheses)

OUTCOME (Y) INSTRUMENTS (Z;)
) B) 6)
Catholic Distance Catholic X Distance

High School Graduation

Implied Bias in 2SLS (¢))  0.34 (0.08) -0.05(0.12) 0.15(0.12)

2SLS Coefficient 0.34 (0.08) -0.04 (0.10) 0.09 (0.11)
College Attendance

Implied Bias in 2SLS (b))  0.29 (0.11) 0.37(0.12) -0.23 (0.13)

2SLS Coefficient 0.40 (0.10) 0.31(0.11) -0.11(0.12)
12th Grade Reading Score

Implied Bias in 2SLS (¢))  0.54 (1.68) -0.51 (2.08) -0.50 (1.99)

2SLS Coefficient 1.40 (1.54) -1.09 (1.84) 1.24 (1.82)

12th Grade Math Score
Implied Bias in 2SLS (b))  1.85 (1.41) 1.83 (1.69) -4.37 (2.06)
2SLS Coefficient 2.64(1.21) 243 (1.45) -2.63 (1.57)




Using observables to assess bias due to
unobservables:

As | talked about before we derived an alternative to the
assumption that

COV(&,‘,E,’) =0.
In this case we can write it as

cov(C;,e)) _cov(X{m, X{v)
var(s))  var(X!y)




For an indicator variable such as C;, This condition can be
rewritten as

E(si| Ci=1) — E(c; | Ci = 0)
Var(e,-)

_EXiv|Ci=1)-EX/v|C;=0)

o Var(X!~) '




Use this assumption to approximate bias in 2SLS estimates:

plim(a — «)

cov(Cij, )
var (6,)

— M[E(g,yc,:U—E(g,-yC,-:O)]

Avar (C,-)
_var(Cy) \Var(e)) , o ! 3
= var (6[) Var(X,-"y) [E(X,’Y ‘ Cl 1) E(X,’y ‘ C, 0)} )




Using AET l\iethodology, NELS:88
Weighted, (Huber-White Standard Errors in Parentheses)

Excluded Instruments

M @ 3
Catholic Distance Catholicx Distance
HS Graduation
2SLS Coefficient  0.34 (0.08) -0.04 (0.10) 0.09 (0.11)
Bias 1 0.52(0.23) 0.15 (0.16) 0.14 (0.24)
Bias 2 0.84 (0.26) 0.06 (0.14)
College in 1994
2SLS Coefficient  0.40 (0.10) 0.31(0.11) -0.11(0.12)
Bias 1 0.45(0.21) 0.46 (0.22) 0.15 (0.26)
Bias 2 0.45(0.21) 0.40 (0.20)
12th Reading Score
2SLS Coefficient  1.40 (1.54) -1.09 (1.84) 1.24 (1.82)
Bias 1 1.18 (1.06) 2.49 (1.59) 2.59 (1.14)
Bias 2 1.42 (1.07) 2.11 (1.40)
12th Math Score
2SLS Coefficient  2.64 (1.21) 243 (1.45) -2.63 (1.57)
Bias 1 2.02(0.75) 1.76 (1.03) 1.42 (0.88)

Bias 2 1.87(0.74) 1.72 (0.98)



Comparison between Bivariate Probits and 2SLS

Evans and Schwab (1995) and Neal (1997) use bivariate
probits with exclusion restrictions, with sensible results.

Identification in BP model:

CH; = 1(g9(Xj)+u;>0)
Y, = 1(aCH,+ f(Z) + € > 0)



Identification of a requires two assumptions:

@ Either parametric assumptions on the distribution of u; and
ej, or support conditions on g(-)

@ Either an exclusion restriction or parametric restrictions on
f(-) and g(:)

@ So, an exclusion restriction is not necessary to identify BP
models in practice.

o Procedure: loose replication on urban minority subsamples

o Coefficients are not very sensitive to exclusion restrictions
in BP models
o More importantly, standard errors also insensitive



Comparison of Linear and Non-Linear Models ot College Attendance in NLS-72Z

(Standard Errors in Parentheses)

[Marginal Effects of Non-Linear Models in Brackets]

Non-whites in cities (N=1532)

‘Whites in cities (N=5326)

Nonlinear Nonlinear
Nonlinear Linear Models Nonlinear Linear Models
Models Models Holding X; Models Models Holding X;
(Probits)  (OLS/2SLS)  Constant* (Probits)  (OLS/2SLS)  Constant?
@ 2 3) “) ®) ©)
Single Equation Model 0.640 0.239 0.253 0.093
(OLS/Probit) (0.198) (0.070) (0.062) (0.022)
[0.239] [0.093]
Two Equation Models:
Excluded Instruments:
%CCH; and CH/P; 1.471 1.375 5.541 0.048 0.115 0.084
(0.442) (0.583) (2.082) (0.250) (0.158) (0.783)
[0.517] [0.706] [0.018] [0.031]
C; and %CCH; 0.879 0.054 0.012 -0.090 -0.036 -0.084
(0.523) (0.309) (1.443) (0.121) (0.050) (0.148)
[0.329] [0.004] [-0.033] [-0.031]
Ci, %CCH;, and CH/P; 1.106 0.331 1.302 -0.085 -0.034 -0.069
(0.460) (0.254) (0.706) (0.118) (0.048) (0.125)
[0.409] [0.471] [-0.031] [-0.025]
C; only 0.761 -0.093 -0.505 -0.133 -0.056 -0.149
(0.543) (0.324) (1.638) (0.130) (0.054) (0.151)
[0.285] [-0.148] [-0.049] [-0.054]
C; x Dy 1.333 2.572 1.409 -0.121 -0.395 2.624
(0.516) (2.442) (1.276) (0.262) (0.169) (5.173)
[0.478] [0.497] [-0.044] [0.559]
None 1.224 -0.094
(0.542) (0.301)



Conclusions

o Unfortunately, none of the candidate instruments appears
to be valid in this situation

o It appears important to isolate effects of exclusion
restrictions from effects of functional form in identification

@ We are forced to try to use some other approach



Altoniji, Elder, Taber Approach

o Few students from Public 8th grade attend Catholic high
schools

@ Many students from Catholic 8th grade go on to Public
High School

@ Among Catholic 8th Grade students:

o On the basis of observables doesn’t look like much
selection (at least in comparison with the full sample).

o However, there is a huge difference in high school
dropouts: 2% versus 10%

o Selection on unobservables would have to be huge to
explain this finding.

o We formalized the idea that using degree of selection on
observables can provide a guide to bias from selection on
unobservable variables in this paper



Outline

o Data and Comparison of Catholic 8th graders and full
sample by High School Sector

o Probit and regression results for Catholic 8th graders

o What do observables say about selection bias for Catholic
Schools?

o Conclusions.



Table 1
Comparison of Means of Key Variables by Sector

Eull Sam, Catholic 8th Grade
\Variable Public 10th Cath 10th Difference Public 10th Cath 10th Difference
Demographics (N=11167) (N=672) (N=366) (N=640
FEMALE 052 05 007 061 011
ASIAN 003 004 o001 005 00
HISPANIC 000 000 000 008 o001
BLACK 010 009 001 007 004
WHITE ors ors 000 080 008
Family Background
MOTHER'S EDUCATION IN YEARS 1321 1396 075 1334 1588 054
FATHER'S EDUCATION IN YEARS 1349 1451 101 1339 3% 0%
LOG OF FAMILY INCOME 1023 1072 049 1047 w06 019
MOTHER ONLY IN HOUSE o014 009 005 007 009 002
PARENT MARRIED o7 089 010 050 088 002
PARENTS CATHOLIC 028 082 054 084 084 000
Geography
RURAL 036 003 03 013 0ot w12
SUBURBAN 045 051 006 040 048 008
URBAN 019 046 027 047 051 004
DISTANGE TO CLOSEST CATHOLIC HS, MILES 2216 207 1919 691 237 453
Expectations
SCHOOLING EXPECTATIONS IN YEARS 1525 1597 072 1552 52 040
VERY SURE TO GRADUATE HS 084 089 005 084 090 006
PARENTS EXPECT AT LEAST SOME COLLEGE 089 098 009 094 098 004
PARENTS EXPECT AT LEAST COLLEGEGRAD 079 02 013 088 091 003
STUDENT EXPECTS WHITE.COLLAR JOB o047 061 014 055 050 004
8th Grade Variables
DELINQUENCY INDEX, RANGE FROM 0 TO 4 064 053 01 054 046 008
STUDENT GOT INTO FIGHT 024 02 002 020 019 001
STUDENT RARELY COMPLETES HOMEWORK 019 008 011 008 006 001
STUDENT FREQUENTLY DISRUPTIVE 0z 008 005 008 008 000
STUDENT REPEATED GRADE - 006 002 005 003 002 001
RISK INDEX, RANGE FROM 070 4 069 035 034 039 039 000
GRADES COMPOSIT 204 316 02 309 320 o011
UNPREPAREDNESS INDEX, FROM 0 T0 25 1077 108 031 1084 e o
6TH GRADE READING SCORE 5119 5505 386 5412 5559 147
6TH GRADE MATHEMATICS SCORE 5113 5457 344 5289 5398 109
Outcomes
10TH GRADE READING STANDARDIZED SCORE 5102 5469 366 5463 si62 001
10TH GRADE MATH STANDARDIZED SCORE stz 5503 301 5340 P 112
127H GRADE READING STANDARDIZED SCORE 51,20 5460 340 5325 5470 145
127H GRADE MATH STANDARDIZED SCORE 5120 5554 e 5313 5663 249
ENROLLED IN 4 YEAR COLLEGE IN 1994 031 059 028 038 061 02
HS GRADUATE 085 098 013 088 098 010

Notes:
(1) The Expectations variables are not included in our empirical models



Means of Controls and Outcomes by 8th Grade

o Huge difference in HS grad rates, college attendance
o smaller differences in test scores

o 8th grade outcomes more favorable for kids in Catholic
high schools.

o Difference in observables is much smaller for Catholic 8th
grade sample.



Table 3
OLS and Proit Esimats of Catholc HighSchoo Effects

bsamples of NELS:88

in Subsar
Weighted, (Huher -White Standard Erorsin Parentheses)

[Marginal Effects in Brackets']

Full Sample Catholic 8th Grade Attendees
Controls
() @ (6] “@ ) ©6) ()
None  Tam BG,  (Dpls () plis None  Fam.BG,  (@plis  (3) plus
citysize,  Sthgrade  other 8th citysize,  Sthgrade  other 8th
andregiont tests wrade andregion! tests grade
measures” measures”
HS Graduation
Probit 097 057 048 041 099 088 095 127
O (019 ©02)  ©21) 024 (025 ©027) (029
0123 [0081] 0068  [0.052] [0105]  [0084] 0081  [0088]
Pseudo R 0.01 016 021 034 0. 035 044 058
College in 1994
Probit 07 037 033 032 060 048 056 060
(0.08)  (0.09) 009 (0.09) ©13)  (©15) ©15) 015
[0283] m 106008 [0074) 0236 [0.154]  [0054]  [0.149]
Pseudo R? 002 029 034 0.04 018 029 036
12th Grade Reading Score
oLs 428 208 118 114 192 017 037 033
041 s ©3%) 038 08 098 0 06)
R? 001 0.19 060 060 001 019 059 0.62
12th Grade Math Score
oLs 486 198 107 092 279 110 146 114
©49) (s 039 (032) ©77) (1.00) 053)  (046)
IS 001 026 on 074 002 026 073 077
Notes:
(NEL up and ah ducational . )
Full sample :N-313 (Colege A, N-611 20 Resing) =311 20 it
For Cathol : N=834 (College Atendance), N=739 (12 9 (1210 Mt
probit m
high school atendance
b " da
thenearest C (5 categorics). 2 s
education,
(5)"Other " demic trsck,ach and behaviorl
The NELS:55 553 bys5Se, bysSST, bytl_2, bysSGe, bypS0, bypSTe
bylep, byssb, byss5d byrisk, bygrads, w,m and bys78i-c,and s below abiliy,

(6) The pseudo-R for probit models s mm as “—,el-,

tardy. See Appendix A for more dtails.



Tabled

OLS, Fixed Effect, and Probit Estimates of Catholic High School Effects
by Race and Urban Residence. Full Set of Controls'*
(Huber-White Standard Errors in Parentheses)

Margi ts in Brackets’

Sample
o) @ 3) @
Urban and Suburban  Urban and Suburban — Urban Trban
White Only Minorities Only ~ White Only Minorities Only
HS Graduate [EREL) TNT002) =7
Sample Mean 0580 088 080
Probit 0.524 1176 1592
(0338) ©417) (0.673)
[0.085] [0.091] [0.191]
College in 1994 (N-1258) (N-981) (N=666)
Sample Mean 026 032 026
Probit 0354 0.697 0506 0677
(©.107) (0201 (©.167) (0303)
100871 [0.158] [0.110] [0.144]
12th Grade Reading Score (N=3638) (N-1051) (N-978) (N=s61)
Sample Mean 5294 a7 5333 4161
oLs 130 072 159 0.19
(044) ©.98) 067) (139)
121th Grade Math Score (N=3638) (N=1053) (N=979) (N=563)
Sample Mean 53.09 4733 5390 4888
oLs 107 117 169 125
(035) ©.76) 052) (1.09)

Notes:
!

gender, egion, ciy
8th grade tests, and other 8ih grade measures. (rom teacher, parent, and student surveys). See Table 3 notes 1 and 2
(2) NELSS5 third follow-up and

@




Probit and Regression Estimates for Catholic 8th
graders

o Find a strong positive effect of Catholic High School on
high school graduation (.08) and college attendance (.15)

o The effect on 10th grade test scores is small (standard
deviation of test score is around 10)

o Key question: How much of the estimated high school
effect on educational attainment is real, and how much is
due to selection bias?



Consider the following “treatment effect” model without
exclusion restrictions,

CH}" = g(Xj) + ui
CH; = 1(CH! > 0)
Y, = aCH; + h(X,‘) + &,

The econometrician observes (Xj, CH;, Y;), but not the
unobservables (u;, ¢;), or the latent variable CH;".

Assume the unobservables (uj, ;) are independent of the
observables X; and consider identification of the parameter a.



We are essentially only one parameter (or one equation)
short of identification. In particular if o were known, the
system of equations would be identified.

Under normality and linear indices, model is identified, but
semiparametric identification requires such an excluded
variable.

We treat this model as if it were underidentified by one
parameter. In particular, we act as if p is not identified.

Relationship between observables can solve identification
problem.



Table §

Sensitivity Analysis: Estimates of Catholic High School Effects Given
Different Assumptions on The Correlation of Disturbances in Bivariate Probit
Models in Subsamples of NELS:88'. Modified Control Set.
(Huber-White Standard Errors in Parentheses) [Marginal Effects in Brackets]

Correlation of Disturbances®

p=0 p=0.1 p=02 p=03 p=04 p=05
HS Graduation:

Full Sample 0.459 0.271 0.074 -0.132 -0.349 -0.581
(Raw difference=0.12) (0.150) (0.150) (0.150) (0.148) (0.145) (0.140)
[0.058] [0.037] [0.011] [-0.021] [-0.060] [-0.109]

Catholic 8th Graders 1.036 0.869 0.697 0.520 0.335 0.142
(Raw difference=0.08) (0.314) (0.313) (0.310) (0.306) (0.299) (0.290)
[0.078] [0.064] [0.050] [0.038] [0.025] [0.011]

Urban 1.095 0.905 0.706 0.499 0.282 0.053
Minorities (0.526) (0.538) (0.549) (0.560) (0.570) (0.578)
(Raw difference=0.22) [0.176] [0.157] [0.132] [0.101] [0.062] [0.013]

College Attendance:

Full Sample 0331 0.157 -0.019 -0.196 -0.376 -0.558
(Raw difference=0.31) (0.070) (0.070) (0.070) (0.068) (0.067) (0.064)
[0.084] [0.039] [-0.005] [-0.047] [-0.087] [-0.125]

Catholic 8th Graders 0.505 0.336 0.165 -0.008 -0.184 -0.362
(Raw difference=0.23) (0.121) (0.120) (0.119) (0.117) (0.114) (0.110)
[0.140] [0.093] [0.045] [-0.002] [-0.050] [-0.099]

Urban 0.447 0.269 0.090 -0.091 -0.272 -0.455
Minorities (0.282) (0.282) (0.280) (0.276) (0.269) (0.259)
(Raw difference=0.30) [0.116] [0.062] [0.020] [-0.020] [-0.057] [-0.091]



Observed and Unobserved Variables

Now we will use the assumption that selection on observables
is similar to selection on unobservables

Does this make sense with Catholic Schools?

o Data on a broad set of family background measures,
teacher evaluations, test scores, grades, and behavioral
outcomes in eighth grade

o Measures have substantial explanatory power for the
outcomes that we examine, and a large number of the
variables play a role, particularly in the case of high school
graduation and college attendance.

o The relatively large number and wide variety of
observables that enter into our problem suggests that
observables may provide a useful guide to the
unobservables.



o Relationship among the unobservables likely to be weaker
than the relationship among the observables because
shocks that occur after eighth grade are excluded from X.
These will influence high school outcomes but not the
probability of starting a Catholic high school.
Consequently,

cov(g(Xi), h(X;)) _ cov(ui,e))
var(h(X;)) var(e)

o We think of our estimates of « that impose the conditions
as an informal lower bound for «.



Using the Condition to identify Model

Estimate

CH = 1(X!8+uy >0)
Yi = 1(X{y+aCH;+¢>0)

ey ~ N[0 1)

subject to the restriction

~cov(uj,e;)  Cov(X/B3, X/v)
P= ar(z) ~ Var(Xl)




Table 6

of Estimates of Catholic Schooling Effects on College Attendance and HS Graduation to
8, Catholic 8th Grade s..hmmpw 2, Modified Control Set”
inal Effects in Brackets]

Parentheses) [M:

Assumptions about Selection Bi
(Huber-White

Model
CH=1(X'5+u>0)
(X5 +aCH +¢>0)
rained bivariate probit model
College Attendance Coeflicients

timated

Estimation Method 1: 5. 5, and o
Model  Constrainton p HS Graduation Coeflicients

7 @ [

) p=cmXaxy 024 059 024 on
©13) 033) ©.06) ©16)

[0.05] [003]

@ =0 0 104 0 051
©31) ©12)
[0.08] [0.14]

Estimation Method 2: 2-step, with 3 obtained from a univariate probit, + from a univariate probit using the public $th
Next, o is computed from a bivariate probit with f fixed at this initial value and + fixed up to 6

grade subsample.
fctors
Model  Constraint on p HS Graduation Cocficients College Attendance Cocflicients
» a P &
@ = sl 0.09 0.94 027 006
(0.08) (030) (©.05) ©10)
071 0021

anda trained model”

Estimation Method 3:
CH=1(X'"§+0+u>0)

Y = 1X'y + aCH + 0+ ¢>0)
Model Constraint on p, HS Graduation Coefficients College Attendance Coeflicients
where p = 2t P a P a
@ p-fmiin 025 030 025 ols
(0.16) (0.37) 0.09) 022)
0.05 [0.04)

8. N-859 for the I N-834 for he

Notes
NEL
college attendance sample.
(2) NELS:88 31d follow-up sampling weighs used i the computions.
1 See Table 5, note 2.
@ prop o h
toward school, The coeficer factors for these
19),0.87 (0.22),0.92 0.03), 107 (0.04),0.59 0 raduation case. For
~L01(004),095 (0.15), 043 (0.17) 14 (0.03), and 104 (1




Results:

o We use two alternative methods to estimate ~.
o For Method 1, in the case of High School graduation,

The estimate of

_cov(u,e)  Cov(X/B,X/v) 024
~wvar(u)  Var(Xy) T

and the estimate of « falls to 0.59 (0.33)[0.05].



o For method 2, p is only 0.09, and « is 0.94 (0.30)[0.07].

o Consequently, even with the extreme assumption of equal
selection on observables and unobservables imposed,
there is evidence for a substantial positive effect of
attending Catholic high school on high school graduation.

o The results for college attendance follow a similar pattern,
but with the extreme assumption imposed most of the
effect of Catholic High School is gone.



Summary of Empirical Work

o Catholic High Schools:

o Substantially raise the graduation rate

o Probably increase college attendance.
Have little effect on math or reading scores. Perhaps a
small positive effect on 12th grade math.

o We don’t provide precise point estimates of effect sizes.
“Lower bound” estimate is large.

o Correlation between indices of the observed control
variables is useful in assessing the importance of selection
bias in both single equation



Problems Addressed in Work in Progress

There are two major problems with what we did before

(we were aware of both of them when we wrote the paper, but
we didn’t think they were driving the results and we didn’t want
to do everything in one paper)



First Issue

A key assumption of the model that K* is increasing with
sample size

The standard errors did not account for this complication

In order to do that we must take the model more seriously



Second Issue

The argument is that the observables are like the
unobservables.

However in our empirical work we assumed that u; (the W;s we
don’t observe) is uncorrelated with the W;s we do observe

However, the W;s are pretty clearly correlated with each other,
so this is a really goofy assumption

Note that it is not the theorem that is wrong-that allowed for the
observables and the unobservables to be correlated

The problem is that the theorem applies to the actual I which
you will not be able to estimate without further assumptions



There is a natural solution to this

o Write down a model for the relationship between covariates
o Estimate the model using the observables

o Use the model to get the relationship between the
observables and unobservables

This is what we do here, the most natural is the factor model



The factor model

We make use of a factor model:

— 1

Wi = —WIE,-’/\,-Jrv/j
of = Var(vy)

where all of these error terms are iid

Dividing by v K* guarantees that the variance of Y; that is due
to the factor, F; is stable as K* rises

This model satisfies the two technical assumptions above that
keep the variance and covariance finite.



The rest of the model

K*
~ 1 —
Vi = aoli+ = j§1 §Wilj+ | 7= S) Wi, +£,]

K*
1 —
> W+
VK 5

ﬁ: j 115/ + ¢:]

K*
1 —
= ?:1: S Wi + — §)) Wy, —i—w,]

where all of these error terms are iid across i

Need

cov(v;, &) =0
cov(tpj,wi) # 0



The Newest Part

Now we no longer assume that S; is i.i.d. but allow the
distribution of (I}, 3, 01-2, )j) to depend on S;

Specifically we allow
E(NT; | S =0) =px E(NT; | S5 =1)
E(NBj | S =0) =prsE(N;B; | Sj=1)
E(o?r% | Sj=0) =ps, E(c?T7 | Sj=1)
E(o ,-Fjﬁj | Sj=0) =psypE(0] 2rigi| Sp=1)

where the empirical researcher can explore the robustness of
the results to various choices of the ps.

Note if these are all one, we are back in the observables like
the unobservables case.



We define K
PSO = Pr(S] = 1) ~ W

where K is the observable number of covariates.



Now that we have a model it is just a matter of estimating it

It turns that for our estimator we need K* grows at a slower rate
than N, so that in practice
K*

W—>O

We do asymptotics taking joint limits

| suspect that we could allow K* and N to grow at the same
rate. We would have a few bias terms we would have to adjust
the estimator to account for.



In general the model is not point identified

Thus we do not obtain a point estimate but rather estimate a set
of which «q will be an element

As a reminder in the case when the ps are all 1:

du . (1-Ps)A
¢~ (1-Ps)A+a?

SO

o If o¢ =0, we would have ¢, =~ ¢
o If Ps =1 we would have ¢, ~ 0

o For the cases in between, because of attenuation bias it is
straight forward to show that one gets something in
between



In practice we estimate 3 parameters:
0= (a, Ps, O'g)
with two equations (explained below):

q'(60) =
9?(60) =

with the additional restrictions that

0
0

Thus the identified set will be the set of o’s that are consistent
with these conditions.

Typically one end will occur when Pgq = 1 (1V) and the other
when 0%, = 0 (obs. like uno.)



Letq(8) = [ q'(8) q3(6) |, then
Q(0) = q(0)'2q(0),
is the objective function
We find the set of ¢ that minimize this objective function.

The process works in three steps:

Stage 1 Estimate factor structure-this part does not
depend on 6

Stage 2 Given 6, estimate slope coefficients I'
Stage 3 Calculate Q(0)



Stage 1: Factor model estimation

First we estimate the renormalized parameter A = |/Pg A as
well as o7

It turns out we can get a closed form estimate of A as

K 15N W
3= ﬁZ@;ﬁjWZi 1Wi/Wi€
j =
\/K 1 Z£1 262 NZI 1 121 Ifg




For each 01.21 we only have one moment equation and use the
obvious estimator, for foreach j =1, .., K,

A ()

i=1

2)\2



Stage 2

The estimator we will use is the following. We are estimating
the 3 parameters 6 = (a, Ps, 0?) with true values

bo = (040, Psojff?o) -
Without getting into details it turns out that

Ps+ (1 —Ps)
KPs

Y—oﬁ')

—1
5(0) = sy s Y
q0) _[ h}) +z} NW(

is a good estimator of I

(note that if there is no factor loading, A = 0 or P; = 1 this is
analogous to OLS)



Stage 3

We are estimating the 3 parameters 6 = (a, Ps, ag) with true

values 6, = (ao, Pso, a§0> .

We show that there are only 2 moments that provide identifying
information about the three parameters



We define our estimator based on the following system of equations.
N P e
T (v 7 Ps+ (1= Ps)pxy 7 (0) A\ [ Ps+ (1= Ps)pxg B'A
1 _' (v._ . F)_|[Fs s) Pry
e 0) =y 22 (¥i=aT) ( 2 VK Ps VK

Ps+ (1 = Ps) po S
,( +( PS )p %B)/BZ’}/(Q)

Note that the first expression is like the standard moment condition you would
have in 1V, and the second equation is basically the R? of the regression

Our set estimate is R
©={0:Q(h) =0}



Consistency (In progress)

Theorem

Under our Assumptions, © converges to the identified set



Asymptotic Distribution

We next show that the distribution of g is normal and derive the
variance covariance matrix

Theorem

Assuming our factor model for W, and the Assumptions above
and that K*3/N? — 0, VK*qn .k~ (00) is asymptotically normal
and we derive its complicated Var/Cov matrix



Concluding Thoughts

We think this approach will be useful in many applications

We also think of this as just the beginning. The basic idea of
using observables to say something about unobservables can
be extended to other models and one can try alternative
assumptions.

Note that it is not a panecea.

o When there is little selection on the observables (as in the
Public 8th grade sample) it will give tight bounds

o When there is a lot of selection on the observables (as is
the case for Catholic as an instrument) it will give wide
bounds
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