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Dynamic Models

We will start with simpler Markov models and then move to
Dynamic Discrete Choice Models

| want to define notation to use throughout this set of lecture
notes, so | will broadly follow the notation in Arcidiacono and
Ellison, “Practical Methods for Estimation of Dynamic Discrete
Choice Models” Annual Review of Economics 2011

and in Rust, “Structural Estimation of Markov Decision
Processes,” Handbook of Econometrics, 1994



Markov models

In the discrete time duration models there was only one
possible state of the world:

o spell underway
and only two possible outcomes

o Spell ends
o Spell continues



Now | want to generalize this to think about more general
Markov models

We will assume that you can move into a state of the world d;
which potentially takes on multiple (but a discrete number) of
outcomes

Examples:

o Working, OLF, Unemployed, In school

o Healthy, Sick, Dead

o Married, Single

o Operate in a market, don’t operate in a market

o Have health insurance, don’t have health insurance



The main point of this is to get the notation right

Let S, be the state variables

The outcome variable d, comes from a set D(S;).

Let 6* (S;) map the state variables into the outcome so that
dip =0; (Sir; 0)

where 6 is the vector of parameters.



In this case lets write the state variables as consisting of 4
types of variables

Sir = (dtflaxita Hi, 5it)
where

o d;_; is the current main state we are trying to explain

o X; is observable to the econometrician (and can depend
on past values of d;)

o u; is a vector of unobserved heterogeneity which is not
observable to the econometrician and independent of X;;

o ¢; is a vector of transitory errors that is independent of
Xir, i, and e;- when 7 # ¢



If we specify a model for §* (S;; #) and the distribution of
eir,F(g;0) then

Pr(dy =d | di—1, Xit, 1) =/ 10" (dit—1, Xir, pir €50) = d) dF (€3 0)

We also need to specify the evolution of X;, which is usually
pretty simple



Initial Condition
We need one more part of the model, the initial condition

Start at d;y and assume that d, is independent of y;

Examples

o We are born single and out of work

o A potential firm begins out of the market and decides
whether to enter

We can then define the likelihood function as
/HtTLIPr(d,-t | dis—1, Xir, ;1)dG (115 0)

where G is the distribution of y;

As in the hazard model the initial condition is very important
and messy.



Discrete Choice

Before thinking about dynamic discrete choice it makes sense
to think about static discrete choice.

Assume that Uj; is the utility of individual i at option j =0, ...,J
with
Uj =aj + X{Bj + Z[6 + v

(we could have a Qlﬂj erm but lets not worry about that for
simplicity)



We assume that there are no ties and that
d; =argmax;_yo . 1 Uy

Now think about identification, we get a scale normalization and
a location normalization.

It can be seen clearly in the binary choice case j € {0, 1}
Choose j =1 if

Ui > Ujp
<—a + X;,Bl + Zi(g +vit > ag + Xl{ﬂ() + 265 -+ Vio
= (a1 +Zi5—ao —Z6(5) -l-Xl{ (51 —50) +vi1 —vig >0

Clearly all we can identify here is a single intercept
ay + 716 — ayg — Zy0

(if Z varied across i you could identify §)



Also can only identify the difference between the betas
(81 — Bo) so we can normalize

ao =0
Bo =0
6 =0

alternatively we could choose restrict Z to one dimension and
estimate the § on that dimension and then setag =a; =0



Error Terms

What about vi; — vip?
Clearly all we can identify is difference
First assume

vi = vt — vio ~N (i, 02)

For the location normalization we can just normalize . = 0 for
the location (or could estimate 1 and impose a; = 0)

So now our model
di =1 (a1 + X{B1 +vi > 0)

If we multiply a1, 1, and v; by any positive number = we get
exactly the same model



Now we also need a scale normalization

Most common:

@ normalize o = 1 which gives a probit
o normalize one of the coefficents 5, to one

Of course there is nothing special about the standard normal
and we might want to choose something simpler
computationally (there is no closed for solution for the normal
cdf)



The other most common assumption is to assume that
vi = vi1 — vio has a logistic distribution for which

el/

1+ e”

Pr(vi<v) =
it is also symmetric which means that

Pr(d;=1|X;=x) =Pr(a + X1 > —vi | X; = x)
e+ B

- 1 + e +x'Bi

the logit model



An alternative assumption gives exactly the same result:
suppose that v;; and v;y are independent of each other and both
have type | extreme value distribution

Pr(vi <v) s

then v;; — vjp have a logistic distribution



More than two choices
Now lets go to more than two choices

for simplicity lets focus on 3, but the arguments all apply with
more

Now

0 Up>Uj,Up>Up
di=q1 Uy >UpUs>Up
2 Up 2Ujp,Up > Uy

so we want to compare

Ui =ay + X;{BO + 265 +vio
Ui =a1 + XB1 + Z16 + va
Upn =ar + XiB2 + 256 + vip



We still need a location and scale normalization-but only one

To see location | can subtract Uy, from everything without
changing the order so that

Ui =0
Uy = (a1 —ao) + X, (B1 — Bo) + (Z1 — Zo)' 6 + vir — i
Uj = (ay — ao) + X] (B2 — Bo) + (Zo — Zo)' § +via — vio

Nothing changes, but | can’t subtract anything else so we can
use the same normalization

ao =0
Bo =0
6 =0

Or we could set a; = a, = ag = 0 and estimate a two
dimensional §



Now what about a scale normalization?

Again we only get one:

o If I multiply everything by a postive 7 nothing changes

o however, if | mutliply U;; by 71 and U, by  # 7 | change
the choice of 2 versus 1

Now with normal error terms if

<v,-1—vio>NN<0’[au leD
Vio — Vio J12 022

we can do the normalization by setting say o;; = 1 but still
leaving o, free

Going with more than 3 doesn’t fundamentally change
things-we still get one location normalization and one scale
normalization



Estimation of Multinomial Probit

This is a pain because we have a multiple integral problem, for
every option we have another integral

This can become really messy
You also add a ton of new parameters if you have many choices

(There is also an issue about identification-ideally you would
have exclusion restrictions)



Multinomial Logit

For computational reasons the multinomial logit is much more
popular

If we have J choices and we write
U,'j =Wij + Vvij

where p;j = a; + X/, + Z;(S after appropriate location and scale
normalizations

where the v;; are all independent and type | extreme value we
get

et
Z‘gﬁ 0 eHMie

a closed form answer that is trivial to compute even when J is
large

Pr(di=j) =



Substitution Patterns

A problem with the multinomial logit is the substitution
patterns-you get Independence from Irrelevant Alternatives

The classic example (from McFadden) is if we are looking at
transportation choice with three choices

0 j=0:Car
o j=1:RedBus
0 j=2:BlueBus

Think about

eHil .

Pr(di=1) imoremiyern e
;= - et'io - i
Pr(d; =0) o S




Now suppose we get rid of the Blue bus as an option, now

Pr (dl = 1) _ g“i(‘)g:-ii'“il _
Pr(d;=0) &2 _ etio

elio 4-etil

e)u'il

But this makes no sense-we would expect people who took the
blue bus before to substitute towards the red but, but instead
they subsitute equally to the red bus and car



This is not just an 10 problem

If

o these represent no college, 2 year college and 4 year
college

o and we raise the tuition at 4 year college

@ we would expect people to substitute more towards 2 year
college

To me this while this particular IIA result depends upon the
multinomial logit functional form-the more general probelm is
assuming that v;; is i.i.d.

We would expect the error term for the blue bus and the error
term for the red bus to be highly correlated with eachother.

There are two common solutions to this problem



Nested Logit

The nested logit is one way to get some correlation but still
keep things tractable. (more generally using generalized
extreme value distribution)

Lets think about a case with one nest.

Partition the choices into L mututally exhaustive categories
Ci,....CL

We can think of the choice as if it is a two stage process (while
it really isn’t)



For each ¢ we add a new parameter p, and would choose option

etiil pe

Pr(di:j\diecé):W
keCy

then we choose the group
(ZjECg ew/m)”
- pi
Zle (ZjECl eleJ/Pl)

(Note that this is kind of like a nested CES)

Pr (d,' S Cg) =




Putting them together
Pr(d; =j) =Pr(d;=j|di € Cy) Pr(d; € Cy)
eHii/ P (ZJECg e’“/’””)pZ
:ZkGCg e/ pe S (Zjeq eufj/pz>pl
et/ e (ZjGC@ em;/pz) pe—1
B Zlel (Zjea e“ij/p'>pl

Note as well that if all of the p, = 1 then we are back at the
regular multinomial logit



The joint cdf can be written as

L

F, (v) =exp —Z Ze"’f/”l

{=1 \jeC,

The correlation of the v; within a nest is approximately 1 — p,
and they are independent across nests

You can also add more nests



Mixed Logit

An alternative way to do this that is quite popular in 10 is to
used a mixed logit

Uj =a; + Xz{ﬁij + Z]{(Si + vy
particularly with the 4;.

This makes some real sense as you are allowing people to
have preferences for particular aspects of goods

In its simplest form you could just specifiy a distribution for ¢;
and integrate through

Goes well beyond this-my |O colleagues have a comparative
advantage at teaching this stuff, so | am not going to get into it

OK lets get to dynamics-most of these papers are not going to
worry about the substituability issues



Forward Looking Model

Lets combine the discrete choice with the dynamics

Lets start by defining the flow utility for each period as

u(dy, Xit, 113 0) + €iq,

(starting with linear models for u, is most common)



| will need to be more explicit about X;; at this point-it is
observable state variables

o Could include “exogenous variables”

o Could include endogenous variables that depend on
previous choices

@ Since people are forward looking they will account for this
when they make decisions



Let 3 be the discount rate so now we choose

T
d; (Si; 0) = argmaxE;, 4, {Z BT ur (dr, Xir, i3 0) + 8%)}
d;E’Dr(S,’,)

T=t

where E;; ;, means the expectation of individual i at time ¢ if she
chooses option d; at time ¢



| will assume the following

o Agents have rational expectations (about future random
variables)

o The agent’s conditional expectations about X;; depend only
upon X;;_; and dj;_1

o Agents also don’t have any more information on how ¢;; will
evolve than does the econometrician

o Agents do observe current outcomes of ¢;; and of y;



It is useful to define this using Bellman’s equation

Define

T
Vi(Sir; 0) =, e’%agcs_ )Eiyt7dt {Z BT (ur (dr, Xir, s 0) + 8%)}
t t\ it =t

So we can write

Vi(Sir; ) =, Ef%aé) {ur(d-, Xir, i3 0) + €ia, + BEira, [Vie1(Sit; 0) | Xiro dy, i }



A key result comes from the fact that SE [Vy1(Si; 0) | Xir, di, pi]
is only a function of (X, d;, 1)

That means we can define
Vt(dt,Xit, Hi; 9) Eut(dtvxita i 9) + BE [Vt+1(Sit§ ‘9) ’ Xit, dy, ,U«i}
but now we are back in the simpler “static” model

8; (Sir; 0) = argmax {v,(d;, Xir, pis 0) + €ia, }
d€Dy(Sir)

As long as you can calculate SE [Vi41(Si; 0) | X, dy, i) the
econometrics is identical to the Markov model

However, this is a big “as long”

How do we usually solve for it?



There are two types of models with two solution methods

@ When T is finite we do backward induction.
o When T is infinite we look for a fixed point

| want to focus on the backward induction case
For the infinite case we usually discretize the states

This gives us a finite number of equations and we solve for the
fixed point (see Rust)

The ideas are similar, so lets focus on backward induction.



Period T

Start at period T

we can solve for

07 (Sir; 0) = argmax {ur(dr,Xir, jti;0) + €iay }
dTEDT(S,'T)



Period T-1

Now move to period 7 — 1

Let G(Xir | Xir—1,dir—1) be the conditional distribution of X;»
then

E[Vr(Sir; 0) | Xir—1,dr—1, ] =

// (ur (07 (Sir; 0) , X7, 1155 0) + st (5.0:0)| dFe(€)dG(Xr | Xir—1,dr—1)



With some functional form assumptions the integrating over ¢
can be avoided because closed form solutions are available.

The classic case that gives you a closed form solution is the
extreme value.

If all of the ¢;; are extreme value then we get a really nice result
/ [MT(CS? (Xir, ptiy €15 0) , Xir, 123 0) + 5i5;(X,-T,m,6i,;0)} dF.(¢)

=log Z ot (dr Xir,puii0) 4+~
dreDr (SiT)

where ~ is Euler’s constant



Another nice example happens with normal error terms and a
binary choice variable.

To implement scale and location normalizations assume that

I/IT(I,XiT, i 9) + & :MT(XiTa i 0) tE&i
ur (0, Xir, p150) + €io =0
£: =N(0,02)



Then

/ [“T((S; (Xir, s ity 0) s Xir, i3 0) + 5;‘5;()(”,“,,5[,;0)] dF_(e)

=Pr (ur(Xir, j1i;0) + &; > 0) E (ur(Xir, p1330) + & | ur(Xir, p1i30) + & > 0)
—3 <MT(X1‘T,/~L;;9)> w(Xig, 153 0) + @ <uT(XiT7Mi§9)> 0. ® <MT(X1‘T;N[§9)>

O O O

o, [‘I) (MT(XmMi;@)) ur (Xir, pi; 0) +¢< 7( zﬂ#n@)}

O Oc Oc




However, we still need to worry about the
dG(Xt | Xir,dr—1)
part of the expression

This is a mess we have to exactly calculate the value function
at all of these points

Often there are a lot of points

Typically people don’t do this, they solve at a subset of the
points and then use some parametric model to interpolate the
other points (see Keane and Wolpin, “The Solution and
Estimation of Discrete Choice Dynamic Programming Models
by Simulation and Interpolation: Monte Carlo Evidence,” 1994)



We have only focused on the last node, but after that we just
repeat the exercise

For period T — 1 we have already calculated
E[Vr(Sir; 0) | Xir—1,dr—1, ;] which was the hard part, once we

have this we can define
vr—1(dr—1,Xir—1, pi; 0)
= ur—1(dr—1, Xir—1, pi3 0) + BE [V (Sit: 0) | Xir—1,dr—1, i)

and solve for

671 (Sir—1;0) = argmax  {vr_i(dr_1, Xir—1, s 0) + €ia;_, }
dr—1€Dr(Sir—1)



and then

E[Vr_i(Sir—1;0) | Xir—2,dr—2, 1]

Z//[VT—1(5?1(SiT—1,9),XiT—1,ui;9))+€i5;_,(s,~r_1;9)
dF.(e)dG(Xr_1 | Xir—2,dr—2)

We just keep solving backwards in this way until the initial
period



Conditional Choice Probabilities
Hotz and Miller, “Conditional Choice Probabilities and
Estimation of Dynamic Models,” REStud, 1993

The idea is more general but the standard case in which it is
applied is with extreme value error terms and for now no
unobserved heterogeneity

In this case we know that

E [Vi(Sir; 0) | Xit] =log (Z ev,(d,,X,-,;G)) +7

dy
Now take some arbitrary d; € D,(S;;) from the logit form we
know
evr(d;* ,Xit§9)

Prida = di | Xu) =5~ a0
dy



but then combining these

Zd dy, Xir;0
E[Vi(Si; 0) | Xir] =log ( (4 0) W) T

:vt(d;kyXit; 9) — 10g (Pr(dl‘[ = d[* | Xj[)) + Y



But this means that we can write

vi(dit, Xir; 0)
=u;(dy, Xir; 0) + BE [V1+I (Sir3 0) | Xir, dt}

=u;(dy, Xir; 0) + ﬂ/ E [Vig1(Sirg15 0) | Xirg1] dG(Xipqe1 | Xie, dr)

=u;(dr, Xir; 0) + ﬂ/ [Vf+1(d,trpxn+1; ) — log (P"(d,‘z+1 =dfy | Xir+l))] dG(Xiq1 | Xiry di) + By

Note that we can get Pr(di11 = df,, | Xir11) directly from the
data

Thus if we knew v, (d}, |, Xir1-1; ¢) we wouldn’t have to solve
the dynamic programming problem

We could just estimate as a nonlinear multinomial logit (and
almost linear)



The trick here is to come up with some way to deal with
Vi1 (d?+1>Xit+l; 0)

See Arcidiacono, Arcidiacono and Miller, or Hotz and Miller for
examples

Hotz and Miller use sterilization as their choice-at that point
there are no longer future fertility considerations to be
considered so it can be parameterized directly (or normalized
to zero)



Unobserved Heterogeneity

The problem here is that this is not implementable when there
is unobserved heterogeneity.

Adding it back in gives

vi(di, Xit, pis 0)
=u(dr, Xir, pis 0)

+ 8 / [Vz+1(f1;‘+|7xn+17 iz 0) — log (Pr(d[1+l =dy | Xit1s #i))} dG(Xjy1 | Xirs di) + By

But the problem is that Pr(d;;y1 = d;, | | Xiry1, i) is not directly
identified from the data

This is a big problem in many cases



Arcidicano and Miller, “CCP Estimation of Dynamic Discrete

Choice with Unobserved Heterogeneity” (EMA 2011) come up
with a solution

First consider the EM Algorithm



EM Algorithm

Think about a case with discrete unobserved heterogeneity so
one can write the Log-likelihood function as

Z IOg (Z 71'ij(0; Y,))
i J

(One could allow 7 to depend on X; but lets focus on the
simpler case)



The first order condition with respect to 6 is

S, 200
]
> miLi(0;Y;)

OL;(0;Y;)
S st
Li(0;Y;) | Olog(L;i(0;Y7))
_ZZ[ ey)] 20

_ v Olog (Li(0;Y;))
:ZZ/:Q(I | Yi0)——p——

where from Bayes theorem, ¢ is the conditional probability that
the unobservable is node j conditional on the data and
parameter vector 6



But that means by the law of iterated expectations

1 .
7 %NZQ(I | Yi;0)

This suggests a two staged process



M Stage

In the M (Maximization) phase we take g(j | ¥;; 0) as given (from
previous stage) and maximize

DD 4| Yi6)log (Ly(6; Yi)

to get an estimate



E Stage

In E (Expectation) phase we take parameters 8 and 7 as given
(from previous stage) and calculate

7Li(0; Y;
30 | ¥i9) = —LO: )
> miLi(0;Yi)

and that will also yield a new

y 201 %)



We keep iterating until we find a fixed point

The point it converges to will be a point that solves the first
order condition of the MLE problem

This is generally not computationally better than MLE because
we may need to solve the maximization step many times

However, solving the M- step might be much easier than the full
model

Arcidiacono and Jones, EMA, 2003 give some examples of
these cases



CCP and the EM Algorithm

CCP is another case like that

Recall that the problem with unobserved heterogeneity was that
we couldn’t observe Pr(d;, = d; | Xi;, ;) in the data

Using a bit odd notation we could think of y; taking on j values,
j=1,...,K then notice that

Pl’(d,‘,:d;k ‘Xit:x ,ui:j])
:E( (zt—d*>1(/h:
E(1 (i = J) [ X =
E(E(1(dy =d;) 1 (i =
EE(L (=) | %) | Xa =)
_E( (d =di)q(j | Yi;0) | Xis = x)
N Q(] ‘ Y,,H) ‘Xlt X)

~—

(Y; is the full set of observables so it includes d;; )



Notice that we can approximate this as

il (di=d;)q(| Yi;0)1 (Xir = x)
2290 | Yi0)1 (Xir = x)

Arcidiacono and Miller show that you can

o Calculate this in the E step
o Use this estimate for the CCP in the M stage

Since you don’t need to solve the dynamic programming model
this can be really quick



Identification

Taber , “Semiparametric Identification and Heterogeneity in
Dynamic Discrete Choice Models,” Journal of Econometrics,
2000.

| use the simplest Dynamic model you can think about using
education as an example (like the Cameron and Heckman
case)



Enter Labor Force (h)

Grad. H.S.(g)

College (c)

Drop Out(d)



Define the model in terms of lifetime utility at the terminal nodes

With an exclusion restriction model is

Vei = 8c(Xei, Xoi) + €ci
Vi = 84(Xai, Xoi) + €ai
V=0

and J; € {c,d, h} the option that individual i actually chose



The key complication is exactly what the agent knows at time 1
about the error term at time 2

Let this be summarized by ¢;

We let X;; denote other information the agent might have about

future values of X;

| use the following timing

Known to the Agent

Learned by the Agent

Observed by
the Econometrician

G()

at time one at time two
€1is Edi Eci Xoi, X1i, Xai
Xoi, X1i, Xai Xei Xei

Ji




Solving the model backward the person attends college if

Vei > Vi <=8¢(Xei, Xoi) +€ci > 0

The only place where dynamics is interesting is the g node

| define

Ve(x1,%4, X0, €1)
= E[max{ V¢, Vii} | (X1i, Xai, Xoi) = (x1,Xa,X0) , €1; = €1]

This person will graduate from college when

Ve (X1, Xai, Xoi, €1i) > Vi



Identification of g. is like the standard “identification at infinity”
argument for any selection model

lim PI'(J,‘:C|XZ‘:X)
g[,(xd,)q])ﬁfoo
= lim  Pr[ga(xa,x0) + s < Vg(x1,%4a,%0,€1i), 8c(Xe, Xo) + €ci > 0]
8a(%a,%0)——00

= Pr[gc(xmxo) + E¢i > 0]



Identifying g, is kind of similar, suppose that you have an X;;
such that when it goes to —oo the distribution of g, shifts to the
left.

(this is easiest to think about when X,; is known at time 1 so
that X,; = Xy; )

Then

lim  E[max (g.(Xei, Xo) + €ci; 0) | (X1, Xai, Xoi) = (%1, %a,X0) , €1; = €1]

Xl ——0Q

:07

so that,
lim Pr(J; =d|X; =x)
X]—>—00

= lim Pr[gd(xd,xo) +e4 > FE [max (VC,', 0) | (xl,xd,xo) ,61]]

X]—>—00

=Pr(g4(x4,x0) + €ai > 0].



The error terms are not identified without putting more structure
on ey;

| cover two cases:

@D i =ca
@ <. = pei + 1. Wwhere p.; is known at time 1 and 7,; is
independent of anything known at time 1



We know that
Pr(Ji = h | X;) = Pr(gai +cai < Vo(X1i,€1i), 8ci + Eci > 0).
So by sending V,(Xi,e1) — 0 | can identify
Pr(gai +c4i < 0,8 +¢€ci > 0).

but given that g, and g, are identified, | can identify the joint
distribution of (¢4, &c:)



o For the first model this is everything so we are done
o The second takes slightly more work
o choose X;; and X, so that:

Prob(Ji =c¢ | Xu) — 1

That |mpI|es that Vg(Xli, 81,’) — E(g(;i | Xl,') + i

which unfortunately also implies that E(g.; | X1;)) — oo

So we need to also send g4 — oo at the same rate so that
gai — E(gei | X)) = &i

o OK thats a mess, but once we do that we can identify
Q

© ©0 0 ©

Pr(Ji =c | X;) =Pr(gi + €ai > ftei» 8ci + thei + ei)

o It turns out that knowledge of the marginal distribution of ¢,
and the joint distribution of (g4 — fici, fiei + i) 1S €NOUGh tO
identify the joint distribution of (¢4, u.;) and of n.; (using
characteristic functions)



Examples

Lets look at probably two most classic examples



Harold Zurcher

Rust, “Optimal Replacement of GMC Bus Engines: An
Empirical Model of Harold Zurcher,”EMA, 1987

Harold Zurcher managed the bus depot here in Madison



TABLE |
Bus TYPES INCLUDED IN SAMPLE

Group Buses  Manufacturer

Grumman  V6-92 series

Chance
GMC
GMC
GMC
GMC
GMC
GMC

3208 CAT
8V71
8V71
8V71
6V71
8V71
6V71

RT-50
T8H203
5308A
S308A
4523A
S308A
4523A

Year

1983
1981
1979
1975
1974
1974
1972
1972

Seats
48
10*
45
53
53
45
51
45

Empty
Weight

25,800
N.A.
25,027
20,955
20,955
19,274
20,955
19,274

Purchase
Price

$145,097
100,775
92,668
62,506
49,975
45,704
43,856
40,542

Estimated
Value a<
of 10/1/84

$145,097
124,772
125,000
55,000
48,000
48,000
45,000
40,000




His choice each period is whether to

o Do routine maintenance on the bus d;; = 0

o Completely rebuild the engine d;; = 1 which makes it like
new

There are two state variables

o Mileage on engine X, which is observable-evolves
according to a distribution of X;;; — X; which is i.i.d. g(-; 65)

o Unobservable extreme value terms ¢4 which are i.i.d.
extreme value

—a+626—e*€+92

q(e; 02) =e

with 6, as Euler’s constant which gives multinomial logit



SUMMARY OF REPLACEMENT DATA

TABLE lla

(Subsample of buses for which at least 1 replacement occurred)

Mileage at Replacement Elapsed Time (Months)

Bus Standard Standard Number of
Group Max Min Mean Deviation Max Min Mean Deviation Observations

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 273,400 124,800 199,733 37,459 74 38 59.1 10.9 27

4 387,300 121,300 257,336 65,477 116 28 73.7 233 33

S 322,500 118,000 245,291 60,258 127 31 85.4 29.7 11

6 237,200 82,400 150,786 61,007 127 49 74.7 35.2 7

7 331,800 121,000 208,963 48,981 104 41 68.3 16.9 27

8 297,500 132,000 186,700 43,956 104 36 58.4 222 19

Full
Sample 387,400 83,400 216,354 60,475 127 28 68.1 224 124




TABLE IIb
CENSORED DATA
(Subsample of buses for which no replacements occurred)

Mileage at May 1, 1985 Flapsed Time (months)
Bus Standard Standard  Number of
Group Max Min Mean Dewviation Max Min Mean Deviation  Observations
1 120,151 65,643 100,117 12,929 25 25 25 0 15
2 161,748 142,009 151,183 8,530 49 49 49 0 4
3 280,802 199,626 250,766 21,325 75 75 75 0 21
4 352,450 310910 337,222 17,802 118 117 117.8 0.45 5
S 326,843 326,843 326,843 0 130 130 130 0 1
6 299,040 232,395 265,264 33,332 130 128 1293 1.15 3
7 0 (1] 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0
Full

Sample 352,450 65,643 207,782 85,208 130 25 66.4 34.6 49




Elapsed time (months)
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The utility is modeled as

u(0, Xir; 0) = — (Xir; 01)
u(1,Xi;0) =RC — ¢(0;6)

There are no t subscripts because this is a stationary infinitely
lived problem.

The problem is solved using a nested fixed point algorithm (see
Rust for details)



The parameters are

0 ={B,01,RC, 05}

Take § (and 6,) as given
X;, is discretized into intervals of 5000

Distribution of AX;, is divided into 3 categories

o 0-5000
o 5000-10,000
o 10,000-00

Thus there are only 2 parameters in 63, and 63, to cover these
three probabilities



He tries different specifications for the cost functions-linear
works fine

He estimates the model using full maximum likelihood



TABLE IX

STRUCTURAL ESTIMATES FOR COST FUNCTION ¢(x, 6,) =.0016,,x

FIXED POINT DIMENSION =90
(Standard errors in parentheses)

Parameter Data Sample Heterogeneity Test
LR Marginal
Discount Estimates/ Groups 1,2,3 Group 4 Groups 1,2,3,4 Statistic Significance
Factor Log-Likelihood 3864 O 20! i 8156 0! i (df=4) Level
B =.9999 RC 11.7270 (2.602) 10.0750 (1.582) 9.7558 (1.227) 85.46 12E-17
01y 4.8259 (1.792) 2.2930(0.639) 2.6275(0.618)
039 .3010 (.0074) .3919 (.0075) .3489 (.0052)
65, .6884 (.0075) .5953 (.0075) 6394 (.0053)
LL —2708.366 —3304.155 —6055.250
B=0 RC 8.2985 (1.0417) 7.6358 (0.7197) 7.3055 (0.5067) 89.73 15E-18
611 109.9031 (26.163) 71.5133 (13.778) 70.2769 (10.750)
639 .3010 (.0074) 13919 (.0075) .3488 (.0052)
05, 6884 (.0075) .5953 (.0075) 16394 (.0053)
LL —2710.746 —3306.028 —6061.641
Myopia test: LR 4.760 3.746 12782
Statistic
(df=1)
B=0vs. B=.9999 Marginal 0.0292 0.0529 0.0035
Significance

Level




Keane and Wolpin

Keane and Wolpin, “The Career Decisions of Young Men," JPE,
1997 This is the best known structural model of labor dynamics

There have been many subsequent papers written that use the
basic framework, but build on it

| discuss the first classic paper

Essentially a dynamic Roy model



Basic Model

People start making decisions at age a = 16 and live until age
A.

At each age they can choose one of 5 options:

@ Work in Blue Collar Job
@ Work in White Collar Job
@ Work in Military

@ Go to School

® Home Production



For each of these 5 options let:

@ d,,(a) be an indicator for whether option m was chosen
@ R,,(a) be the conditional reward if m was chosen
o g(a) schooling at age a

Then

R(@) = ) Ru(a)dn(a)

m=1

a—1

a=1



Consider each of the three working options (m = 1,2, 3) then let

o e,(a) skill level in occupation m
9 ry, rental rate in occupation m
@ x,(a) work experience in occupation

ma(xm(a) = 22;11 dm(a))
They assume that

log(em(a)) = en(16) + emig(a) + empxm(a) — emgxi(a) + em(a)

form=1,2,3,anda=1,...,A.



Since people only care about wages (no hours dimension of
labor supply or tastes)

Ry(a) = wy(a)
= rmexp(em(16) + em1g(a) + emxm(a) — emsxp(a) + em(a))



They define the reward functions for the other two alternatives
as:

Ry(a) = es(16) — 111 [g(a) > 12] —tcp1 [g(a) > 16] + e4(a)
R5(a) = 65(16) + 65(61)

and further define:

e(a) ={ei(a),e2(a), 13(a), e4(a), e5(a)} ~ N(0,Q)
e(16) ={e1(16),e2(16),e3(16),e4(16),e5(16)}

x(a) ={x1 (@), x2(@), x3(a))}

S(a) ={e(16), g(a), x(@),=(a))}



We are done with the model, the agents just solve the dynamic
programming problem

V(S(a),a) =
maxm [Ru(S(a),a) + 0E(V(S(a+1),a+ 1) | S(a),dn(a) = 1)]

fora <A
In the last period

V(S(A),A) = max,, [Rn(S(A),A)]
Thats it, that is the whole model.

They solve backward interpolating between different points in
the state space



Estimation

Keane and Wolpin use the NLSY79 data set, starting with
people age 16 who they observe until a certain age (call it @; for
individual i).

They also observe schooling (g;(a)), sector specific experience
(x;(a)), and choices made at each age until a;.

They will allow for heterogeneity in ¢;(a) which is unobservable

They also will allow for heterogeneity in initial endowments as
well ¢;(16) although this is not observable to the
econometrician.



Given the model it is straight forward (though computationally
intensive) to calculate

Pr(ci(a) | a, gi(a), xi(a), ei(16);0)
with knowledge of the other parameters 6.

Thus if we know ¢;(16) the likelihood for individual i would be
straight forward to calculate because there is no serial
correlation in €;(a).

i(ei(16), H Pr(ci(a) | a,gi(a),xi(a),e(16);0)

a=16

To deal with heterogeneity they assume that there are a finite
number of types (Heckman/Singer style)



Assume that there are K types and let 7, denote the proportion
in the population of type k

further let e¥(16) denote the vector of skills for type k

Then the likelihood takes the form:

Li(0,,e(16)) Zc

Thats the model, now it is just time to calculate it.



TABLE 1

CHOICE DI1STRIBUTION: WHITE MALES AGED 16-26

CHOICE

AGE School Home  White-Collar  Blue-Collar  Military  TotAL

16 1,178 145 4 45 1 1,373
85.8 10.6 3 3.3 1 100.0

17 1,014 197 15 113 20 1,359
74.6 14.5 1.1 8.3 15 100.0

18 561 296 92 331 70 1,350
41.6 21.9 6.8 24.5 5.2 100.0

19 420 293 115 406 107 1,341
31.3 21.9 8.6 30.3 8.0 100.0

20 341 273 149 454 113 1,330
25.6 20.5 11.2 341 8.5 100.0

21 275 257 170 498 106 1,306
21.1 19.7 13.0 38.1 8.1 100.0

22 169 212 256 559 90 1,286
13.1 16.5 19.9 43.5 7.0 100.0

23 105 185 336 546 68 1,240
8.5 14.9 27.1 44.0 55 100.0

24 65 112 284 416 44 921
7.1 12.2 30.8 45.2 4.8 100.0

25 24 61 215 267 24 591
4.1 10.3 36.4 45.2 4.1 100.0

26 13 32 88 127 2 262
5.0 12.2 33.6 48.5 .81 100.0

Total 4,165 2,063 1,724 3,762 645 12,359
33.7 16.7 14.0 30.4 5.2 100.0

NoTe.—Number of observations and percentages.
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TABLE 2
TRANSITION MATRIX: WHITE MALES AGED 16-26

487

CHOICE (?)

CHOICE (t— 1) School Home  White-Collar Blue-Collar ~ Military
School:

Row % 69.9 12.4 6.5 9.9 1.3

Column % 91.2 32.6 2.5 14.2 11.2
Home:

Row % 9.8 47.2 8.1 31.3 3.7

Column % 4.4 429 8.8 15.6 10.7
White-collar:

Row % 5.7 6.3 67.4 19.9 7

Column % 1.8 4.0 51.4 7.0 1.4
Blue-collar:

Row % 3.4 12.4 9.9 73.4 9

Column % 2.6 19.0 18.2 61.7 4.3
Military:

Row % 1.4 5.5 3.1 9.6 80.5

Column % 2 1.6 1.0 1.5 72.4




TABLE 8
SELECTED CHOICE-STATE COMBINATIONS

Highest grade completed
Percentage choosing school
If in school previous period

White-collar experience

P choosing white-coll
If whitecollar previous period

Blue-collar experience
hoosing blue-coll 1

If bluecollar previous period

Military experience

Percentage choosing military employment
If military previous period

9 10 11 12
26.9 59.8 49.1 13.5
73.5 91.1 85.0 44.2

0 1 2 3

6.8 38.0 55.3 63.3
e 57.5 7.7 76.7

0 1 2 3
15.0 51.6 64.9 74.0

e 62.0 71.4 787

0 1 2 3

15 68.0 56.6 44.6
e 90.7 86.5 74.0

13
45.1
72.9

4
76.2
78.8

74.9
81.7

327
57.1

14
44.
70.6

74.6
82,0
81.2
85.3

61.9
78.8

3o B8
o

g9 ®
e
ST R

16
235

N
2%




TABLE 4

AVERAGE REAL WAGES BY OcCUPATION: WHITE MALES AGED 16-26

MEAN WAGE
All

AGE Occupations White-Collar Blue-Collar Military
16 10,217 (28) 10,286 (26)

17 11,036 (102) 10,049 (14) 11,572 (75) 9,005 (13)
18 12,060 (377) 11,775 (71) 12,603 (246) 10,171 (60)
19 12,246 (507) 12,376 (97) 12,949 (317) 9,714 (93)
20 13,635 (587) 13,824 (128) 14,363 (357) 10,852 (102)
21 14,977 (657) 15,578 (142) 15,313 (419) 12,619 (96)
22 17,561 (764) 20,236 (214) 16,947 (476) 13,771 (74)
23 18,719 (833) 20,745 (299) 17,884 (481) 14,868 (53)
24 20,942 (667) 24,066 (259) 19,245 (373) 15,910 (35)
25 22,754 (479) 24,899 (207) 21,473 (250) 17,134 (22)
26 25,390 (206) 32,756 (79) 20,738 (125) e

Note.—Number of observations is in parentheses. Not reported if fewer than 10 observations.
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TABLE 5

* FIT TESTS OF THE V Crorce
DYNAMIC PROGRAMMING MODEL AND MULTINOMIAL PROBIT
White-  Blue-

Age School ~Home Collar Collar Military ~ Row
DP-basic 103.05% 17104 ' 9261* ' 213.2%
DP-extended 200 07 R 15 R ;
APP 200 19 ' 7.05¢ ' 924%
DP-basic 7413 7.37¢  2L14% 5463 1186* 16915+
DP-extended 95 02 28 331 42 498
APP 02 0 17 03 00 184

18
DP-basic 1502 160 218 675* 171 27.26%
DP-extended 03 00 93 01 3.09 406
APP 09 94 303 42 a7 465

19:

ic 3583 504% 26 723 14410 6277%
DP-extended 83 51 07127 34 3.02
APP 00 02 01 7 153 173

20:

DP-basic 3110+ 624 14 92 2447%  62.86%
DP-extended 16 25 24 2 2 94
APP 2% 01 82 06 a7 131

21
DP-basic 3128* 654 01 146 1661*  5580%
DPextended 291 350 245 23 72 981*
APP 00 65 05 03 41 114

22
DP-basic 2378* 294 101 08 1184 39.66%
DPextended 1243 11 61 304 38 16.60%
APP 12 149 72 64 121 419

25
DP-basic 1263¢  778* 299 200 315 28.56%
DPextended 1466 12 376 42 44 19.40%
APP 23 24 590r 44 438 1097%

2
DP-basic 8 476+ 298 461 140 13.30%
DP-extended 18 99 81 04 04 189
APP 121 277 220 05 277 10.01%

2:

DP-basic 30 1235+ 621 931* 184 30.01%
DP-extended d4 345 271 29 23 6.82
APP o1 208 5000 61 256 11.16%
DP-basic 496* 3864 17 313 ' 46.90%
DPextended 261 214 5 00 ' 520
APP 284 495% 10 01 ' 7.90*

Nore—The busic dyamic programming (DPsic) model has 50 paramecr, the cxended dmamic
poogmning (DF cchded) modei s 9 e, s he approxiinai decuion rle (APP) mose s

S iscaly dgnificanta e 05 el
" Fewer than five obervat



TABLE 6

‘WITHIN-SAMPLE WAGE FIT

WHITE-COLLAR BLUE-COLLAR
NLSY* DP-Basic DP-Extended Static NLSY! DP-Basic DP-Extended Static
Wage:
Mean 19,691 17,456 19,605 19,688 16,224 16,230 15,805 15,914
Standard deviation 12,461 10,324 12,091 13,664 8,631 8,437 8,431 9,837
Wage regression:
Highest grade completed 095 033 1090 091 048 006 047 056
(007)F  (.007) (.006) (007)  (.008) (.006) (.006) (.007)
Occupation-specific experience .1 017 1080 1128 1096 082 078 1108
(.009) (.011) (.012) (010)  (.005) (.004) (.004) (.005)
Constant 8.33 9.15 8.44 8.22 8.80 9.25 8.84 8.54
(.102) (.087) (.080) (.100)  (.096) (.069) (.078) (.082)
R 21! .021 182 172 150 117 104 142
Observations 1,509 1,605 1,685 1,698 3,143 4,013 3,761 3,772

* Three wage outliers of over $250,000 were discarded. The only important effect was to reduce the wage standard deviation significantly.
1Two wage outiers of over $200,000 were discarded. The only important effect was to reduce the wage standard deviation significantly.
* Heteroskedasticitycorrected standard errors are in parentheses.



Given that the model does not fit that well, Keane and Wolpin
do several things to improve the fit of the model:

@ More terms are added to the civilian wage equations

@ Allow for a reward cost if you switch occupations, and
larger if you start a new occupation

@ Include non-wage tastes for the occupations

@ Include a consumption value of school, a cost of reentry to
school, and a psychic cost of getting high school/college
diploma

@ Payoff for home production change by age

Here are the results



TABLE 7

O -SPECIFIC P
White-Collar Blue-Collar Military
1. Skill Functions
Schooling 0700 (.0018) 0240 (.0019) 0582 (.0039)
High school graduate —.0036 (.0054) 0058 (.0054)
College graduate 10023 (:0052)  .0058 (.0080)
‘Whitecollar experience 10270 (.0012) 0191 (.0008)
Blue-collar experience 0225 (.0008) 0464 (.0005)
Military experience 0181 (.0023) 0174 (.0022) 0454 (.0037)
“Own" experience squared/100  —.0429 (.0032) —.0759 (.0025) —.0479 (.0140)
“‘Own’" experience positive .1885 (.0132) 2020 (.0128)  .0753 (.0344)
Previous period same occupation 3054 (.1064)  .0964 (.0124) e
* 0102 (.0005) 0114 (.0004) 0106 (.0022)
Age less than 18 —.1500 (.0515) ~—.1433 (.0308) —.2539 (.0443)
Constants:
89370 (0152) 88811 (0093) 8540 (.0234)
—.0872 (.0089) 3050 (.0138) .
Devi —.6091 (.0143) —.2118 (.0144)
Deviation of type 4 from type 1 —.5200 (.0199) —.0547 (.0177) -
True error standard deviation .3864 (.0094) 3823 (.0074) 2426 (.0249)
Measurement error standard devi-
.2415 (.0140)  .1942 (.0134)  .2063 (.0207)
Error correlation:
White-collar 1.0000
Bluecollar 1226 (.0430)  1.0000
Military 0182 (.0997) 4727 (.0848)  1.0000
2. Nonpecuniary Values
Constant —2543 (272) 3,157 (258) —.0900 (.0448)
Age e —.0313 (.0057)
3. Entry Costs
If positive own experience but
not in occupation in previ-
ous period 1,182 (285) 1,647 (199)
Additional entry cost if no own
experience 2759 (764) 494  (698) 560  (509)
4. Exit Costs
One-year military experience 1525 (151)

Nore.
* Age is defined as age minus

4 Sandard crrors are in parenthescs.
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TABLE 8

ESTIMATED ScHOOL AND HOME PARAMETERS

School Home
Constants:
Type 1 11,031  (626) 20,242 (608)
Deviation of type 2 from type 1 -5,364 (1,182) —2,135 (753)
Deviation of type 3 from type 1 —8,900 (957) —14,678 (679)
Deviation of type 4 from type 1 —1,469 (1,011) —2,912 (768)
Has high school diploma 804 (137) e
Has college diploma 2,005  (225)
Net tuition costs: college 4,168 (838)
Additional net tuition costs: gradu-
ate school 7,030 (1,446)
Cost to reenter high school 23,283 (1,359)
Cost to reenter college 10,700  (926)
Age* -1,502 (111)
Aged 16-17 3,632 (1,103) S
Aged 18-20 e —1,027 (538)
Aged 21 and over cee —1,807 (568)
Error standard deviation 12,821 (735) 9,350 (576)
Discount factor 9363 (.0014)

NoTe.—Standard errors are in parentheses.
* Age is defined as age minus 16.
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TABLE 9

ESTIMATED TYPE PROPORTIONS BY INITIAL SCHOOLING LEVEL AND TYPE-SPECIFIC

ENDOWMENT RANKINGS

Type 1 Type 2 Type 3 Type 4
Initial schooling:
Nine years or
less .0491 (---) .1987 (.0294) .4066 (.0357) .3456 (.0359)
10 years or more .2343 (---) .2335 (.0208) .3734 (.0229) .1588 (.0183)
Rank ordering:
School attain-
ment at age 16 1 2 3 4
White-collar skill
endowment 1 2 4 3
Blue-collar skill
endowment 2 1 4 3
Consumption
value of school
net of effort
cost 1 3 4 2
Value of home
production 1 2 4 3

NotEe.—Standard errors are in parentheses.
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TABLE 10

MopEL PrREDICTIONS vS. CPS CHOICE FREQUENCIES

Age Range NLSY* CPS (Year)! DP-Basic* DP-Extended' Approximation*

‘White-Collar
16-19 .043  .064 (1981) .052 .043 .041
20-23 190 187 (1985) 176 .187 .180
24-26 344 .345 (1989) .307 .335 .332
24-27 e .348 (1989) .323 .343 .349
28-31 e .384 (1993) .365 .375 443
30-33 s 413 (1995) 370 .388 472
35-44 e .449 (1995) .405 .430 .547

Blue-Collar
16-19 171 265 (1981) .199 182 176
20-23 430 432 (1985) 416 418 434
24-26 475 472 (1989) 544 .490 .498
24-27 e 476 (1989) .565 494 498
28-31 cee .465 (1993) .616 .539 495
30-33 e .460 (1995) 624 .547 .487
35-44 cee 423 (1995) .595 .541 .440

* Military is excluded to facilitate comparison with CPS (which is a civilian sample).

* Choice frequencies pertain to whites in the March CPS from the years indicated. We classify a person as
working if, over the previous calendar year, he worked at least 35 weeks and, in those weeks, he worked at
least 20 hours per week on average. The occupation is that held longest in the previous year.



TABLE 11
SELECTED CHARACTERISTICS AT AGE 24 BY TYPE: NINE OR 10 YEARS INITIAL SCHOOLING

INITIAL SCHOOLING 9 YEARS OR LESs INITIAL SCHOOLING 10 YEARS OR MORE
Type 1 Type 2 Type 3 Type 4 Type 1 Type 2 Type 8 Type 4

Schooling 15.6 10.6 10.9 11.0 16.4 125 124 13.0
Experience:

‘White-collar 528 704 742 279 1.07 1.06 1.05 .436

Blue-collar 189 4.05 2.85 1.61 176 3.65 2.62 1.77

Military 000 .000 1.35 038 000 . 110 034
Proportion who chose:

‘White-collar 509 123 176 060 673 236 284 155

Blue-collar 076 775 574 .388 039 687 516 441

Military 000 .000 151 010 .000 000 116 .005

School 416 008 013 038 239 024 025 074

Home 000 .095 .086 505 050 053 059 325

Note.—Based on a simulation of 5,000 persons.



TABLE 12

EXPECTED PRESENT VALUE OF LIFETIME UTILITY FOR ALTERNATIVE CHOICES AT
AGE 16 AND AT AGE 26 BY TYPE (§)

AllTypes Typel Type2 Type3 Typed

Initial Schooling 10 Years or More

School:
Age 16 321,008 415435 394712 228350 289,683
Age 26 384,352 499,162 494,107 272985 314,708
‘Home:
Age 16 298,684 380,660 376945 207,768 274,901
26 426,837 611,167 516,547 291,932 338,653
White-collar:
16 203683 372544 372733 207586 262370
439970 637,616 528,107 303,228 338,967
Blue-collar:
16 206736 373,156 377618 210,699 266206
Age 26 438,240 617,873 534,578 305,641 342,195
Miliary:
Age 16 285686 350655 356202 210,461 261944
26 415374 581996 492331 298431 329938

321,921 415503 396,108 229,265 291,122
Age 26 445488 638820 537,226 308,259 346,695

Initial Schooling Nine Years or Less

School:
Age 16 273,186 987,984 371369 211942
Age 308808 564590 446,163 243,734
‘Home:
Age 16 260,668 352,274 360,495 197,288
Age 26 334643 578,037 468,465 268,815
White<ollar:
16 253,764 342833 354,261
Age 26 339,003 602915 474796
Blue-collar:
Age 16 257,720 343,873 359,370 257,697
Age 26 344,179 583,895 486,456 305,520
Military:
Age 16 251,710 322293 340,126 254,386
328916 550,521 447,443 295,996
‘Maximum over choices:
Age 16 275,634 387,384 374,154 213,823 286,311
Age 26 347,741 604,549 487,466 284,073 310,598

Nore—Based on a simulation of 5,000 persons.



TABLE 13
RELATIONSHIP OF INITIAL SCHOOLING AND TYPE TO SELECTED FAMILY BACKGROUND CHARACTERISTICS

INITIAL SCHOOLING 10
YEARS

INITIAL SCHOOLING NINE EXPECTED
YEARS OR LESS AND OR MORE AND PERSON PRESENT VALUE
PERSON Is OF TYPE Is oF TypE OF LIFETIME
UTILITY AT
1 2 3 4 1 4 OBSERVATIONS AcE 16
[¢)] (2) 3) 4) (5) (6) (7 (8) (9) (10)
All 010 051 103 .090 .157 177 289 128 1,378 307,673
Mother’s schooling:
Non-high school graduate 004 099 177 161 .038 141 276 .103 333 286,642
High school graduate 011 .043 086 071 143 210 .305 181 685 309,275
Some college 023 .021 043 058 294 166 263 133 152 328,856
College graduate 007 005 049 023  .388 151 222 154 142 339,593
Household structure at age 14:
Live with mother only 001 062 183 119 .128 137 297 128 178 296,019
ive with father only 026 037 088 .120 .062 180 378 .1 44 291,746
with both parents 011 049 097 082 .169 184 .284 124 1,123 310,573
Live with neither parent 0001 .090 154 184 037 175 275 085 28 290,469
Number of siblings:
0 002 .041 086 092 142 227 .285 126 50 310,833
1 .002 .029 064 .051 236 199 287 133 261 320,697
2 016 .048 104 063 .191 157 275 146 364 311,053
3 013 056 119 .090  .147 182 288 104 320 306,395
4+ .009 067 117 141 .081 171 303 111 378 296,089
Parental income in 1978:
Y = /; median* .002 078 155 181 071 182 221 .161 214 292,565
'/ median < Y < median .007 053 120 103 .103 173 .328 118 382 296,372
Median = Y = 2 - median 015 044 071 .051 177 204 304 134 446 314,748
Y= 2. median 014 025 024 .021 479 167 182 087 83 358,404

* Median income in the sample is $20,000.
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TABLE 14
EFreCT OF A $2,000 COLLEGE TUITION SUBSIDY ON SELECTED
CHARACTERISTICS BY TYPE
All Types Typel Type2 Type3  Type 4
Percentage high school
graduates:
No subsidy 74.8 100.0 68.6 70.2 67.0
Subsidy 78.3 100.0 73.2 74.0 72.2
Percentage college
graduates:
No subsidy 28.3 98.7 11.1 8.6 19.5
Subsidy 36.7 99.5 21.0 17.1 32.9
Mean schooling:
No subsidy 13.0 17.0 12.1 12.0 12.4
Subsidy 13.5 17.0 12.7 125 13.0
Mean years in college:
No subsidy 1.34 3.97 .69 .59 1.05
Subsidy 1.71 3.99 1.14 1.00 1.58

NoTE.—Subsidy of $2,000 each year of attendance. Based on a simulation of 5,000 persons.
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