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Dynamic Models

We will start with simpler Markov models and then move to
Dynamic Discrete Choice Models

I want to define notation to use throughout this set of lecture
notes, so I will broadly follow the notation in Arcidiacono and
Ellison, “Practical Methods for Estimation of Dynamic Discrete
Choice Models” Annual Review of Economics 2011

and in Rust, “Structural Estimation of Markov Decision
Processes,” Handbook of Econometrics, 1994



Markov models

In the discrete time duration models there was only one
possible state of the world:

spell underway

and only two possible outcomes

Spell ends
Spell continues



Now I want to generalize this to think about more general
Markov models

We will assume that you can move into a state of the world dit

which potentially takes on multiple (but a discrete number) of
outcomes

Examples:

Working, OLF, Unemployed, In school
Healthy, Sick, Dead
Married, Single
Operate in a market, don’t operate in a market
Have health insurance, don’t have health insurance



The main point of this is to get the notation right

Let St be the state variables

The outcome variable dt comes from a set D(St).

Let δ∗ (St) map the state variables into the outcome so that

dit =δ∗t (Sit; θ)

where θ is the vector of parameters.



In this case lets write the state variables as consisting of 4
types of variables

Sit = (dt−1,Xit, µi, εit)

where

dt−1 is the current main state we are trying to explain
Xit is observable to the econometrician (and can depend
on past values of dit)
µi is a vector of unobserved heterogeneity which is not
observable to the econometrician and independent of Xit

εit is a vector of transitory errors that is independent of
Xit, µi, and εiτ when τ 6= t



If we specify a model for δ∗ (Sit; θ) and the distribution of
εit,F(ε; θ) then

Pr(dit = d | dit−1,Xit, µi) =

ˆ
1 (δ∗ (dit−1,Xit, µi, ε; θ) = d) dF(ε; θ)

We also need to specify the evolution of Xit which is usually
pretty simple



Initial Condition
We need one more part of the model, the initial condition

Start at di0 and assume that di0 is independent of µi

Examples

We are born single and out of work
A potential firm begins out of the market and decides
whether to enter

We can then define the likelihood function asˆ
ΠTi

t=1Pr(dit | dit−1,Xit, µ)dG(µ; θ)

where G is the distribution of µi

As in the hazard model the initial condition is very important
and messy.



Discrete Choice

Before thinking about dynamic discrete choice it makes sense
to think about static discrete choice.

Assume that Uij is the utility of individual i at option j = 0, ..., J

with

Uij =aj + X′iβj + Z′jδ + vij

(we could have a Q′ijγj term but lets not worry about that for
simplicity)



We assume that there are no ties and that

di =argmaxj={0,..,J}Uij

Now think about identification, we get a scale normalization and
a location normalization.

It can be seen clearly in the binary choice case j ∈ {0, 1}

Choose j = 1 if

Ui1 > Ui0

⇐⇒a1 + X′iβ1 + Z′1δ + vi1 > a0 + X′iβ0 + Z′0δ + vi0

⇐⇒
(
a1 + Z′1δ − a0 − z′0δ

)
+ X′i (β1 − β0) + vi1 − vi0 > 0

Clearly all we can identify here is a single intercept

a1 + Z′1δ − a0 − Z′0δ

(if Z varied across i you could identify δ)



Also can only identify the difference between the betas
(β1 − β0) so we can normalize

a0 =0

β0 =0

δ =0

alternatively we could choose restrict Z to one dimension and
estimate the δ on that dimension and then set a0 = a1 = 0



Error Terms

What about vi1 − vi0?

Clearly all we can identify is difference

First assume

vi ≡ vi1 − vi0 ∼N
(
µ, σ2)

For the location normalization we can just normalize µ = 0 for
the location (or could estimate µ and impose a1 = 0)

So now our model

di =1
(
a1 + X′iβ1 + vi ≥ 0

)
If we multiply a1, β1, and vi by any positive number τ we get
exactly the same model



Now we also need a scale normalization

Most common:

normalize σ = 1 which gives a probit
normalize one of the coefficents β1 to one

Of course there is nothing special about the standard normal
and we might want to choose something simpler
computationally (there is no closed for solution for the normal
cdf)



The other most common assumption is to assume that
vi = vi1 − vi0 has a logistic distribution for which

Pr (vi < ν) =
eν

1 + eν

it is also symmetric which means that

Pr (di = 1 | Xi = x) =Pr
(
a1 + X′iβ1 ≥ −vi | Xi = x

)
=

ea1+x′β1

1 + ea1+x′β1

the logit model



An alternative assumption gives exactly the same result:
suppose that vi1 and vi0 are independent of each other and both
have type I extreme value distribution

Pr(vij ≤ ν) =e−e−ν

then vi1 − vi0 have a logistic distribution



More than two choices

Now lets go to more than two choices

for simplicity lets focus on 3, but the arguments all apply with
more

Now

di =


0 Ui0 > Ui1,Ui0 > Ui2

1 Ui1 ≥ Ui0,Ui1 > Ui2

2 Ui2 ≥ Ui0,Ui2 ≥ Ui1

so we want to compare

Ui0 =a0 + X′iβ0 + Z′0δ + vi0

Ui1 =a1 + X′iβ1 + Z′1δ + vi1

Ui2 =a2 + X′iβ2 + Z′2δ + vi2



We still need a location and scale normalization-but only one

To see location I can subtract Ui0 from everything without
changing the order so that

U∗i0 =0

U∗i1 = (a1 − a0) + X′i (β1 − β0) + (Z1 − Z0)′ δ + vi1 − vi0

U∗i2 = (a2 − a0) + X′i (β2 − β0) + (Z2 − Z0)′ δ + vi2 − vi0

Nothing changes, but I can’t subtract anything else so we can
use the same normalization

a0 =0

β0 =0

δ =0

Or we could set a1 = a2 = a0 = 0 and estimate a two
dimensional δ



Now what about a scale normalization?

Again we only get one:

If I multiply everything by a postive τ nothing changes
however, if I mutliply Ui1 by τ1 and Ui2 by τ2 6= τ1 I change
the choice of 2 versus 1

Now with normal error terms if(
vi1 − vi0
vi2 − vi0

)
∼N

(
0,
[
σ11 σ12
σ12 σ22

])
we can do the normalization by setting say σ11 = 1 but still
leaving σ22 free

Going with more than 3 doesn’t fundamentally change
things-we still get one location normalization and one scale
normalization



Estimation of Multinomial Probit

This is a pain because we have a multiple integral problem, for
every option we have another integral

This can become really messy

You also add a ton of new parameters if you have many choices

(There is also an issue about identification-ideally you would
have exclusion restrictions)



Multinomial Logit
For computational reasons the multinomial logit is much more
popular

If we have J choices and we write

Uij =µij + vij

where µij = aj + X′iβj + Z′jδ after appropriate location and scale
normalizations

where the vij are all independent and type I extreme value we
get

Pr (di = j) =
eµij∑J
`=0 eµi`

a closed form answer that is trivial to compute even when J is
large



Substitution Patterns

A problem with the multinomial logit is the substitution
patterns-you get Independence from Irrelevant Alternatives

The classic example (from McFadden) is if we are looking at
transportation choice with three choices

j = 0 : Car
j = 1 : Red Bus
j = 2 : Blue Bus

Think about

Pr (di = 1)

Pr (di = 0)
=

eµi1
eµi0 +eµi1 +eµi2

eµi0
eµi0 +eµi1 +eµi2

=
eµi1

eµi0



Now suppose we get rid of the Blue bus as an option, now

Pr (di = 1)

Pr (di = 0)
=

eµi1
eµi0 +eµi1

eµi0
eµi0 +eµi1

=
eµi1

eµi0

But this makes no sense-we would expect people who took the
blue bus before to substitute towards the red but, but instead
they subsitute equally to the red bus and car



This is not just an IO problem

If

these represent no college, 2 year college and 4 year
college
and we raise the tuition at 4 year college
we would expect people to substitute more towards 2 year
college

To me this while this particular IIA result depends upon the
multinomial logit functional form-the more general probelm is
assuming that vij is i.i.d.

We would expect the error term for the blue bus and the error
term for the red bus to be highly correlated with eachother.

There are two common solutions to this problem



Nested Logit

The nested logit is one way to get some correlation but still
keep things tractable. (more generally using generalized
extreme value distribution)

Lets think about a case with one nest.

Partition the choices into L mututally exhaustive categories
C1, ...,CL

We can think of the choice as if it is a two stage process (while
it really isn’t)



For each ` we add a new parameter ρ` and would choose option

Pr (di = j | di ∈ C`) =
eµij/ρ`∑

k∈C` eµik/ρ`

then we choose the group

Pr (di ∈ C`) =

(∑
j∈C` eµij/ρ`

)ρ`
∑L

l=1

(∑
j∈Cl

eµij/ρl

)ρl

(Note that this is kind of like a nested CES)



Putting them together

Pr (di = j) =Pr (di = j | di ∈ C`) Pr (di ∈ C`)

=
eµij/ρ`∑

k∈C` eµik/ρ`

(∑
j∈C` eµij/ρ`

)ρ`
∑L

l=1

(∑
j∈Cl

eµij/ρl

)ρl

=
eµij/ρ`

(∑
j∈C` eµij/ρ`

)ρ`−1

∑L
l=1

(∑
j∈Cl

eµij/ρl

)ρl

Note as well that if all of the ρ` = 1 then we are back at the
regular multinomial logit



The joint cdf can be written as

Fv (ν) = exp

− L∑
`=1

∑
j∈C`

e−νj/ρ`


The correlation of the vij within a nest is approximately 1− ρ`
and they are independent across nests

You can also add more nests



Mixed Logit

An alternative way to do this that is quite popular in IO is to
used a mixed logit

Uij =aj + X′iβij + Z′jδi + vij

particularly with the δi.

This makes some real sense as you are allowing people to
have preferences for particular aspects of goods

In its simplest form you could just specifiy a distribution for δi

and integrate through

Goes well beyond this-my IO colleagues have a comparative
advantage at teaching this stuff, so I am not going to get into it

OK lets get to dynamics-most of these papers are not going to
worry about the substituability issues



Forward Looking Model

Lets combine the discrete choice with the dynamics

Lets start by defining the flow utility for each period as

ut(dt,Xit, µi; θ) + εidt

(starting with linear models for ut is most common)



I will need to be more explicit about Xit at this point-it is
observable state variables

Could include “exogenous variables”
Could include endogenous variables that depend on
previous choices
Since people are forward looking they will account for this
when they make decisions



Let β be the discount rate so now we choose

δ∗t (Sit; θ) = argmax
dt∈Dt(Sit)

Ei,t,dt

{
T∑
τ=t

βτ−t(uτ (dτ ,Xiτ , µi; θ) + εidτ )

}

where Ei,t,dt means the expectation of individual i at time t if she
chooses option dt at time t



I will assume the following

Agents have rational expectations (about future random
variables)
The agent’s conditional expectations about Xit depend only
upon Xit−1 and dit−1

Agents also don’t have any more information on how εit will
evolve than does the econometrician
Agents do observe current outcomes of εit and of µi



It is useful to define this using Bellman’s equation

Define

Vt(Sit; θ) ≡ max
dt∈Dt(Sit)

Ei,t,dt

{
T∑
τ=t

βτ−t (uτ (dτ ,Xiτ , µi; θ) + εidτ )

}

So we can write

Vt(Sit; θ) = max
dt∈Dt(Sit)

{uτ (dτ ,Xiτ , µi; θ) + εidτ + βEi,t,dt [Vt+1(Sit; θ) | Xit, dt, µi]}



A key result comes from the fact that βE [Vt+1(Sit; θ) | Xit, dt, µi]
is only a function of (Xit, dt, µi)

That means we can define

vt(dt,Xit, µi; θ) ≡ut(dt,Xit, µi; θ) + βE [Vt+1(Sit; θ) | Xit, dt, µi]

but now we are back in the simpler “static” model

δ∗t (Sit; θ) = argmax
dt∈Dt(Sit)

{vt(dt,Xit, µi; θ) + εidt}

As long as you can calculate βE [Vt+1(Sit; θ) | Xit, dt, µi] the
econometrics is identical to the Markov model

However, this is a big “as long”

How do we usually solve for it?



There are two types of models with two solution methods

When T is finite we do backward induction.
When T is infinite we look for a fixed point

I want to focus on the backward induction case

For the infinite case we usually discretize the states

This gives us a finite number of equations and we solve for the
fixed point (see Rust)

The ideas are similar, so lets focus on backward induction.



Period T

Start at period T

we can solve for

δ∗T (SiT ; θ) = argmax
dT∈DT(SiT)

{uT(dT ,XiT , µi; θ) + εidT}



Period T-1

Now move to period T − 1

Let G(XiT | XiT−1, diT−1) be the conditional distribution of XiT

then

E [VT(SiT ; θ) | XiT−1, dT−1, µi] =ˆ ˆ [
uT(δ∗T (SiT ; θ) ,XT , µi; θ) + εiδ∗T (SiT ;θ)

]
dFε(ε)dG(XT | XiT−1, dT−1)



With some functional form assumptions the integrating over ε
can be avoided because closed form solutions are available.

The classic case that gives you a closed form solution is the
extreme value.

If all of the εid are extreme value then we get a really nice result
ˆ [

uT(δ∗T (XiT , µi, εit; θ) ,XiT , µi; θ) + εiδ∗T (XiT ,µi,εit;θ)

]
dFε(ε)

= log

 ∑
dT∈DT(SiT)

euT(dT ,XiT ,µi;θ)

+ γ

where γ is Euler’s constant



Another nice example happens with normal error terms and a
binary choice variable.

To implement scale and location normalizations assume that

uT(1,XiT , µi; θ) + εi1 =uT(XiT , µi; θ) + εi

uT(0,XiT , µi; θ) + εi0 =0

εi =N(0, σ2
ε)



Then

ˆ [
uT(δ∗T (XiT , µi, εit; θ) ,XiT , µi; θ) + εiδ∗T (XiT ,µi,εit;θ)

]
dFε(ε)

=Pr (uT(XiT , µi; θ) + εi ≥ 0) E (uT(XiT , µi; θ) + εi | uT(XiT , µi; θ) + εi ≥ 0)

=Φ

(
uT(XiT , µi; θ)

σε

)
u(XiT , µi; θ) + Φ

(
uT(XiT , µi; θ)

σε

)
σεΦ

(
uT(XiT , µi; θ)

σε

)
=σε

[
Φ

(
uT(XiT , µi; θ)

σε

)
uT(XiT , µi; θ)

σε
+ φ

(
uT(XiT , µi; θ)

σε

)]



However, we still need to worry about the

dG(XT | XiT , dT−1)

part of the expression

This is a mess we have to exactly calculate the value function
at all of these points

Often there are a lot of points

Typically people don’t do this, they solve at a subset of the
points and then use some parametric model to interpolate the
other points (see Keane and Wolpin, “The Solution and
Estimation of Discrete Choice Dynamic Programming Models
by Simulation and Interpolation: Monte Carlo Evidence,” 1994)



We have only focused on the last node, but after that we just
repeat the exercise

For period T − 1 we have already calculated
E [VT(SiT ; θ) | XiT−1, dT−1, µi] which was the hard part, once we
have this we can define

vT−1(dT−1,XiT−1, µi; θ)

= uT−1(dT−1,XiT−1, µi; θ) + βE [VT(SiT ; θ) | XiT−1, dT−1, µi]

and solve for

δ∗T−1 (SiT−1; θ) = argmax
dT−1∈DT(SiT−1)

{
vT−1(dT−1,XiT−1, µi; θ) + εidT−1

}



and then

E [VT−1(SiT−1; θ) | XiT−2, dT−2, µi]

=

ˆ ˆ [
vT−1(δ∗T−1 (SiT−1, θ) ,XiT−1, µi; θ)) + εiδ∗T−1(SiT−1;θ)

]
dFε(ε)dG(XT−1 | XiT−2, dT−2)

We just keep solving backwards in this way until the initial
period



Conditional Choice Probabilities
Hotz and Miller, “Conditional Choice Probabilities and
Estimation of Dynamic Models,” REStud, 1993

The idea is more general but the standard case in which it is
applied is with extreme value error terms and for now no
unobserved heterogeneity

In this case we know that

E [Vt(Sit; θ) | Xit] = log

(∑
dt

evt(dt,Xit;θ)

)
+ γ

Now take some arbitrary d∗t ∈ Dt(Sit) from the logit form we
know

Pr(dit = d∗t | Xit) =
evt(d∗t ,Xit;θ)∑
dt

evt(dt,Xit;θ)



but then combining these

E [Vt(Sit; θ) | Xit] = log

(
evt(d∗t ,Xit;θ)

∑
dt

evt(dt,Xit;θ)

evt(d∗t ,Xit;θ)

)
+ γ

=vt(d∗t ,Xit; θ)− log (Pr(dit = d∗t | Xit)) + γ



But this means that we can write

vt(dit, Xit; θ)

=ut(dt, Xit; θ) + βE
[
Vt+1(Sit; θ) | Xit, dt

]
=ut(dt, Xit; θ) + β

ˆ
E
[
Vt+1(Sit+1; θ) | Xit+1

]
dG(Xit+1 | Xit, dt)

=ut(dt, Xit; θ) + β

ˆ [
vt+1(d∗t+1, Xit+1; θ)− log

(
Pr(dit+1 = d∗t+1 | Xit+1)

)]
dG(Xit+1 | Xit, dt) + βγ

Note that we can get Pr(dit+1 = d∗t+1 | Xit+1) directly from the
data

Thus if we knew vt+1(d∗t+1,Xit+1; θ) we wouldn’t have to solve
the dynamic programming problem

We could just estimate as a nonlinear multinomial logit (and
almost linear)



The trick here is to come up with some way to deal with
vt+1(d∗t+1,Xit+1; θ)

See Arcidiacono, Arcidiacono and Miller, or Hotz and Miller for
examples

Hotz and Miller use sterilization as their choice-at that point
there are no longer future fertility considerations to be
considered so it can be parameterized directly (or normalized
to zero)



Unobserved Heterogeneity

The problem here is that this is not implementable when there
is unobserved heterogeneity.

Adding it back in gives

vt(dit, Xit, µi; θ)

=ut(dt, Xit, µi; θ)

+ β

ˆ [
vt+1(d∗t+1, Xit+1, µi; θ)− log

(
Pr(dit+1 = d∗t+1 | Xit+1, µi)

)]
dG(Xit+1 | Xit, dt) + βγ

But the problem is that Pr(dit+1 = d∗t+1 | Xit+1, µi) is not directly
identified from the data

This is a big problem in many cases



Arcidicano and Miller, “CCP Estimation of Dynamic Discrete
Choice with Unobserved Heterogeneity” (EMA 2011) come up
with a solution

First consider the EM Algorithm



EM Algorithm

Think about a case with discrete unobserved heterogeneity so
one can write the Log-likelihood function as

∑
i

log

∑
j

πjLj(θ; Yi)


(One could allow π to depend on Xi but lets focus on the
simpler case)



The first order condition with respect to θ is

∑
i

∑
j πj

∂Lj(θ;Yi)
∂θ∑

j πjLj(θ; Yi)

=
∑

i

∑
j

[
πj∑

j πjLj(θ; Yi)

]
∂Lj(θ; Yi)

∂θ

=
∑

i

∑
j

[
πjLj(θ; Yi)∑
j πjLj(θ; Yi)

]
∂ log (Lj(θ; Yi))

∂θ

≡
∑

i

∑
j

q(j | Yi; θ)
∂ log (Lj(θ; Yi))

∂θ

where from Bayes theorem, q is the conditional probability that
the unobservable is node j conditional on the data and
parameter vector θ



But that means by the law of iterated expectations

πj ≈
1
N

∑
i

q(j | Yi; θ)

This suggests a two staged process



M Stage

In the M (Maximization) phase we take q̂(j | Yi; θ) as given (from
previous stage) and maximize∑

i

∑
j

q̂(j | Yi; θ) log (Lj(θ; Yi))

to get an estimate θ̂



E Stage

In E (Expectation) phase we take parameters θ̂ and π̂ as given
(from previous stage) and calculate

q̂(j | Yi; θ̂) =
π̂jLj(θ̂; Yi)∑
j π̂jLj(θ̂; Yi)

and that will also yield a new

π̂j ≈
1
N

∑
i

q̂(j | Yi; θ̂)



We keep iterating until we find a fixed point

The point it converges to will be a point that solves the first
order condition of the MLE problem

This is generally not computationally better than MLE because
we may need to solve the maximization step many times

However, solving the M- step might be much easier than the full
model

Arcidiacono and Jones, EMA, 2003 give some examples of
these cases



CCP and the EM Algorithm
CCP is another case like that

Recall that the problem with unobserved heterogeneity was that
we couldn’t observe Pr(dit = d∗t | Xit, µi) in the data

Using a bit odd notation we could think of µi taking on j values,
j = 1, ...,K then notice that

Pr(dit = d∗t | Xit = x, µi = j])

=
E(1 (dit = d∗t ) 1 (µi = j) | Xit = x)

E (1 (µi = j) | Xit = x)

=
E(E (1 (dit = d∗t ) 1 (µi = j) | Yi) | Xit = x)

E (E (1 (µi = j) | Yi) | Xit = x)

=
E (1 (dit = d∗t ) q(j | Yi; θ) | Xit = x)

E (q(j | Yi; θ) | Xit = x)

(Yi is the full set of observables so it includes dit )



Notice that we can approximate this as∑
i 1 (dit = d∗t ) q(j | Yi; θ)1 (Xit = x)∑

i q(j | Yi; θ)1 (Xit = x)

Arcidiacono and Miller show that you can

Calculate this in the E step
Use this estimate for the CCP in the M stage

Since you don’t need to solve the dynamic programming model
this can be really quick



Identification

Taber , “Semiparametric Identification and Heterogeneity in
Dynamic Discrete Choice Models,” Journal of Econometrics,
2000.

I use the simplest Dynamic model you can think about using
education as an example (like the Cameron and Heckman
case)
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Grad. H.S.(g)

Drop Out(d)

��
��

��
��

�

PPPPPPPPP

Enter Labor Force (h)

College (c)



Define the model in terms of lifetime utility at the terminal nodes

With an exclusion restriction model is

Vci = gc(Xci,X0i) + εci

Vdi = gd(Xdi,X0i) + εdi

Vhi = 0

and Ji ∈ {c, d, h} the option that individual i actually chose



The key complication is exactly what the agent knows at time 1
about the error term at time 2

Let this be summarized by ε1i

We let X1i denote other information the agent might have about
future values of Xi

I use the following timing

Known to the Agent Learned by the Agent Observed by
at time one at time two the Econometrician
ε1i, εdi εci X0i,X1i,Xdi

X0i,X1i,Xdi Xci Xci

G(·) Ji



Solving the model backward the person attends college if

Vci > Vhi ⇐⇒gc(Xci,X0i) + εci > 0

The only place where dynamics is interesting is the g node

I define

Vg(x1, xd, x0, ε1)

≡ E[max{Vci,Vhi} | (X1i,Xdi,X0i) = (x1, xd, x0) , ε1i = ε1]

This person will graduate from college when

Vg(X1i,Xdi,X0i, ε1i) > Vhi



Identification of gc is like the standard “identification at infinity”
argument for any selection model

lim
gd(xd,x0)→−∞

Pr(Ji = c | Xi = x)

= lim
gd(xd,x0)→−∞

Pr[gd(xd, x0) + εdi ≤ Vg(x1, xd, x0, ε1i), gc(xc, x0) + εci > 0]

= Pr[gc(xc, x0) + εci > 0].



Identifying gd is kind of similar, suppose that you have an X1i

such that when it goes to −∞ the distribution of gc shifts to the
left.

(this is easiest to think about when Xci is known at time 1 so
that Xci = X1i )

Then

lim
x1→−∞

E [max (gc(Xci, x0) + εci, 0) | (X1i,Xdi,X0i) = (x1, xd, x0) , ε1i = ε1]

= 0,

so that,

lim
x1→−∞

Pr(Ji = d | Xi = x)

= lim
x1→−∞

Pr[gd(xd, x0) + εdi > E [max (Vci, 0) | (x1, xd, x0) , ε1]]

= Pr[gd(xd, x0) + εdi > 0].



The error terms are not identified without putting more structure
on ε1i

I cover two cases:

1 ε1i = εdi

2 εci = µci + ηci where µci is known at time 1 and ηci is
independent of anything known at time 1



We know that

Pr(Ji = h | Xi) = Pr(gdi + εdi ≤ Vg(X1i, ε1i), gci + εci > 0).

So by sending Vg(X1, ε1)→ 0 I can identify

Pr(gdi + εdi ≤ 0, gci + εci > 0).

but given that ga and gb are identified, I can identify the joint
distribution of (εdi, εci)



For the first model this is everything so we are done
The second takes slightly more work

choose X1i and Xdi so that:

Prob(Ji = c | X1i)→ 1
That implies that Vg(X1i, ε1i)→ E(gci | X1i) + µci

which unfortunately also implies that E(gci | X1i)→∞
So we need to also send gdi →∞ at the same rate so that
gdi − E(gci | X1i) = g̃i

OK thats a mess, but once we do that we can identify

Pr(Ji = c | Xi) ≈Pr(g̃i + εdi > µci, gci + µci + ηci)

It turns out that knowledge of the marginal distribution of εdi

and the joint distribution of (εdi − µci, µci + ηci) is enough to
identify the joint distribution of (εdi, µci) and of ηci (using
characteristic functions)



Examples

Lets look at probably two most classic examples



Harold Zurcher

Rust, “Optimal Replacement of GMC Bus Engines: An
Empirical Model of Harold Zurcher,”EMA, 1987

Harold Zurcher managed the bus depot here in Madison
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TABLE I 
Bus TYPES INCLUDF-D IN SAMPLE 

Number Estimated 
Bus of Empty Purchase V4lue as 

Group Buses Manufacturer Engine Model Year Seats Weight Price of 10/1/84 

1 15 Grumman V6-92 series 870 1983 48 25,800 $145,097 $145,097 
2 4 Chance 3208 CAT RT-50 1981 10* N.A. 100,775 124,772 
3 48 GMC 8V71 T8H203 1979 45 25,027 92,668 125,000 
4 37 GMC 8V71 5308A 1975 53 20,955 62,506 55,000 
5 12 GMC 8V71 5308A 1974 53 20,955 49,975 48,000 
6 10 GMC 6V71 4523A 1974 45 19,274 45,704 48,000 
7 18 GMC 8V71 5308A 1972 51 20,955 43,856 45,000 
8 18 GMC 6V71 4523A 1972 45 19,274 40,542 40,000 

Note All buses are diesel powered and have air conditioning 
* Handicap bus, outfitted with 4 long benches and accommodation' for 6 wheelchairs. 

Maintenance operations fall into three categories: (i) routine, periodic mainten- 
ance (examples are brake adjustments and tire rotation), (ii) replacement or 
repair of individual components at time of failure, and (iii) major engine overhaul 
and/or replacement. This study focuses on the third component of maintenance 
investment, which can be regarded as part of a general "preventive maintenance" 
strategy in the following sense. The bus engine can be viewed as a portfolio of 
individual components each of which has its own individual stochastic failure 
or "hazard" rate as a function of accumulated use (as measured by the bus 
odometer). If a particular component fails when a bus has relatively low mileage, 
then it seems reasonable to simply replace or repair the failed component and 
put the bus back on the road. However when a particular component fails on a 
bus with relatively high mileage, then to the extent that one wants to minimize 
unexpected failures it seems reasonable to expect that other components will fail 
in the near future, so it might make sense to replace the entire engine with a 
"new" engine freshly rebuilt in the company machine shop (Zurcher claims that 
rebuilt engines are every bit as good, if not better, than engines purchased brand 
new). Under the maintained hypothesis that this preventive maintenance strategy 
is optimal, I focus on constructing a model which predicts the time and mileage 
at which engine replacement occurs. 

Table I Ia summarizes the replacement data for the subsample of buses which 
had at least one engine replacement. On average, bus engines were replaced after 
5 years with over 200,000 elapsed miles. Data for the full sample are also 
summarized visually in Figure 1, which shows considerable variation in the time 
and mileage at which replacement occurs. Looking across the different bus groups, 
we notice large differences in the mean age and mileage at replacement, although 
it is difficult to tell whether these differences are significant given the large standard 
deviations and small numbers of observations. A statistical problem with the 
simple tabulation in Table Ila is that although the use of complete spells avoids 
bias due to censoring, it fails to account for possible selection bias. Table Ilb 
looks at the subsample of buses for which no replacements occurred. These data 



His choice each period is whether to

Do routine maintenance on the bus dit = 0

Completely rebuild the engine dit = 1 which makes it like
new

There are two state variables

Mileage on engine Xt which is observable-evolves
according to a distribution of Xt+1 − Xt which is i.i.d. g(·; θ3)

Unobservable extreme value terms εdi which are i.i.d.
extreme value

q(ε; θ2) =e−ε+θ2e−e−ε+θ2

with θ2 as Euler’s constant which gives multinomial logit
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TABLE Ila 
SUMMARY OF REPLACEMENT DATA 

(Subsample of buses for which at least I replacement occurred) 

Miledge dt Repldcement l Idpsed Time (Months) 

Bus Standard St4nddrd Number of 
Group Ma s Min Mean D)evidtion Ma Min Mle4n D)eidtion Observadtions 

1 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 
3 273,400 124,800 199,733 37,459 74 38 59.1 10.9 27 
4 387,300 121,300 257,336 65,477 116 28 73.7 23.3 33 
5 322,500 118,000 245,291 60,258 127 31 85.4 29.7 11 
6 237,200 82,400 150,786 61,007 127 49 74.7 35.2 7 
7 331,800 121,000 208,963 48,981 104 41 68.3 16.9 27 
8 297,500 132,000 186,700 43,956 104 36 58.4 22.2 19 

Full 
Sample 387,400 83,400 216,354 60,475 127 28 68.1 22.4 124 

are right censored since we do not observe the final age and mileage at which 
replacement occurs. We can see from Table Jlb that despite the right censoring, 
both the mean elapsed age and mileage are significantly higher for this subsample. 
The data for bus groups 7 and 8 are also left censored since these buses were 
acquired in 1972 and my data begin in December, 1974. The presence of these 
biases makes it difficult to summarize the unconditional population distribution 
of the age and mileage at replacement. The empirical analysis in Section 5 
implicitly accounts for censored spells through the use of a conditional likelihood 
function given the observed sample of data. I account for selection bias by 
allowing for heterogeneity in parameter estimates across bus groups. 

The empirical analysis in Section 5 focuses on a subsample of the full data 
set, bus groups 1-4. The buses in these groups were the most recent acquisitions 

TABLE lib 
CENSORED DATA 

(Subsample of buses for which no replacements occurred) 

Mileage it May 1. 1985 1 lapse( Trime (months) 

Bus Standard Standard Number of 
Group Max Min Mean Deviation Max Min Mean D)euation OhsersJtions 

1 120,151 65,643 100,117 12,929 25 25 25 0 15 
2 161,748 142,009 151,183 8,530 49 49 49 0 4 
3 280,802 199,626 250,766 21,325 75 75 75 0 21 
4 352,450 310,910 337,222 17,802 118 117 117.8 0.45 5 
5 326,843 326,843 326,843 0 130 130 130 0 1 
6 299,040 232,395 265,264 33,332 130 128 129.3 1.15 3 
7 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 

Full 
Sample 352,450 65,643 207,782 85,208 130 25 66.4 34.6 49 
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Bus Replacement Data: Full Sample 
+ =replace (124 obs), =keep (162 obs) 
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FIGURE 1 

at Madison Metro, the main "workhorses" on the company's most active bus 
routes. I focus on this subsample for two reasons: (a) data on actual engine 
replacement costs were available for these groups, (b) utilization, summarized 
by the monthly mileage distributions for each bus, is fairly homogeneous within 
each of the four groups. Since the estimation procedure allows for heterogeneity 
between groups, but does not account for differences in buses within each group, 
I wanted to minimize the possible heterogeneity bias by selecting bus groups 
which appeared to be most homogeneous. Estimates of discretized monthly 
mileage given in Table VI in Section 5 show that we cannot reject the hypothesis 
that the monthly mileage distributions for the individual buses within each of 
these groups are identical. On the other hand the older 1972 and 1974 GMC 
buses in groups 5-8 have been utilized less intensively since the acquisition of 
the new GMC model 203 buses in 1979. The fixed effects regression results in 
Table VII of Section 5 (see equation (5.6)) show that monthly mileage for the 
newer groups 1-3 is significantly higher, by 308 miles. The policy of putting older 
buses "out to pasture" on charter assignments and low mileage routes suggests 
that a simple replace/no replace model which treats utilization as exogenous is 
not strictly correct. Less intense utilization is an obvious substitute for more 
frequent maintenance. Older buses can also be kept in inventory as back-ups or 
"spares", providing another substitution possibility. Although utilization and 
replacement are best viewed as jointly endogenous decisions in a comprehensive 
maintenance policy, I decided that since a joint model is substantially more 



The utility is modeled as

u(0,Xit; θ) =− c(Xit; θ1)

u(1,Xit; θ) =RC − c(0; θ1)

There are no t subscripts because this is a stationary infinitely
lived problem.

The problem is solved using a nested fixed point algorithm (see
Rust for details)



The parameters are

θ = {β, θ1,RC, θ3}

Take β (and θ2) as given

Xit is discretized into intervals of 5000

Distribution of ∆Xit is divided into 3 categories

0-5000
5000-10,000
10,000-∞

Thus there are only 2 parameters in θ30 and θ31 to cover these
three probabilities



He tries different specifications for the cost functions-linear
works fine

He estimates the model using full maximum likelihood
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Keane and Wolpin

Keane and Wolpin, “The Career Decisions of Young Men," JPE,
1997 This is the best known structural model of labor dynamics

There have been many subsequent papers written that use the
basic framework, but build on it

I discuss the first classic paper

Essentially a dynamic Roy model



Basic Model

People start making decisions at age a = 16 and live until age
A.

At each age they can choose one of 5 options:

1 Work in Blue Collar Job
2 Work in White Collar Job
3 Work in Military
4 Go to School
5 Home Production



For each of these 5 options let:

dm(a) be an indicator for whether option m was chosen
Rm(a) be the conditional reward if m was chosen
g(a) schooling at age a

Then

R(a) =

5∑
m=1

Rm(a)dm(a)

g(a) =

a−1∑
α=1

d4(α)



Consider each of the three working options (m = 1, 2, 3) then let

em(a) skill level in occupation m

rm rental rate in occupation m

xm(a) work experience in occupation
m,(xm(a) =

∑a−1
α=1 dm(α))

They assume that

log(em(a)) = em(16) + em1g(a) + em2xm(a)− em3x2
m(a) + εm(a)

for m = 1, 2, 3, and a = 1, ...,A.



Since people only care about wages (no hours dimension of
labor supply or tastes)

Rm(a) = wm(a)

= rmexp(em(16) + em1g(a) + em2xm(a)− em3x2
m(a) + εm(a))



They define the reward functions for the other two alternatives
as:

R4(a) = e4(16)− tc11 [g(a) ≥ 12]− tc21 [g(a) ≥ 16] + ε4(a)

R5(a) = e5(16) + ε5(a)

and further define:

ε(a) ≡{ε1(a), ε2(a), ε13(a), ε4(a), ε5(a)} ∼ N(0,Ω)

e(16) ≡{e1(16), e2(16), e3(16), e4(16), e5(16)}
x(a) ≡{x1(a), x2(a), x3(a))}
S(a) ≡{e(16), g(a), x(a), ε(a))}



We are done with the model, the agents just solve the dynamic
programming problem

V(S(a), a) =

maxm [Rm(S(a), a) + δE(V(S(a + 1), a + 1) | S(a), dm(a) = 1)]

for a < A

In the last period

V(S(A),A) = maxm [Rm(S(A),A)]

Thats it, that is the whole model.

They solve backward interpolating between different points in
the state space



Estimation

Keane and Wolpin use the NLSY79 data set, starting with
people age 16 who they observe until a certain age (call it āi for
individual i).

They also observe schooling (gi(a)), sector specific experience
(xi(a)), and choices made at each age until āi.

They will allow for heterogeneity in εi(a) which is unobservable

They also will allow for heterogeneity in initial endowments as
well ei(16) although this is not observable to the
econometrician.



Given the model it is straight forward (though computationally
intensive) to calculate

Pr(ci(a) | a, gi(a), xi(a), ei(16); θ)

with knowledge of the other parameters θ.

Thus if we know ei(16) the likelihood for individual i would be
straight forward to calculate because there is no serial
correlation in εi(a).

Li(ei(16), θ) ≡
āi∏

a=16

Pr(ci(a) | a, gi(a), xi(a), ei(16); θ)

To deal with heterogeneity they assume that there are a finite
number of types (Heckman/Singer style)



Assume that there are K types and let πk denote the proportion
in the population of type k

further let ek(16) denote the vector of skills for type k

Then the likelihood takes the form:

Li(θ, π, e(16)) =

K∑
k=1

Li(ek(16), θ)πk

Thats the model, now it is just time to calculate it.

























Given that the model does not fit that well, Keane and Wolpin
do several things to improve the fit of the model:

1 More terms are added to the civilian wage equations
2 Allow for a reward cost if you switch occupations, and

larger if you start a new occupation
3 Include non-wage tastes for the occupations
4 Include a consumption value of school, a cost of reentry to

school, and a psychic cost of getting high school/college
diploma

5 Payoff for home production change by age

Here are the results


















