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So far in this course we have focused on the homogeneous
treatment case:
Yi=aTi+e;

In allowing for heterogeneous treatment effects, we focus on
the case in which T; is binary

Let

o Yj; denote the value of Y; for individual i when T; = 1
o Yp; denote the value of Y; for individual i when T; =0

It is useful to define the treatment effect as

o = Yij— Yoi



Note that in the case we have been thinking about so far

aj=o+¢gj—¢&j

=«

and thus we have imposed that it can not vary over the
population

This seems pretty unreasonable for almost everything we have
thought about in this class

A relatively recent literature has tried to study heterogeneous
treatment effects in which these things vary across individuals

A clear problem is that even if we have estimated the full
distribution what do we present in the paper?

We must focus on a feature of the distribution



The most common:

o Average Treatment Effect (ATE)
E(ai)
o Treatment on the Treated (TT)
E(ai| Ti=1)
o Treatment on the Untreated (TUT)
E(ai | Ti=0)

(Heckman and Vytlacil discuss Policy Relevant Treatment
effects, but | need more notation than | currently have to define
those)

These each answer very different questions

I will ignore TUT for the rest of these lecture notes because it is
symmetric with TT



All we can directly identify from the data is :
E(Y1i| Ti=1),E(Yoi | Ti=0),Pr(T; =1)
There are two key missing pieces:
E(Yii| Ti=0),E(Yoi | Ti=1)

Knowledge of these would be sufficient to identify the two
parameters:

TT =E(a; | Ti=1)
=E(Y4i | Ti=1)—-E(Yoi | Ti=1)
ATE —E(;)

=[E(Y4i | Ti=1) = E(Yoi [ Ti = 1) Pr(Ti =1)
+[E(Y4i | Ti=0) = E(Yoi [ Ti = 0)][1 — Pr(T; = 1)]

How do we estimate these?



Selection only on Observables
| next want to consider the case in which we only have selection
only on observables by which | mean:

Assumption 1

For all x in the support of X; and t € {0,1},

E(Yii | Xi=x,Ti=1t)=E(Yy; | Xj = x)
E(Yoi | Xi=x,Ti=1) =E(Yo; | Xi = x)

A “slightly” stronger version of this is random assignment of T;
conditional on X;

This is often also called unconfoundedness

A very strong assumption



Interestingly this is still not enough

If there are values of the observables for which
Pr(Ti=1|Xie x)=1o0r Pr(T;=0| X; € x) = 0 then the full
dlstrlbutlon of treatment effects is not identified.

For example suppose T; is being pregnant, we could never
hope to identify

E(Income | Pregnant, Male)

This is perhaps not a relevant counterfactual , but if you want to
measure the average treatment effect you can'’t.



Consider a more interesting case:

o the treatment is free preschool
o the outcome is the kids cognitive test score
o the conditioning variable is family income

In that case the elements of the treatment effect make sense
for all income levels:

E(Yi| Ti=1,Xi=x),E(Y;| Ti=0,X; = X)
(as opposed to E(Income | Pregnant, Male) which doesn’t make
sense)

However suppose that the program is means tested so that you
are only eligible if your family income is below x*, then for any
value X; > x* the effect of the program is not identified

Thus the ATE is not identified without further assumptions



We need additional assumptions
Assumption 2

For almost all x in the support of Xj,

Pr(Ti=0|X;=x)>0

Assumption 3

For almost all x in the support of X;,

Pr(Ti=1]X;=x)>0



Theorem 1

Under assumptions 1 and 2 the TT is identified. Under
assumptions 1, 2, and 3 the ATE is identified.



It is pretty clear to see why this holds
Consider the treatment on the treated.

Note that E(Y3; | T; = 1) is identified directly from the data so
all we need to getis E(Yp; | T = 0).

Under the first assumption above

E(Yor | Ti=1)=> E(Yoi | Xi=x)Pr(X;=x| Ti=1)
j

As long as assumption 2 holds, E( Yy, | X; = x) is identified so
E(Yoi | Ti = 1) is identified and thus the TT is identified



Under Assumption 3, you can also get

E(Yy| Ti=0)= ZE Yii | Xi = x;)Pr(Xi = x; | T; = 0)

and use this to identify the ATE



Estimation

There are a number of different ways to estimate this model

The most common is to just use OLS defining

Yi=aTi+ XiB+ui
and run a regression

However this is assuming that the treatment effect is
homogeneous



Allowing for heterogeneous treatment effects is straight forward

Yoi = X{Bo + Uoi
Yii = X{B1 + ty;

Then one could estimate
— 1 RPN
ATE = NZXi <51 —50>
or alternatively:

ATE = ,1\,% i | Yai = XiBo] + (1 = Ti) [ X{By — Yol

i=1

TT is analogous (although second method might be more
natural)



Matching

Even though regression can be very flexible, many authors
argue that matching is better than regression in practice

If you are interested in TT, but the support of X; conditional on
T; = 1 is very different than the unconditional support of X; than
the regression approach can work poorly

Heckman and coauthors made this argument in the context of
JTPA where only low income people are eligible for treatment



The idea behind matching can be seen most clearly when X;
has discrete support

Lets focus on the TT case

Let Ny be the the number of respondents with T; = 0 and let N,
be the number of respondents with T; = 1



Step 1

Notation is really messy-| don’t know of a super clean way to do
this

For each observation j with T; = 1 find another observation with
exactly the same value of X but for which T =0

You can think of drawing at random from the potential people.
Let Iy (/) denote this choice so that for every value of i with
Ti=1,

X/o(i) =X

Tio(iy =0



Xmooanm< N - <

~m N M <0 O~

Example
Then



Step 2

Estimate the Treatment on the treated using

Z Y~ Yo

{/T 1}



To see why this works note that
E(ﬁ) =E(Y1i | Ti=1)—E(Yyp | Ti=1)

and

Mg

E(Y,O(,)|7',:1): E(Y,O | Ti=1,Xi=x)Pr(Xi=x;| Ti=1)

1

~.
I

e

E(Yor | To=0.X = x) Pr (X, = x| T, = 1)

J=1

Pllﬁk

E(Yog|Xg—Xl)Pf( —X/|T—1)
1

—.
I
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1
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This is difficult to do in practice for two reasons:

@ If X; is continuous we can’t match exactly

@ If X; is very high dimensional, even with discrete data we
probably couldn’t match directly because there might be no
controls with the same value for every single covariate



Propensity Score Matching

Propensity score matching is a way of getting around the
second problem.

Rather than matching on the high dimensional X; it turns out
that we can match on the lower dimensional

P(x)=Pr(Ti=1|X;=x)



The reason why comes from Bayes Theorem
For any x,

F(x | P(Xj) =p, Ti=1)
=Pr(X;<x|P(X)=p,Ti=1)
Pr( i=1|Xi <x,P(Xj) =p)Pr(X; < x| P(Xi) =p)

Pr(Ti=11P(Xi) = p)
_ pPr(Xi < x| P(X)) = p)
P
= Pr(X; < x | P(X;) = p)
= F(x | P(X;) = p)




and analogously,
F(x | P(Xj) = p, Ti =0)

= Pr(X; < x| P(Xj) = p, T; = 0)
_ Pr(Ti =01 Xi < x, P(Xi) = p) Pr(X; < x | P(X;) = p)

Pr(T; =0 | P(X;) = p)
(1= p)Pr(X; < x| P(X;) = p)
T—p
= Pr(X; < x| P(X;) = p)
= F(x | P(Xi) = p)

thus

F(x | P(X) = p.Ti = 0) =F(x | P(X) = p.Ti = 1)



Thus if we condition on the propensity score, the distribution of
X; is identical for the controls and the treatments.

But since we have selection on observables only:

E(Yoi | Ti=1,P(X) = p)
:/E(Yo,])(,:x)dF(xl Ti=1,P(X;) = p)
:/E(Yo,-|X,-:x)dF(X| Ti =0, P(X) = p)
= E(Yoi | Ti = 0, P(X;) = p)



Consider matching on propensity scores rather than X;

We do something similar to before. For each observation i with
T; = 1 we find another observation with the same propensity
score but 7; = 0.

Analogous to before we let Iy (/) denote this choice so that for
every value of j with T; = 1,



Then
E(Yi—Yy| Ti=1)
—/E(Y,—YIO(,-)\T,-—1,P(x,-)—p)f(pr Ti=1)dp
— [EMITi=1.PO0O) =) (o | Ti= 1)y
~ [ EMuy | Ti=1.PO) =) (0 Ti= 1)
= [ECuITi=1.P00) = ) (0] Ti= 1)dp

—/E(Youn:o,P(xg):p)f(m T, =1)dp
=E(Yyi—Yoi | Ti=1)



This makes the problem much simpler, but

o You still need to estimate the propensity score which is a
high dimensional non-parametric problem. People typically
just use a logit

@ You still have the first problem above that for a continuous
propensity score you are not going to be able to get an
exact match.



There are essentially 3 ways to deal with this second problem:

o Just take nearest neighbor (or perhaps caliper which
throws out observations without a close neighbor)

o Use all of the observations that are sufficiently close

o Estimate E(Yo, | T; = 0, P(X;) = P(X;)) directly with some
semiparametric method

Lets look at two papers that use this approach



How Robust is the Evidence on the Effects of College
Quality? Evidence from Matching

by Dan Black and Jeff Smith, Journal of Econometrics, 2004

They want to look at the effects of college quality in the U.S. on
wages

They use the National Longitudinal Survey of Youth, 1979

A representative panel data that looks at kids 14-21 in 1979
and is still following them



Table 1: NLSY Descriptive Statistics, 1998

Full sample

age
black

Hispanic

years of education
Associate degree
Bachelor’s degree
Master’s degree

N
Representative sample

Age

Black

Hispanic

years of education
Associate degree
Bachelor’s degree
Master’s degree

N

Men

36.7
0.239
0.166
1491
0.116
0411
0.148

1504

Men

36.7
0.083
0.057
15.15
0.101
0.481
0.175

1012

Women

36.8
0.280
0.167
14.79
0.156
0.363
0.157

1695

Women

36.8
0.106
0.070
14.92
0.149
0413
0.182

1136



They rank colleges using SAT scores, faculty salary and the
freshman retention rate

You can see there is substantial selection



Table 2: Variables for Propensity Score and Wage Equations

log wage

Basic Characteristics:
region of birth

age

years of education

black

Hispanic

ASVARB test scores

Log of average real wage (1982 dollars) on
all jobs held during the year

a vector of 10 dummy variables indicating
region in which respondent was born
respondent's age at the interview, quadratic
in age is used

highest grade or year of school the
respondent completed as of the 1998
interview. Only those who attended a
college are in the sample

dummy variable indicating the respondent
is black

dummy variable indicating the respondent
is Hispanic (black & Hispanic are
mutually exclusive)

Scores on the ten components of the
Armed Services Vocational Aptitude
Battery, administered in 1980. We use the
first two principal components of the age-
adiusted scores.



Home Characteristics:
magazine

newspaper

library card

mom education
mom living
mom age

dad education

dad living

“When you were about 14 years old, did
you or anyone else living with you get
magazines regularly?”

“When you were about 14 years old, did
you or anyone else living with you get a
newspaper regularly?”

“When you were about 14 years old, did
you or anyone else living with you have a
library card?”

Highest grade or year of school completed
by respondent’s mother.

Was the respondent’s mother living at the
1979 interview (when respondents were
between 14 and 22 years old)?

At the 1987 interview.

Highest grade or year of school completed
by respondent’s father

Was the respondent’s father living at the
1979 interview?



dad age
living together

mom occupation

dad occupation

High School Characteristics:

size of high school

books

teacher salary

disadvantaged

At the 1987 interview

Indicator for whether the respondent’s
mother and father lived in the same
household at the 1979 interview
Occupation of job held longest by mother
or stepmother in 1978, represented by
dummy variables for each Census 1-digit
occupation

Occupation of job held longest by father or
stepfather in 1978, represented by dummy
variables for each Census 1-digit
occupation.

Asked of respondents’ high schools: “As
of 10/1/79 [or nearest date] what was
[your] total enrollment?”

Asked of respondents’ high schools:
“What is the approximate number of
catalogued volumes in the school library
(enter O if your school has no library).” [in
1979]

Asked of respondents’ high schools:
“What is the first step on an annual salary
contract schedule for a beginning certified
teacher with a bachelor’s degree?” [in
1979]

Asked of respondents’ high schools:
“What percentage of the students in [the
respondent’s high school] are classified as
disadvantaged according to ESEA [or
other] guidelines?” [in 1979]



Panel A: Men
Quality index quintiles

First quintile

Second quintile

Third quintile

Fourth quintile

Fifth quintile

Total

First
quintile
(32.38)
[32.38]

6.48
(23.81)
[23.81]

476
(24.76)
[24.76]

495
(11.54)
[11.43]

229

(7.55)

[7.62]

1.52

[100.0]
[N =105]

Second
quintile
(21.90)
[21.90]
438
(20.95)
[20.95]
4.19
(15.24)
[15.24]
3.05
(18.27)
[18.10]
3.62
(23.58)
[23.81]
476

[100.0]
[N =105]

Ability quintiles

Third
quintile
(16.19)
[16.19]
324
(20.95)
[20.95]
4.19
(21.90)
[21.90]
438
(27.88)
[27.62]
552
(13.21)
[13.33]
2.67

[100.0]
[N =105]

Fourth
quintile
(14.29)
[1429]
2.86
(20.95)
[20.95]
4.19
(17.14)
[17.14]
343
(20.19)
[20.00]
4.00
(27.36)
[27.62]
5.52

[100.0]
[N =105]

Fifth
quintile
(15.24)
[15.24]

3.05
(13.33)
[13.33]

2.67
(20.95)
[20.95]

4.19
(22.12)
[21.90]

438
(28.30)
[28.57]

5.71

[100.0]
[N =105]

Total

(100.0)
(N=105)

(100.0)
(N=105)

(100.0)
(N=105)

(100.0)
(N=104)

(100.0)
(N=106)

100.0
N =525



Panel B: Women
Quality index quintiles

First quintile

Second quintile

Third quintile

Fourth quintile

Fifth quintile

Total

First
quintile
31.07)
[31.07]
6.21
(22.22)
[21.36]
427
(25.71)
[26.21]
524
(14.85)
[14.56]
291
(6.54)
[6.80]
1.36

[100.0]
[N =103]

Second
quintile
(19.42)
[19.42]
3.88
(25.25)
[24.27]
485
(19.05)
[19.42]
3.88
(21.78)
[21.36]
427
(14.95)
[15.53]
3.11

[100.0]
[N = 103]

Ability quintiles

Third
quintile
(20.39)
[20.39]

4.08
(26.26)
[25.24]

5.05
(20.95)
[21.36]

427

(17.82)
[17.48]

3.50

(14.95)
[15.53]

3.11

[100.0]
[N =103]

Fourth
quintile
(15.53)
[15.53]
3.11
(10.10)
[9.71]
1.94
(19.05)
[19.42]
3.88
(24.75)
[24.27]
485
(2991)
[31.07]
6.21

[100.0]

[N =103]

Fifth
quintile
(13.59)
[13.59]
2.72
(16.16)
[15.53]
3.11
(15.24)
[15.53]
3.11
(20.790
[20.39]
4.08
(33.64)
[34.95]
6.99

[100.0]

[N = 103]

Total

(100.0)
(N=103)

(100.0)
(N=99)

(100.0)
(N=105)

(100.0)
(N=101)

(100.0)
(N=107)

100.0
N =515



A, Men

0.15 -

@ Comparison group B Treatment group




B. Women

0.15 1

B Comparison group B Treatment group

Fig. 1. The distributions of the propensity scores.



They then do propensity score estimation-what they do is
somewhat complicated-more than | think is worth getting into
here



Table 7

Propensity score estimates of the effects of college quality: fourth and first quartiles, NLSY 1998

Agy =Y — Yn

Men

Women

Using years of Not using Using years of Not using
education in years of education in years of
propensity education in propensity education in
score propensity score score propensity score
estimation estimation estimation estimation
Epanechnikov kernel, 0.120 0.139 0.067 0.078
bandwidth 0.40 for men (0.0867) (0.0767) (0.0862) (0.0830)
and 0.30 for women [n=158] [n=152] [n = 145] [n = 155]
OLS estimates 0.122 0.159 0.112 0.155
(0.0584) (0.0584) (0.0557) (0.0552)
Thick support region 0.199 0.250 0.124 0.157
(0.1357) (0.1181) (0.1407) (0.1418)
[n = 44] [n = 44] [n=39] [n=39]
OLS estimates, thick 0.121 0.156 0.144 0.184
support region (0.0639) (0.0653) (0.0724) (0.0720)



Table 8
Propensity score estimates of the effects of college quality, NLSY 1998

Not using years of education in propensity score estimation

Men Women
Ay =Yy — Yy
Epanechnikov kernel, 0.139 0.078
bandwidth 0.40 for men (0.0767) (0.0830)
and 0.30 for women [n=152] [n = 155]
OLS estimates 0.159 0.155
(0.0584) (0.0552)
Az =Y3 —Ya
Epanechnikov kernel, 0.056 0.118
bandwidth 0.30 men and (0.0695) (0.0561)
0.50 women [n = 166] [n=133]
OLS estimates 0.082 0.104
(0.0541) (0.0498)
Agp=Y3 — Y
Epanechnikov kernel, 0.006 0.123
bandwidth 0.20 for men (0.0863) (0.506)
and 0.50 for women [n=147] [n=159]
OLS estimates 0.072 0.094

(0.0584) (0.0458)



Does Piped Water Reduce Diarrhea for Children in
Rural India?

by Jalan and Ravallion, Journal of Econometrics, 2003

Unsafe drinking water is one of the biggest health risks in the
world

This paper studies the effects of piped water on health in rural
India using propensity scores

they use the closest five matches as long as they were close
enough



Table 1

Access to piped water across the income distribution and by education

Income quintiles

(stratified by household

income per person)

Number of
observations

Percentage of
people with
piped water

Households with piped water stratified by highest education
of female members

Illiterate At most At most Higher secondary Full sample
primary ‘matriculation or more
Bottom 20th percentile 6581 27.18 768 655 251 33 1707
20-40th percentile 6508 25.40 674 590 274 29 1567
40-60th percentile 6543 26.96 667 560 371 60 1658
60-80th percentile 6694 29.62 660 602 462 90 1814
Top 20th percentile 6904 33.63 665 593 638 185 2081
Full sample 33230 28.62 3434 3000 1996 397 8827




Table 2
Logit regression for piped water

Coeflicient t-statistic

Village variables
Village size (log) 0.08212 4269
Proportion of gross cropped area which is irrigated: > 0.75 —0.04824 ~1185
Proportion of gross cropped area which is irrigated: 0.5-0.75 019399 4178
Whether village has a day care center —0.07249 2225
Whether village has a primary school —0.08136 —1.434
Whether village has a middle school —0.09019 —2.578
Whether village has a high school 026460 7405
Female to male students in the village 0.10637 3010
Female to male students for minority groups ~0.07661 —2.11
Main approachable road to village: pucca road 0.19441 3637

jeepable/kuchha road ~0.00163 —0.033
Whether bus-stoop is within the village 0.11423 2951
Whether railway station is within the village 0.00920 0179
Whether there is a post-office within the village 002193 0550
Whether the village has a telephone facility 033059 9.655
Whether there is a community TV center in the village 0.09859 2661
Whether there is a library in the village —0.04153 ~1.116
Whether there is a bank in the village 0.19084 4655
Whether there is a market in the village 031690 6.092
Student teacher ratio in the village 0.00242 5295
Household variables
Whether household belongs to the Scheduled Tribe —021288
Whether household belongs to the Scheduled Caste ~0.01045
Whether it is a Hindu household ~0.24195
Whether it is a Muslim household ~021631

Whether it is a Christian household 040367

Whether it is a Sikh houschold ~0.86645
Household size 0.00337
Utilization of landholdings: used for cultivation? 017109
Whether the house belongs to the household ~0.18988
Whether the houschold owns ofher property 0.00181
Whether the houschold has a bicycle ~0.26514
Whether the houschold has a sewing machine 001183
Whether the houschold owns a thresher ~0.05790
Whether the houschold owns a winnower 021842
Whether the houschold owns a bulloc] ~0.25900
Whether the houschold owns a radio 001036
Whether the houschold owns a TV 0.08095
Whether the houschold owns a fan 001336
Whether the houschold owns any livestock ~0.07780
Nature of house: Kuchha ~0.10004

Pucca 0.12039
Condition of house: Good 000230

Livable 0.09268



Table 2 (continued)

Coefficient t-statistic
Rooms in house: One —0.10771 —1.371
Two 0.06822 0.952
Three to five 0.07514 1112
Whether household has a separate kitchen —0.01993 —0.533
Whether the kitchen is ventilated 0.08103 2212
Whether the household has electricity 0.40641 11.217
Occupation of the head: Cultivator —0.02425 —0.481
Agricultural wage labor 0.02432 0.429
Non-agricultural wage labor 0.14628 2.254
Self-employed -0.06921 —0.955
Whether male members listen to radio 0.20089 3.484
Whether female members listen to radio —0.12415 -2.177
Whether male members watch TV 0.09365 1.291
Whether female members watch TV 0.03863 0.493
Whether male members read newspapers 0.08950 1.813
Whether female members read newspapers 0.04066 0.631
Proportion of houschold members who are 60+ —0.11370 —1.067
Proportion of females among adults 0.04646 0331
Proportion of males among children 0.08436 0.779
Proportion of females among children 0.05498 0.498
Whether household head is male —0.18041 —2.321
Whether household head is single 0.16659 1.268
Whether houschold head is married —0.02603 —0.422
Whether houschold head is illiterate —0.13048 —1.454
Whether household head is primary school educated —0.03694 —0.416
Whether household head is matriculation educated —0.03364 —0.385
Whether household head is higher secondary —0.05545 —0.475
Gross cropped area ~0.00020 —0.666
Gross irrigated arca —0.00050 —1.342
Landholding size: Landless —0.32849 —3.996
Marginal —0.31056 —3.987
Small —0.22129 —2.916
Constant —1.49531 —5.396
Log-likelihood function —16236.565
Number of observations 33216



Propensity score for households with piped water
0.077951

0 -

T T T T T
0.00969 0.943526

Probability of having access to piped water



Propensity score for households without piped water

0.169717

0 -

T T T T T
0.007527 0.904426

Probability of having access to piped water



Table 3

Impacts of piped water on diarrhea prevalence and duration for children under five

Prevalence of diarrhea

Duration of illness

Mean for those Impact of Mean for those Impact of
with piped piped water with piped piped water
water (st. error) water (st. error)
(st. dev.) (st. dev.)
Full sample 0.0108 —0.0023* 0.3254 —0.0957*
(0.046) (0.001) (1.650) (0.021)
Stratified by household income per capita (quintiles)
1 (poorest) 0.0155 0.0032* 0.4805 0.0713
(0.055) (0.001) (2.030) (0.053)
2 0.0136 0.0007 0.4170 0.0312
(0.051) (0.001) (1.805) (0.051)
3 0.0083 —0.0039* 0.2636 —0.1258*
(0.038) (0.001) (1.418) (0.042)
4 0.0100 —0.0036* 0.3195 —0.1392*
(0.044) (0.001) (1.703) (0.048)
5 0.0076 —0.0068* 0.1848 —0.2682*
(0.042) (0.001) (1.254) (0.036)
Stratified by highest education level of a female member
Illiterate 0.0131 —0.0000 0.3588 —0.0904*
(0.053) (0.001) (1.710) (0.036)
At most primary 0.0112 —0.0015 0.3502 —0.0465
school educated (0.045) (0.001) 1.739) (0.036)
At most 0.0074 —0.0065* 0.2573 —0.1708*
matriculation (0.038) (0.001) (1.476) (0.039)
educated
Higher secondary 0.0050 —0.0080* 0.1880 —0.2077*
or more (0.027) (0.002) (1.158) (0.076)



Table 4
Child-health impacts of piped water by income and education

Iliterate At most primary At most matriculation Higher secondary or more
Prevalence of ~ Duration of  Prevalence of ~ Duration of  Prevalence of ~ Duration of  Prevalence of ~ Duration of
diarrhea illness diarrhea illness diarrhea illness diarrhea illness
1 (poorest quintile) 0.0100% 0.1028 0.0010 0.0548 —0.0118* —0.1091 Small Sample
(0.002) (0.089) (0.002) (0.094) (0.003) (0.132)
2 0.0057* 0.0777 0.0013 0.1061 —0.0121% —0.2580* Small Sample
(0.003) (0.083) (0.002) (0.083) (0.002) (0.087)
3 ~0.0038* ~0.1503* ~0.0008 0.0056 ~0.0069* ~0.1659* Small Sample
(0.002) (0.069) (0.002) (0.081) (0.002) (0.059)
4 —0.0062* —02224* —0.0041* ~0.1691 0.0008 —0.0186 Small Sample
(0.002) (0.097) (0.002) (0.070) (0.003) (0.091)
5 —0.0075* —0.2932* —0.0051* —02435* —0.0063* —0.2578* —0.010% —0.2637*
(0.000) (0.045) (0.002) (0.075) (0.002) (0.008) (0.003) (0.085)

Note: Figures in parentheses are the respective standard errors.
*Indicates significance at 5% or lower.



Propensity Score Matching vs Regression

When | think about this too hard | start to get a bit confused
about the fundamental difference.

At some level when we do matching we do

Z Yi— YO/

{, T=1}
where Yy, is an unbiased estimate of E(Yoi | X; = X))

We can get this estimate by taking one person with the same
value of the propensity score or by using the forecast from OLS
as above: X/

We can then think about nonparametric regression for our
estimate of Yy, but this is kind of a more flexible version of both



Reweighting

Another approach is reweighting
Let f(x) be the density of X; conditional on T; = t.

Using Bayes theorem




SO
E(Yor | T =1) =/E(Yo,- | X; = x)fy (x)dx

—/E(YO,- X = )19 ey

P(Xi) _q) Pr(7i=0)
£ (Yo7 "oy 1 70) iz =1

Putting this together we can use the estimator
P(X;)

Y Vi S Yorrrin PIX)
N N
1 P(X;)
TN Y e S YRy
N i
E(Yoi | Ti = 1) prr=s)
%E(Y1I| 7-1':1)_ Pr(T,=1) (7=0)
PH(T=0)

=TT



Instrumental Variables

What about selection on unobservables?
Lets first think about what IV does in this case

Define

Yi=TiY1i+ (1= T) Yo
=T (Y1i — Yoi) + Yoi
=Po+aili+e

(where 8y = E(Yyi) and e; = Y; — o)

Assume that we have an instrument Z; that is correlated with T;
but not with «; or ¢; (or equivalently Yy; or Yj;)

Does |V estimate the ATE?



Lets abstract from other regressors

IV yields

plimp; =

ov(Z,,Y)
ov(Z, T))
COV( iei +aiT;)

Cov(Z;, T))
Cov(Z,e)) = Cov(Z,o;iT;)

~ Cov(Z,T)) + Cov(Z;, T;)
_ Cov(Z,aiTj)

Cov(Z,T;)



In the case in which treatment effects are constant so that
aj = « for everyone
.~ Cov(Z,aT))
limg) = —————2
PIM = Cou(z, )
=«

However, more generally IV does not converge to the Average
treatment effect



Local Average Treatment Effects

Imbens and Angrist (1994) consider the case in which there are
not constant treatment effects

The consider a simple version of the model in which Z; takes on
2 values, call them 0 and 1 for simplicity and without loss of
generality assume that
Pr(Ti=12Z=1)>Pr(Ti=1|2Z=0)



There are 4 different types of people those for whom T; = 1
when:

@ zZ=1,Z=0
@ never

@ Z =1only
@ Z =0only

Imbens and Angrist’s monotonicity rules out 4 as a possibility

Let w1, po, and ug represent the sample proportions of the three
groups

and G; an indicator of the group



Note that

~ p Cov(Z,o;T))

o oz Ty

_ E(iTiZ) — E(uTi) E(Z)
E(Tiz)) - E(T)) E(Z)

Let p denote the probability that Z; = 1. Lets look at the pieces



first the numerator

E(aiTiZi) — E (i Ti) E(Z)
=pE(iTi | Zi=1) = E(iTi) p
=pE(a;Ti| Zi =1)
—[pE(aiTi | Zi=1)+ (1 — p) E(eiTi | Z = 0)] p
=p(1 = p)[E(a;Ti | Zi =1) = E( T; | Z; = 0)]
=p(1 = p)[E(ai | Gi = 1)p1 + E(ei | Gj = 3)ug — E(aj | Gij = 1)u]
=p(1 — p)E(ai | Gi = 3)us



Next consider the denominator

E(TiZ)) — E(T)) E(Z)
=pE(T;| Zi=1)-E(Tj)p
=pE(Ti | Zi =1)

—[pE(Ti| Zi=1)+ (1 —p)E(Ti [ Zi=0)]p
=p(1—=p)[E(Ti | Z=1) - E(T;| Z = 0)]
=p(1 = p) 1 + p3 — ]
=p(1 — p)us



Thus

p p(1 = p)E(qi | Gi = 3)us
p(1 = p)us
=E(aj | G;=3)

By

They call this the local average treatment effect



