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I will describe the basic ideas of RD, but ignore many of the
details

Good references (and things I used in preparing this are):

“Identification and Estimation of Treatment Effects with a
Regression-Discontinuity Design,” Hahn, Todd, and Van
der Klaauw, EMA (2001)
“Manipulation of the Running Variable in the Regression
Discontinuity Design: A Density Test,” McCrary, Journal of
Econometrics (2008)
“Regression Discontinuity Designs: A Guide to Practice,”
Imbens and Lemieux, Journal of Econometrics (2008)
“Regression Discontinuity Designs in Economics,” Lee and
Lemiux, JEL (2010)

You can also find various Handbook chapters or Mostly
Harmless Econometrics which might help as well



The idea of regression discontinuity goes way back, but it has
gained in popularity in recent years

The basic idea is to recognize that in many circumstances
policy rules vary at some cutoff point

To think of the simplest case suppose the treatment
assignment rule is:

Ti =

{
0 Xi < x∗

1 Xi ≥ x∗



Many different rules work like this.

Examples:

Whether you pass a test
Whether you are eligible for a program
Who wins an election
Which school district you reside in
Whether some punishment strategy is enacted
Birth date for entering kindergarten



The key insight is that right around the cutoff we can think of
people slightly above as identical to people slightly below

Formally we can write it the model as:

Yi = αTi + εi

If
E(εi | Xi = x)

is continuous then the model is identified (actually all you really
need is that it is continuous at x = x∗)

To see it is identified not that

limx↑x∗E(Yi | Xi = x) = E(εi | Xi = x∗)

limx↓x∗E(Yi | Xi = x) = α+ E(εi | Xi = x∗)

Thus

α = limx↓x∗E(Yi | Xi = x)− limx↑x∗E(Yi | Xi = x)

Thats it



What I have described thus far is referred to as a “Sharp
Regression Discontinuity”

There is also something called a “Fuzzy Regression
Discontinuity”

This occurs when rules are not strictly enforced

Examples

Birth date to start school
Eligibility for a program has other criterion
Whether punishment kicks in (might be an appeal process)



This isn’t a problem as long as

limx↑x∗E(Ti | Xi = x) > limx↓x∗E(Ti | Xi = x)

To see identification we now have

limx↑x∗E(Yi | Xi = x)− limx↓x∗E(Yi | Xi = x)
limx↑x∗E(Ti | Xi = x)− limx↓x∗E(Ti | Xi = x)

=
α [limx↑x∗E(Ti | Xi = x)− limx↓x∗E(Ti | Xi = x)]

limx↑x∗E(Ti | Xi = x)− limx↓x∗E(Ti | Xi = x)

= α

Note that this is essentially just Instrumental variables (this is
often referred to as the Wald Estimator)

You can also see that this works when Ti is continuous



How do we do this in practice?

There are really two approaches.

The first comes from the basic idea of identification, we want to
look directly to the right and directly to the left of the policy
change

Lets focus on the Sharp case-we can get the fuzzy case by just
applying to Yi and Ti and then taking the ratio

The data should look something like this (in stata)



We can think about estimating the end of the red line and the
end of the green line and taking the difference

This is basically just a version of nonparametric regression at
these two points



Our favorite way to estimate nonparametric regression in
economics is by Kernel regression

You learned this from Jeff, but let me refresh you some

Let K (x) be a kernel that is positive and non increasing in |x|
and is zero when |x| is large



The kernel regressor is defined as

E (Y | X = x) ≈
∑N

i=1 K(Xi−x
h )Yi∑N

i=1 K(Xi−x
h )

where h is the bandwidth parameter

Note that this is just a weighted average

it puts higher weight on observations closer to x

when h is really big we put equal weight on all observations
when h is really small, only the observations that are very
close to x influence it



This is easiest to think about with the uniform kernel

In this case

K
(

Xi − x
h

)
= 1(|Xi − x| < h)

So we use take a simple sample mean of observations within h
units of Xi

Clearly in this case as with other kernels, as the sample size
goes up, h goes down so that asymptotically we are only putting
weight on observations very close to x



To estimate limx↓x∗E(Ti | Xi = x) we only want to use values of
Xi to the right of x∗, so we would use

limx↓x∗E(Ti | Xi = x) ≈
∑N

i=1 1 (Xi > x∗)K(Xi−x∗
h )Yi∑N

i=1 1 (Xi > x∗)K(Xi−x∗
h )

However it turns out that this has really bad properties because
we are looking at the end point



For example suppose the data looked like this



For any finite bandwidth the estimator would be biased
downward



It is better to use local linear (or polynomial) regression.

Here we choose(
â, b̂
)
= argmina,b

N∑
i=1

K
(

Xi − x∗

h

)
[Yi − a− b(Xi − x∗)]2 1 (Xi ≥ x∗)

Then the estimate of the right hand side is â.

We do the analogous thing on the other side:

(
â, b̂
)
= argmina,b

N∑
i=1

K
(

Xi − x∗

h

)
[Yi − a− b(Xi − x∗)]2 1 (Xi < x∗)

(which with a uniform kernel just means running a regression
using the observations between x∗ − h and x∗

Lets try this in stata



There is another approach to estimating the model

Define
g(x) = E(εi | Xi = x)

then
E(Yi | Xi,Ti) = αTi + g(Xi)

where g is a smooth function

Thus we can estimate the model by writing down a smooth
flexible functional form for g and just estimate this by OLS

The most obvious functional form that people use is a
polynomial



There are really two different ways to do it:

Yi = αTi + b0 + b1Xi + b2X2
i + vi

or

Yi =αTi + b0 + b1Xi1 (Xi < x) + b2X2
i 1 (Xi < x)

+ b3Xi1 (Xi ≥ x) + b4X2
i 1 (Xi ≥ x) + vi

Lee and Lemieux say the second is better



Note that this is just as “nonparametric” as the Kernel approach

You must promise to increase the degree of the polynomial
as you increase the sample size (in the same way that you
lower the bandwidth with the sample size)
You still have a practical problem of how to choose the
degree of the polynomial (in the same way you have a
choice about how to choose the bandwidth in the kernel
approaches)

You can do both and use a local polynomial-in one case you
promise to lower the bandwidth, in the other you promise to add
more terms, you could do both

Also, for the “fuzzy” design we can just do IV



Problems

While RD is often really nice, there are three major problems
that arise

The first is kind of obvious from what we are doing-and is an
estimation problem rather than an identification problem

Often the sample size is not very big and as a practical matter
the bandwidth is so large (or the degree of the polynomial so
small) that it isn’t really regression discontinuity that is
identifying things



The second problem is that there may be other rules changes
happening at the same cutoff so you aren’t sure what exactly
you are identifying



The third is if the running variable is endogenous

Clearly if people choose Xi precisely the whole thing doesn’t
work

For example suppose

carrying 1 pound of drugs was a felony, but less than 1 was
a misdemeanor
people who get their paper in by 5:00 on thursday
afternoon are on time, 5:01 is late and marked down by a
grade

Note that you need Xi to be precisely manipulated, if there is
still some randomness on the actual value of Xi, rd looks fine



Mccrary (2008) suggests to test for this by looking at the
density around the cutoff point:

Under the null the density should be continuous at the
cutoff point
Under the alternative, the density would increase at the
kink point when Ti is viewed as a good thing



Lets look at some examples



Randomized Experiments from Non-random Selection
in U.S. House Elections

Lee, Journal of Econometrics, 2008

One of the main points of this paper is that the running variable
can be endogenous as long as it can not be perfectly chosen.

In particular it could be that:

Xi = Wi + ξi

where Wi is chosen by someone, but ξi is random and unknown
when Wi is chosen

Lee shows that regression discontinuity approaches still work in
this case



Incumbency

We can see that incumbents in congress are re-elected at very
high rates

Is this because there is an effect of incumbency or just because
of serial correlation in preferences?

Regression discontinuity helps solves this problem-look at
people who just barely won (or lost).



Representatives, in any given election year, the incumbent party in a given congressional district will likely
win. The solid line in Fig. 1 shows that this re-election rate is about 90% and has been fairly stable over the
past 50 years.11 Well known in the political science literature, the electoral success of the incumbent party is
also reflected in the two-party vote share, which is about 60–70% during the same period.12

As might be expected, incumbent candidates also enjoy a high electoral success rate. Fig. 1 shows that the
winning candidate has typically had an 80 percent chance of both running for re-election and ultimately winning.
This is slightly lower, because the probability that an incumbent will be a candidate in the next election is about
88%, and the probability of winning, conditional on running for election is about 90%. By contrast, the runner-
up candidate typically had a 3% chance of becoming a candidate and winning the next election. The probability
that the runner-up even becomes a candidate in the next election is about 20% during this period.

The overwhelming success of House incumbents draws public attention whenever concerns arise that
Representatives are using the privileges and resources of office to gain an ‘‘unfair’’ advantage over potential
challengers. Indeed, the casual observer is tempted to interpret Fig. 1 as evidence that there is an electoral
advantage to incumbency—that winning has a causal influence on the probability that the candidate will run
for office again and eventually win the next election. It is well known, however, that the simple comparison of
incumbent and non-incumbent electoral outcomes does not necessarily represent anything about a true
electoral advantage of being an incumbent.

As is well-articulated in Erikson (1971), the inference problem involves the possibility of a ‘‘reciprocal causal
relationship’’. Some—potentially all—of the difference is due to a simple selection effect: incumbents are, by
definition, those politicians who were successful in the previous election. If what makes them successful is somewhat
persistent over time, they should be expected to be somewhat more successful when running for re-election.

3.2. Model

The ideal thought experiment for measuring the incumbency advantage would exogenously change the
incumbent party in a district from, for example, Republican to Democrat, while keeping all other factors
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Fig. 1. Electoral success of U.S. House incumbents: 1948–1998. Note: Calculated from ICPSR study 7757 (ICPSR, 1995). Details in
Appendix A. Incumbent party is the party that won the election in the preceding election in that congressional district. Due to re-
districting on years that end with ‘‘2’’, there are no points on those years. Other series are the fraction of individual candidates in that year,
who win an election in the following period, for both winners and runner-up candidates of that year.

11Calculated from data on historical election returns from ICPSR study 7757 (ICPSR, 1995). See Appendix A for details. Note that the
‘‘incumbent party’’ is undefined for years that end with ‘2’ due to decennial congressional re-districting.

12See, for example, the overview in Jacobson (1997).
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Democrats’ strongest opponent (virtually always a Republican). Each point is an average of the indicator
variable for running in and winning election tþ 1 for each interval, which is 0.005 wide. To the left of the
dashed vertical line, the Democratic candidate lost election t; to the right, the Democrat won.

As apparent from the figure, there is a striking discontinuous jump, right at the 0 point. Democrats who
barely win an election are much more likely to run for office and succeed in the next election, compared to
Democrats who barely lose. The causal effect is enormous: about 0.45 in probability. Nowhere else is a jump
apparent, as there is a well-behaved, smooth relationship between the two variables, except at the threshold
that determines victory or defeat.

Figs. 3a–5a present analogous pictures for the three other electoral outcomes: whether or not the Democrat
remains the nominee for the party in election tþ 1, the vote share for the Democratic party in the district in
election tþ 1, and whether or not the Democratic party wins the seat in election tþ 1. All figures exhibit
significant jumps at the threshold. They imply that for the individual Democratic candidate, the causal effect
of winning an election on remaining the party’s nominee in the next election is about 0.40 in probability. The
incumbency advantage for the Democratic party appears to be about 7% or 8% of the vote share. In terms of
the probability that the Democratic party wins the seat in the next election, the effect is about 0.35.
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Fig. 2. (a) Candidate’s probability of winning election tþ 1, by margin of victory in election t: local averages and parametric fit. (b)
Candidate’s accumulated number of past election victories, by margin of victory in election t: local averages and parametric fit.
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In all four figures, there is a positive relationship between the margin of victory and the electoral outcome.
For example, as in Fig. 4a, the Democratic vote shares in election t and tþ 1 are positively correlated, both on
the left and right side of the figure. This indicates selection bias; a simple comparison of means of Democratic
winners and losers would yield biased measures of the incumbency advantage. Note also that Figs. 2a, 3a, and
5a exhibit important non-linearities: a linear regression specification would hence lead to misleading
inferences.

Table 1 presents evidence consistent with the main implication of Proposition 3: in the limit, there is
randomized variation in treatment status. The third to eighth rows of Table 1 are averages of variables that are
determined before t, and for elections decided by narrower and narrower margins. For example, in the third
row, among the districts where Democrats won in election t, the average vote share for the Democrats in
election t" 1 was about 68 percent; about 89 percent of the t" 1 elections had been won by Democrats, as the
fourth row shows. The fifth and seventh rows report the average number of terms the Democratic candidate
served, and the average number of elections in which the individual was a nominee for the party, as of election
t. Again, these characteristics are already determined at the time of the election. The sixth and eighth rows
report the number of terms and number of elections for the Democratic candidates’ strongest opponent. These
rows indicate that where Democrats win in election t, the Democrat appears to be a relatively stronger
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Fig. 3. (a) Candidate’s probability of candidacy in election tþ 1, by margin of victory in election t: local averages and parametric fit. (b)
Candidate’s accumulated number of past election attempts, by margin of victory in election t: local averages and parametric fit.
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candidate, and the opposing candidate weaker, compared to districts where the Democrat eventually loses
election t. For each of these rows, the differences become smaller as one examines closer and closer elections—
as (c) of Proposition 3 would predict.

These differences persist when the margin of victory is less than 5% of the vote. This is, however, to be
expected: the sample average in a narrow neighborhood of a margin of victory of 5% is in general a biased
estimate of the true conditional expectation function at the 0 threshold when that function has a non-zero
slope. To address this problem, polynomial approximations are used to generate simple estimates of the
discontinuity gap. In particular, the dependent variable is regressed on a fourth-order polynomial in the
Democratic vote share margin of victory, separately for each side of the threshold. The final set of columns
report the parametric estimates of the expectation function on either side of the discontinuity. Several non-
parametric and semi-parametric procedures are also available to estimate the conditional expectation function
at 0. For example, Hahn et al. (2001) suggest local linear regression, and Porter (2003) suggests adapting
Robinson’s (1988) estimator to the RDD.

The final columns in Table 1 show that when the parametric approximation is used, all remaining
differences between Democratic winners and losers vanish. No differences in the third to eighth rows are

ARTICLE IN PRESS

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

Local Average

Polynomial fit

V
o
te

 S
h
ar

e,
 E

le
ct

io
n
 t

+
1

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

Local Average

Polynomial fit

V
o
te

 S
h
ar

e,
 E

le
ct

io
n
 t

-1

Democratic Vote Share Margin of Victory, Election t

Democratic Vote Share Margin of Victory, Election t

Fig. 4. (a) Democrat party’s vote share in election tþ 1, by margin of victory in election t: local averages and parametric fit. (b)
Democratic party vote share in election t" 1, by margin of victory in election t: local averages and parametric fit.
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reports the estimated incumbency effect when the vote share is regressed on the victory (in election t) indicator,
the quartic in the margin of victory, and their interactions. The estimate should and does exactly match the
differences in the first row of the last set of columns in Table 1. Column (2) adds to that regression the
Democratic vote share in t! 1 and whether they won in t! 1. The coefficient on the Democratic share in t! 1
is statistically significant. Note that the coefficient on victory in t does not change very much. The coefficient
also does not change when the Democrat and opposition political and electoral experience variables are
included in Columns (3)–(5).

The estimated effect also remains stable when a completely different method of controlling for pre-
determined characteristics is utilized. In Column (6), the Democratic vote share tþ 1 is regressed on all pre-
determined characteristics (variables in rows three through eight), and the discontinuity jump is estimated
using the residuals of this initial regression as the outcome variable. The estimated incumbency advantage
remains at about 8% of the vote share. This should be expected if treatment is locally independent of all pre-
determined characteristics. Since the average of those variables are smooth through the threshold, so should
be a linear function of those variables. This principle is demonstrated in Column (7), where the vote share in
t! 1 is subtracted from the vote share in tþ 1 and the discontinuity jump in that difference is examined.
Again, the coefficient remains at about 8%.

Column (8) reports a final specification check of the RDD and estimation procedure. I attempt to estimate
the ‘‘causal effect’’ of winning in election t on the vote share in t! 1. Since we know that the outcome of
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Table 1
Electoral outcomes and pre-determined election characteristics: democratic candidates, winners vs. losers: 1948–1996

Variable All jMarginjo:5 jMarginjo:05 Parametric fit

Winner Loser Winner Loser Winner Loser Winner Loser

Democrat vote share election tþ 1 0.698 0.347 0.629 0.372 0.542 0.446 0.531 0.454
(0.003) (0.003) (0.003) (0.003) (0.006) (0.006) (0.008) (0.008)
[0.179] [0.15] [0.145] [0.124] [0.116] [0.107]

Democrat win prob. election tþ 1 0.909 0.094 0.878 0.100 0.681 0.202 0.611 0.253
(0.004) (0.005) (0.006) (0.006) (0.026) (0.023) (0.039) (0.035)
[0.276] [0.285] [0.315] [0.294] [0.458] [0.396]

Democrat vote share election t! 1 0.681 0.368 0.607 0.391 0.501 0.474 0.477 0.481
(0.003) (0.003) (0.003) (0.003) (0.007) (0.008) (0.009) (0.01)
[0.189] [0.153] [0.152] [0.129] [0.129] [0.133]

Democrat win prob. election t! 1 0.889 0.109 0.842 0.118 0.501 0.365 0.419 0.416
(0.005) (0.006) (0.007) (0.007) (0.027) (0.028) (0.038) (0.039)
[0.31] [0.306] [0.36] [0.317] [0.493] [0.475]

Democrat political experience 3.812 0.261 3.550 0.304 1.658 0.986 1.219 1.183
(0.061) (0.025) (0.074) (0.029) (0.165) (0.124) (0.229) (0.145)
[3.766] [1.293] [3.746] [1.39] [2.969] [2.111]

Opposition political experience 0.245 2.876 0.350 2.808 1.183 1.345 1.424 1.293
(0.018) (0.054) (0.025) (0.057) (0.118) (0.115) (0.131) (0.17)
[1.084] [2.802] [1.262] [2.775] [2.122] [1.949]

Democrat electoral experience 3.945 0.464 3.727 0.527 1.949 1.275 1.485 1.470
(0.061) (0.028) (0.075) (0.032) (0.166) (0.131) (0.23) (0.151)
[3.787] [1.457] [3.773] [1.55] [2.986] [2.224]

Opposition electoral experience 0.400 3.007 0.528 2.943 1.375 1.529 1.624 1.502
(0.019) (0.054) (0.027) (0.058) (0.12) (0.119) (0.132) (0.174)
[1.189] [2.838] [1.357] [2.805] [2.157] [2.022]

Observations 3818 2740 2546 2354 322 288 3818 2740

Note: Details of data processing in Appendix A. Estimated standard errors in parentheses. Standard deviations of variables in brackets.
Data include Democratic candidates (in election t). Democrat vote share and win probability is for the party, regardless of candidate.
Political and Electoral Experience is the accumulated past election victories and election attempts for the candidate in election t,
respectively. The ‘‘opposition’’ party is the party with the highest vote share (other than the Democrats) in election t! 1. Details of
parametric fit in text.
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election t cannot possibly causally effect the electoral vote share in t! 1, the estimated impact should be zero.
If it significantly departs from zero, this calls into question, some aspect of the identification strategy and/or
estimation procedure. The estimated effect is essentially 0, with a fairly small estimated standard error of
0.011. All specifications in Table 2 were repeated for the indicator variable for a Democrat victory in tþ 1 as
the dependent variable, and the estimated coefficient was stable across specifications at about 0.38 and it
passed the specification check of Column (8) with a coefficient of !0:005 with a standard error of 0.033.

In summary, the econometric model of election returns outlined in the previous section allows for a great
deal of non-random selection. The seemingly mild continuity assumption on the distribution of vi1 results in
the strong prediction of local independence of treatment status (Democratic victory) that itself has an
‘‘infinite’’ number of testable predictions. The distribution of any variable determined prior to assignment
must be virtually identical on either side of the discontinuity threshold. The empirical evidence is consistent
with these predictions, suggesting that even though U.S. House elections are non-random selection
mechanisms—where outcomes are influenced by political actors—they also contain randomized experiments
that can be exploited by RD analysis.16

3.5. Comparison to existing estimates of the incumbency advantage

It is difficult to make a direct comparison between the above RDD estimates and existing estimates of the
incumbency advantage in the political science literature. This is because the RDD estimates identify a
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Table 2
Effect of winning an election on subsequent party electoral success: alternative specifications, and refutability test, regression discontinuity
estimates

Dependent variable (1) (2) (3) (4) (5) (6) (7) (8)
Vote share
tþ 1

Vote share
tþ 1

Vote share
tþ 1

Vote share
tþ 1

Vote share
tþ 1

Res. vote share
tþ 1

1st dif. vote share,
tþ 1

Vote share
t! 1

Victory, election t 0.077 0.078 0.077 0.077 0.078 0.081 0.079 !0.002
(0.011) (0.011) (0.011) (0.011) (0.011) (0.014) (0.013) (0.011)

Dem. vote share,
t! 1

– 0.293 – – 0.298 – – –

(0.017) (0.017)
Dem. win, t! 1 – !0.017 – – !0.006 – !0.175 0.240

(0.007) (0.007) (0.009) (0.009)
Dem. political
experience

– – !0.001 – 0.000 – !0.002 0.002

(0.001) (0.003) (0.003) (0.002)
Opp. political
experience

– – 0.001 – 0.000 – !0.008 0.011

(0.001) (0.004) (0.004) (0.003)
Dem. electoral
experience

– – – !0.001 !0.003 – !0.003 0.000

(0.001) (0.003) (0.003) (0.002)
Opp. electoral
experience

– – – 0.001 0.003 – 0.011 !0.011

(0.001) (0.004) (0.004) (0.003)

Note: Details of data processing in Appendix A. N ¼ 6558 in all regressions. Regressions include a fourth order polynomial in the margin
of victory for the Democrats in election t, with all terms interacted with the Victory, election t dummy variable. Political and electoral
experience is defined in notes to Table 2. Column (6) uses as its dependent variable the residuals from a least squares regression on the
Democrat vote share ðtþ 1Þ on all the covariates. Column (7) uses as its dependent variable the Democrat vote share ðtþ 1Þ minus the
Democrat vote share ðt! 1Þ. Column (8) uses as its dependent variable the Democrat vote share ðt! 1Þ. Estimated standard errors (in
parentheses) are consistent with state–district–decade clustered sampling.

16This notion of using ‘‘as good as randomized’’ variation in treatment from close elections has been utilized in Miguel and Zaidi (2003),
Clark (2004), Linden (2004), Lee et al. (2004), DiNardo and Lee (2004).
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Maimonides’ Rule

Angrist and Lavy look at the effects of school class size on kid’s
outcomes

Maimonides was a twelfth century Rabbinic scholar

He interpreted the Talmud in the following way:

Twenty-five children may be put it charge of one
teacher. If the number in the class exceeds twenty-five
but is not more than forty, he should have an assistant
to help with the instruction. If there are more than
forty, two teachers must be appointed.

This rule has had a major impact on education in Israel

They try to follow this rule so that no class has more than 40
kids



But this means that

If you have 80 kids in a grade, you have two classes with
40 each
if you have 81 kids in a grade, you have three classes with
27 each



That sounds like a regression discontinuity

We can write the rule as

fsc =
es[

int
( es−1

40

)
+ 1
]

Ideally we could condition on grades with either 80 or 81 kids

More generally there are two ways to do this

condition on people close to the cutoff and use fsc as an
instrument
Control for class size in a “smooth” way and use fsc as an
instrument













To estimate the model they use an econometric framework

Yics = β0 + β1Ccs + β2Xics + αs + εics

Now we can’t just put in a school effect because we will loose
too much variation so think of αs as part of the error term

Their data is a bit different because it is by class rather than by
individual-but for this that isn’t a big deal

Angrist and Lavy first estimate this model by OLS to show what
we would get





Next, they want to worry about the fact that Ccs is correlated
with αs + εics

They run instrumental variables using fsc as an instrument.





Do Better Schools Matter? Parental Valuation of
Elementary Education

Sandra Black, QJE, 1999

In the Tiebout model parents can “buy” better schools for their
children by living in a neighborhood with better public schools

How do we measure the willingness to pay?

Just looking in a cross section is difficult: Richer parents
probably live in nicer areas that are better for many reasons



Black uses the school border as a regression discontinuity

We could take two families who live on opposite side of the
same street, but are zoned to go to different schools

The difference in their house price gives the willingness to pay
for school quality.










