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Lets start by reviewing the asymptotic results for OLS when the
data is iid

Without worrying about every detail we assume

Yi =X′iβ + ui

where E (Xiui) = 0 and we do not have perfect multicollinearity
then
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Consistency
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Asymptotic Variance
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Approximation

To take the finite approximation of this we say
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Panel Data

Suppose now that we have data for N units (people, countries,
firms, states,schools...)

However, the complication is that for each unit we have more
than one observation

Assume we have Ti observations for that unit i (typically time
periods, but could be members of a family, students in a
classroom...)

We analyze the the model assuming that

N is large, so consistency occurs as N grows
Ti is small, so as N grows, Ti stays constant



Lets start with the regression model

Yit = X′itβ + uit

We still maintain Assumption 2 that

E(uitXit) = 0

We also continue to assume independence across individuals
but not across time within an individual.



Consistency

What happens if we just run a regression with the data this way

We will still get consistency of the model since
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However, we don’t buy the assumption of no serial correlation
so our asymptotic variance from before is not right

In particular we still believe that error terms are uncorrelated
across individuals, but not within individuals

That is the assumption that

cov(uit, ujt) = 0

for j 6= i seems fine as in the cross section

However the idea that

cov(uit, uiτ ) = 0

for t 6= τ seems crazy, so the assumptions of the classical linear
regression model are not satisfied



How big a problem is this?
Let’s think about this for a simple example

We want to estimate the sample mean which is analogous to
estimating the intercept in a regression model (Xit = 1)

Yit = β0 + uit

Now I want to put some structure on uit.

By far the most common model is the “Random Effects” Model

uit = θi + εit

where

εit is i.i.d. across i and t

θi is i.i.d. across i

they are uncorrelated with each other



Note that θi has a nice interpretation in this model: it is the
“permanent” component of the error term

It stays with an individual their whole life

εit is called the “transitory” component as it lasts just one period

Let

σ2
θ = var(θi)

σ2
ε = var(εit)



Notice that with these models:

If j 6= i, then

cov(uit, ujτ ) = cov(θi + εit, θj + εjτ )

= 0

even if τ = t

var(uit) = var (θi + εit)

= σ2
θ + σ2

ε

for t 6= τ,

cov (uit, uiτ ) = cov(θi + εit, θi + εiτ )

= σ2
θ



Notice that one implication of this is that

cov (uit, uit+1) = cov (uit, uit+10)



The Var/Cov of the error terms is “block diagonal”

Consider the case in which Ti = 2 for all obs


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θ + σ2

ε σ2
θ 0 0 · · · 0 0

σ2
θ σ2

θ + σ2
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0 0 σ2
θ + σ2

ε σ2
θ · · · 0 0

0 0 σ2
θ σ2

θ + σ2
ε · · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · σ2

θ + σ2
ε σ2

θ

0 0 0 0 · · · σ2
θ σ2

θ + σ2
ε
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Now to see why this is important I will do the following

First calculate what you would get if you ignored the panel
data aspect
Show what you should get if you did it correctly
Discuss methods for getting the right answer

Sticking with the Ti = 2 case, the estimator is:

β̂0 =
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2∑
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Yit



To get standard errors we could use our estimate of the
variance we derived before:

̂
Var
(
β̂
)

=

(
N∑

i=1

2∑
t=1

XitX′it

)−1 [ N∑
i=1

2∑
t=1

XitX′itû
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It turn out this is not right



The actual variance of β̂0 is
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So we should get
σ2
θ

N
+
σ2
ε

2N
But if we ignore the panel nature of the data we would get

σ2
θ

2N
+
σ2
ε

2N

Thus what we had before was wrong-but in an intuitive way:

If σ2
θ = 0 then error term only εit which is i.i.d. and we

would be fine
If σ2

ε = 0 then Yi1 = Yi2. We are acting as if we have 2N
obervations, but we really only have N observations
In general it will be somewhere in the middle, but we have
understated the size of our standard errors



So what do we do about this? Generalizing to the regression
case, if I were teaching this course 20 years ago I would have
said:

1 Regress Y on X, that gives a consistent estimate of β
2 Calculate residuals from regression
3 Estimate σ2

θ and σ2
ε from residuals

4 Construct block diagonal variance/covariance matrix from
these estimates

5 Run Feasible GLS



These days the solution is to “cluster” our standard errors
instead

There is a very easy way to think about this to me

We have shown
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then using the Central Limit Theorem we know
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we approximate this as
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])(
N∑

i=1

Ti∑
t=1

XitX′it

)−1



This is a generalization of the heteroskedastic robust standard
errors.

Rather than allowing Xituit to have an arbitrary variance, now
we are allowing [Xi1ui1,Xi2ui2, ...,XiTiuiTi ] to have an arbitrary
variance/covariance matrix



We impose that the Var/Cov of the error terms is “block
diagonal” but thats it

Consider the case in which Ti = 2 for all obs again



σ111 σ112 0 0 · · · 0 0
σ112 σ122 0 0 · · · 0 0

0 0 σ211 σ212 · · · 0 0
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...

...
...

...
. . .

...
...

0 0 0 0 · · · σN11 σN12
0 0 0 0 · · · σN12 σN22


where

σitτ = cov(uit, uiτ )



Lets verify that this gives us the right answer for the random
effect case we discussed above with Ti = 2

Here we just have an intercept so Xi = 1.
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We can implement this using the cluster command in stata:

reg y x, cluster(i)



Fixed Effects

Why does anyone bother to collect panel data?

So far it just seems like a complication

Intuitively it seems like there may be some advantage

There is



Write the model as

Yit = X′itβ + θi + εit

In the random effects model we thought of θi as part of the error
term so we assumed

E (θiXit) = 0

It turns out we don’t need to assume this

We do need to assume that εit is uncorrelated with Xit-actually
a bit stronger: assume that the vector of εit uncorrelated with
the whole vector of Xit for each i (technically this is more than
we need)



For a generic variable Zit define

Z̄i ≡
1
Ti

Ti∑
t=1

Zit

then notice that
Ȳi = X̄′iβ + θi + ε̄i

So
(Yit − Ȳi) = (Xit − X̄i)

′ β + (εit − ε̄i)

We can get a consistent estimate of β by regressing (Yit − Ȳi)
on (Xit − X̄i).

The key thing is we didn’t need to assume anything about the
relationship between θi and Xi



This is numerically equivalent to putting a bunch of individual
fixed effects into the model and then running the regressions

That is, let Dit be a N × 1 vector of dummy variables so that for
the jthelement:

D(j)
it =

{
1 i = j
0 otherwise

and write the regression model as

Yit = Xitβ̂ + D′itδ̂ + ûit

You will get exactly the same β̂ running this regression as
regressing (Yit − Ȳi) on (Xit − X̄i)



Model vs. Estimator

For me it is very important to distinguish the econometric model
or data generating process from the method we use to estimate
these models.

The model is
Yit = Xitβ + θi + uit

We can get consistent estimates of β by regressing Yit on
Xit and individual dummy variables



This is conceptually different than writing the model as

Yit = Xitβ + D′itθ + uit

Technically they are the same thing but:

The equation is strange because notationally the true data
generating process for Yit depends upon the sample
More conceptually the model and the way we estimate
them are separate issues-this mixes the two together



First Differencing

The other standard way of dealing with fixed effects is to “first
difference” the data so we can write

Yit − Yit−1 = (Xit − Xit−1)′ β + εit − εit−1

Note that with only 2 periods this is equivalent to the standard
fixed effect because

Yi2 − Ȳi = Yi2 −
Yi1 + Yi2

2

=
Yi2 − Yi1

2

However, this is not the same as the regular fixed effect
estimator when you have more than two periods



To see how they differ lets think about a simple “treatment
effect” model with only the regressor Tit.

Assume that we have T periods for everyone, and that also for
everyone

Tit =

{
0 t ≤ τ
1 t > τ

Think of this as a new national program that begins at period
τ + 1



The standard fixed effect estimator is
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ȲA =
1

N(T − τ)

N∑
i=1

T∑
t=τ+1

Yit
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The denominator is
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So the fixed effects estimator is just

ȲA − ȲB

Next consider the first differences estimator∑N
i=1
∑T

t=1 (Tit − Tit−1) (Yit − Yit−1)∑N
i=1
∑T

t=2 (Tit − Tit−1)2

=

∑N
i=1 (Yiτ − Yiτ−1)

N
=Ȳτ − Ȳτ−1

Notice that you throw out all the data except right before and
after the policy change.



Fixed Effects Versus Regression

Is fixed effects obviously better than regression (i.e. regressing
Yit on Xit like we talked about before)?

It kind of seems so, in regression we essentially need to
assume that θi is uncorrelated with Xit but for fixed we don’t, so
that sounds obviously better

However its not quite that simple

Suppose that Xit does not vary across time at all: Gender,
education, firm sector of economy, village location, etc

Then (Xit − X̄i) = 0 and we can’t identify that coefficient at all



More generally we can divide data into within variance and
between variance:
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∑
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Thus we can write the sample variance as∑
i

∑
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(
Xit − Xi

)2
+
∑

i

Ti
(
Xi − X

)2

The first part is called “within variance” and the second is called
“between variance”

The fixed effects estimator is sometimes called the within
estimator because it only uses the within variance of Xi for
estimation



Throwing out the between variation in Xi could be bad for two
different reasons

1 It is inefficient. This is particulary apparent in the case in
which Xit does not change in which case you can’t even
estimate it, but if the within variance is very small the
standard errors will be very large

2 It might actually be better variation.
That is

βOLS = β +
cov(Xit, θi + εit)

var(Xit)

βFE = β +
cov(Xit − Xi, εit − εi)

var(Xit − Xi)

We can’t say for sure in which case the bias is worse



Lifecycle Wage Profile

Here is an example where fixed effects make sense.

We want to estimate the age profile-that is how wages vary
across ages for high school men.

We just run a regression of log wages on age dummies using a
short panel and here is what we get
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Problems

Cohort effects
Selection effects

Fixed effects can help with both of these problems



.2
.4

.6
.8

1
Pe

rc
en

t E
m

pl
oy

ed

20 30 40 50 60 70
age

Working Profile From SIPP



2
2.

2
2.

4
2.

6
2.

8

20 30 40 50 60 70
age

Log Wage Mean Log Wage Fixed Effect

Wage Profile from SIPP



Birth Weight

Almond, Chay, and Lee (QJE, 2005)

Their goal is to understand the effects of birth weight on health

hij =α+ βbwij + X′iγ + ai + εij

where

hij is health of newborn j of mother i

bwij is birth weight
ai is mother specific effect



If we just run a regression of hij on bwij we get

β̂OLS ≈β +
cov (bwij,X′iγ)

var (bwij)
+

cov (bwij, ai)

var (bwij)



Solution: use twins

Not always the same because often one has better access
to nutrition
They tend to be smaller to begin with so incidence of low
birth weight is higher

Estimate model as

∆hij =β∆bwij + ∆εij

so assumption that cov (∆bwij,∆εij) = 0 seems quite plausible.



with birth weight as the dependent variable, shows that the
inclusion of gestation variables (columns (2) and (3)) explains
over half of the overall variance (44.43) in birth weight in a pooled
sample of twins.11 Despite the significant contribution of gesta-
tion length to variation in birth weight, the emphasis of the
literature has instead been on IUGR. In a widely cited survey of
research on the determinants of low birth weight, Kramer [1987]
notes that most research focuses on the factors causing IUGR, as
opposed to those causing prematurity. This is perhaps because
the causes of prematurity are less well-understood. For example,
interventions targeted at preventing premature birth, including
enhanced prenatal care and nutritional interventions, have been
found to be ineffective [Goldenberg and Rouse 1998].

11. Since gestation length is measured at the level of weeks, 19.08 in the
third column is arguably an upper bound on the residual variation in birth weight
remaining after controlling for gestation length fixed effects.

TABLE I
COMPONENTS OF VARIANCE FOR BIRTH WEIGHT AND OUTCOMES AMONG TWINS

Dependent variable

Mean squared error in OLS
regressions Ratio

(1) (2) (3) (4) (4)/(3)

1989–1991 U. S. twins
Birth weight 44.434 21.307 19.080 7.535 0.40
Mortality (1-year) 0.0356 0.0287 0.0219 0.0149 0.68
Mortality (1-day) 0.0183 0.0152 0.0102 0.0046 0.45
Mortality (28-day) 0.0283 0.0224 0.0158 0.0090 0.57
5-min. APGAR 1.9254 1.4078 1.1744 0.6510 0.55
Ventilator !30 min. 0.0370 0.0348 0.0338 0.0102 0.30

1995–2000 NY-NJ twins
Hospital costs 14.410 — — 2.958 —

Controls for
Gestation length (linear) No Yes — —
Gestation length dummies No No Yes —
Mother fixed effects No No No Yes

The hospital cost data are from 1995–2000 annual Healthcare Cost and Utilization Project (HCUP) State
Inpatient Database for New York and New Jersey. All other data come from the National Center of Health
Statistics 1989–1991 Linked Infant Birth-Death Detail Files. Columns (1)–(4) provide the means squared
error from OLS regressions that include no controls, a linear control for gestation length (in weeks), gestation
length fixed effects, and mother fixed effects, respectively. The final column provides the ratio of column (4)
to column (3); that is, the fraction of overall variation in outcomes, for fixed gestation lengths, that is due to
within-twin-pair differences instead of between-twin-pair differences. The hospital costs data do not contain
gestation lengths. Birth weight is measured in 100s of grams, and hospital costs are in 10,000s of dollars. The
sample size for birth weight, mortality, and assisted ventilation is 187,948. The sample size for 5-minute
APGAR score is 158,700, and the sample size for hospital costs is 44,410.
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TABLE III
POOLED OLS AND TWINS FIXED EFFECTS ESTIMATES OF THE EFFECT OF BIRTH WEIGHT

Birth weight
coefficient

Including congenital
anomalies

Excluding congenital
anomalies

Pooled OLS Fixed effects Pooled OLS Fixed effects

Hospital costs !29.95 !4.93 — —
(in 2000 dollars) (0.84) (0.44) — —

[!0.506] [!0.083] — —
Adj. R2 0.256 0.796 — —
Sample size 44,410 44,410 — —

Mortality, 1-year !0.1168 !0.0222 !0.1069 !0.0082
(per 1000 births) (0.0016) (0.0016) (0.0017) (0.0012)

[!0.412] [!0.078] [!0.377] [!0.029]
Adj. R2 0.169 0.585 0.164 0.629
Sample size 189,036 189,036 183,727 183,727

Mortality, 1-day !0.0739 !0.0071 !0.0675 !0.0003
(per 1000 births) (0.0015) (0.0010) (0.0015) (0.0006)

[!0.357] [!0.034] [!0.326] [!0.001]
Adj. R2 0.132 0.752 0.127 0.809
Sample size 189,036 189,036 183,727 183,727

Mortality, neonatal !0.105 !0.0154 !0.0962 !0.0041
(per 1000 births) (0.0016) (0.0013) (0.0016) (0.0008)

[!0.415] [!0.061] [!0.38] [!0.016]
Adj. R2 0.173 0.683 0.169 0.745
Sample size 189,036 189,036 183,727 183,727

5-min. APGAR score 0.1053 0.0117 0.1009 0.0069
(0–10 scale,
divided by 100)

(0.0011) (0.0012) (0.0011) (0.0011)
[0.506] [0.056] [0.485] [0.033]

Adj. R2 0.255 0.663 0.248 0.673
Sample size 159,070 159,070 154,449 154,449

Ventilator incidence !0.0837 !0.0039 !0.081 !0.002
(per 1000 births) (0.0015) (0.0017) (0.0015) (0.0016)

[!0.228] [!0.011] [!0.221] [!0.005]
Adj. R2 0.052 0.706 0.05 0.716
Sample size 189,036 189,036 183,727 183,727

Ventilator !30 min. !0.0724 0.0006 !0.0701 0.0016
(per 1000 births) (0.0013) (0.0013) (0.0014) (0.0012)

[!0.252] [0.002] [!0.244] [0.006]
Adj. R2 0.063 0.724 0.062 0.739
Sample size 189,036 189,036 183,727 183,727

See notes to Tables I and II. The data come from the 1989–1991 Linked Birth-Infant Death Detail Files and
the 1995–2000 HCUP Inpatient Database for New York and New Jersey. The first two columns use samples that
include twin pairs in which one or both twins either had a congenital anomaly at birth or whose cause of death
was a congenital anomaly. The second two columns exclude these twin pairs from the analysis. The HCUP data
do not contain information on congenital anomalies. The standard errors are in parentheses and are corrected for
heteroskedasticity and within-twin-pair correlation in the residuals. For APGAR score, the coefficients are scaled
up by 100. Numbers in square brackets indicate effect size in terms of standard deviations of the outcome per one
standard deviation in birth weight (667 grams). There are no other variables included in the regressions.
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To look at things beyond linear case they divide the data into
K = 200 different bins with

Dk
ij = 1 (ak ≤ bwij < ak+1)

Then use the fixed effect regression model

hij =α+

K∑
k=1

βkDk
ij + X′iγ + ai + εij



FIGURE Ia
Hospital Costs and Birth Weight

Note: 1995–2000 NY/NJ Hospital Discharge Microdata.

FIGURE Ib
Infant Mortality (1-year) and Birth Weight

Note: Linked Birth-Death certificate data, 1989.
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FIGURE Ia
Hospital Costs and Birth Weight

Note: 1995–2000 NY/NJ Hospital Discharge Microdata.

FIGURE Ib
Infant Mortality (1-year) and Birth Weight

Note: Linked Birth-Death certificate data, 1989.
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FIGURE IIa
Five-minute APGAR Score and Birth Weight

Note: Linked Birth-Death certificate data, 1989.

FIGURE IIb
Assisted Ventilation (30 minutes or more) and Birth Weight

Note: Linked Birth-Death certificate data, 1989.
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FIGURE IIa
Five-minute APGAR Score and Birth Weight

Note: Linked Birth-Death certificate data, 1989.

FIGURE IIb
Assisted Ventilation (30 minutes or more) and Birth Weight

Note: Linked Birth-Death certificate data, 1989.
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