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Abstract

Many countries use college-major-speci�c admissions policies that require a

student to choose a college-major pair jointly. Given the potential of student-

major mismatches, we explore the equilibrium e¤ects of postponing student

choice of major. We develop a sorting equilibrium model under the college-major-

speci�c admissions regime, allowing for match uncertainty and peer e¤ects. We

estimate the model using Chilean data. We introduce the counterfactual regime

as a Stackelberg game in which a social planner chooses college-speci�c admis-

sions policies and students make enrollment decisions, learn about their �ts to

various majors before choosing one. Our estimates indicate that switching from

the baseline to the counterfactual regime leads to a 1% increase in average student

welfare and that it is more likely to bene�t female, low-income and/or low-ability

students.
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1 Introduction

In countries such as Canada and the U.S., students are admitted to colleges without

declaring their majors until later in their college life.1 Peer students in the same classes

during early college years may end up choosing very di¤erent majors. In contrast,

many (if not most) countries use college-major-speci�c admissions rules. A student

is admitted to a speci�c college-major pair and attends classes with peers (mostly)

from her own major. We label the �rst system where students choose majors after

enrollment as Sys.S (for sequential), and the second system where students have to

make a joint college-major choice as Sys.J (for joint).

Which system is better for the same population of students? This is a natural

and policy-relevant question, yet one without a simple answer. To the extent that

college education is aimed at providing a society with specialized personnel, Sys.J

may be better: it allows for more specialized training, and maximizes the interaction

among students with similar comparative advantages. However, if students are uncer-

tain about their major-speci�c �ts, Sys.J may lead to mismatch problems. E¢ ciency

comparisons across these two admissions systems depend on the degree of uncertainty

faced by students, the importance of peer e¤ects, and student sorting behavior that

determines equilibrium peer quality. Simple cross-system comparisons are unlikely to

be informative because of unobserved di¤erences between student populations under

di¤erent systems. The fundamental di¢ culty, that one does not observe the same

population of students under two di¤erent systems, has prevented researchers from

conducting e¢ ciency comparisons and providing necessary information for policy mak-

ers contemplating admissions policy reforms. We take a �rst step in this direction, via

a structural approach.

We develop a model of student sorting under Sys.J, allowing for uncertainties over

student-major �ts and endogenous peer quality that a¤ects individual outcomes. Our

�rst goal is to understand the equilibrium sorting behavior among students in Sys.S.

Our second goal is to examine changes in student welfare and the distribution of ed-

ucational outcomes if, instead of college-major-speci�c, a college-speci�c admissions

regime is adopted. We apply the model to the case of Chile, where we have obtained

detailed micro-level data on college enrollment and on job market returns. Although

our empirical analysis focuses on the case of Chile, our framework can be easily adapted

to other countries with similar admissions systems.

1With the exception of Quebec province.
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In the model, students di¤er in their (multi-dimensional) abilities and educational

preferences; and they face uncertainty about their suitability for various majors. The

cost of and return to college education depend not only on one�s own characteristics,

but may also on the quality of one�s peers. In the baseline case (Sys.J), there are two

decision periods. First, a student makes a college-major enrollment decision, based

on her expectations about peer quality across di¤erent programs and about how well

suited she is to various majors. The choices of individual students, in turn, determine

the equilibrium peer quality. In the second period, a college enrollee learns about her

�t to the chosen major and decides whether or not to continue her studies.

In our main set of counterfactual policy experiments (Sys.S), a planner chooses

optimal college-speci�c, rather than college-major-speci�c, admissions policies; a stu-

dent makes an enrollment decision, chooses her course-taking intensity across di¤erent

majors in the �rst college period, and subsequently chooses her major. Taking into ac-

count the externality arising from peer e¤ects, the planner�s optimal admissions policy

guides student sorting toward the maximization of their overall welfare.

Several factors are critical for the changes in equilibrium outcomes as Sys.J switches

to Sys.S. The �rst factor is the degree of uncertainty students face about their major-

speci�c �ts, which we �nd to be nontrivial. Indeed, postponing the choice of majors

increases the college retention rate from 75% in the baseline to 86% under our pre-

ferred speci�cation of Sys.S. Even under an overly pessimistic speci�cation, the college

retention rate increases to over 78%.

Second, in contrast to Sys.J, where peer students are from the same major upon

college enrollment, Sys.S features a more dispersed peer composition in �rst-period

classes. While students di¤er in their comparative advantages, some students have

absolute advantages in multiple majors, and some majors have superior student quality.

With the switch from Sys.J to Sys.S, on the one hand, the quality of �rst-period peers

in "elite" majors will decline; on the other hand, "non-elite" majors will bene�t from

having better students in their �rst-period classes. The overall e¢ ciency depends on,

among other factors, which of these two e¤ects dominates. Our estimation results show

that for "elite" majors, own ability is more important than peer ability in determining

one�s market return, while the opposite is true for "non-elite" majors, suggesting that

the second e¤ect may dominate.

Finally, as students spend time trying di¤erent majors, specialized training is de-

layed. Welfare comparisons vary with how costly this delay is. Average student welfare
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will increase by 3%; if delayed specialization under Sys.S does not reduce the amount

of marketable skills one obtains in college compared to Sys.J. At the other extreme,

if the �rst period in college contributes nothing to one�s skills under Sys.S, and if all

students have to make up for this loss by extending their college life accordingly, a 1%

loss in mean welfare will result. In a more realistic setting, we make the extension of

college life a function of a student�s course-taking decision in the �rst period, such that

a shorter extension is needed for a student who has taken more courses in her major.

Under this speci�cation, student welfare increases by 1% compared to Sys.J. Moreover,

female, low-income and/or low-ability students are more likely to bene�t from such a

switch, at the cost the most advantaged students.

Previous literature has established non-trivial uncertainty faced by students when

making schooling choices. For example, Cunha, Heckman and Navarro (2005) decom-

poses the variability of earnings into ex-ante heterogeneity and uncertainty. They �nd

that uncertainty accounts for about 40% of the total variability in returns to schooling.

Stange (2012) �nds that 14% of the total value of the opportunity to attend college

is the option value arising from sequential schooling decisions made in the presence of

uncertainty and learning about academic ability.

Closely related to our paper are studies that emphasize the multi-dimensionality of

human capital with the presence of uncertainty. For example, Altonji (1993) introduces

a model in which college students learn their preferences and probabilities of completion

in two �elds of study. Arcidiacono (2004) estimates a structural model of college and

major choice in the U.S. in which students learn about their abilities via test scores in

college before settling into their majors. As in our paper, he allows for peer e¤ects.2

Focusing on individual decisions, he treats peer quality as exogenous.3 Silos and Smith

(2012) estimate a model of human capital portfolio choices by agents who know their

abilities in skill acquisition but face uncertainties over their �ts to di¤erent occupations.

Kinsler and Pavan (2014) estimate a model with both skill uncertainty and speci�city

2There is a large and controversial literature on peer e¤ects. Methodological issues are discussed in
Manski (1993), Mo¢ tt (2001), Brock and Durlauf (2001), and Blume, Brock, Durlauf and Ioannides
(2011). Limiting discussion to recent research on peer e¤ects in higher education, Sacerdote (2001)
and Zimmerman (2003) �nd peer e¤ects between roommates on grade point averages. Betts and
Morell (1999) �nd that high-school peer groups a¤ect college grade point average. Arcidiacono and
Nicholson (2005) �nd no peer e¤ects among medical students. Dale and Krueger (2002) have mixed
�ndings.

3Stinebrickner and Stinebrickner (2011) use expectation data to study student�s choice of major.
Altonji, Blom and Meghir (2012) provides a comprehensive survey of the literature on the demand
for and return to education by �eld of study in the U.S.
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of the return to schooling, where one determinant of wage rates is how related one�s

job is to his major.

While this literature has focused on individual decision problems, our goal is to

study the educational outcomes for the population of students, and to provide predic-

tions about these outcomes under counterfactual policy regimes. One cannot achieve

this goal without modeling student sorting in an equilibrium framework, because peer

quality may change as students re-sort themselves under di¤erent policy regimes. In

its emphasis on equilibrium structure, our paper is related to Epple, Romano and Sieg

(2006) and Fu (2014). Both papers study college enrollment in a decentralized market,

where colleges compete for better students.4 Given our goal of addressing e¢ ciency-

related issues, and the fact that colleges in Sys.J countries are often coordinated, we

study a di¤erent type of equilibrium, where the players include students and a single

planner. In this centralized environment, we abstract from the determination of tu-

ition, which is likely to be more important in decentralized market equilibria studied

by Epple, Romano and Sieg (2006) and Fu (2014). Instead, we emphasize aspects of

college education that are absent in these two previous studies but are more essential to

our purpose: the multi-dimensionality of abilities and uncertainties over student-major

�ts. Moreover, we relate college education to job market outcomes, which is absent in

both previous studies.

Studies comparing across di¤erent admissions systems are relatively scarce. Ofer

Malamud has a series of papers that compare the labor market consequences of the

English (Sys.J) and Scottish (Sys.S) systems. Malamud (2010) �nds that average earn-

ings are not signi�cantly di¤erent between the two countries, while Malamud (2011)

�nds that individuals from Scotland are less likely to switch to an unrelated occupa-

tion compared to their English counterparts, suggesting that the bene�ts to increased

match quality are large enough to outweigh the greater loss in skills from specializing

early. These �ndings contribute to our understanding of the relative merits of the two

systems, but with the caveat that students in two countries may di¤er in unobservable

ways. Our paper compares the relative e¢ ciency of alternative systems for the same

population of students.

Also related to our work, Hastings, Neilson and Zimmerman (2013) (HNZ) esti-

mate the returns to postsecondary admissions, using regression discontinuities from

the centralized admissions system in Chile. They �nd highly heterogenous returns by

4Epple, Romano and Sieg (2006) model equilibrium admissions, �nancial aid and enrollment. Fu
(2013) models equilibrium tuition, applications, admissions and enrollment.
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selectivity, �eld of study and course requirements. The authors conclude that frictions

exist in the matching between students and postsecondary degrees, including strin-

gent admissions cuto¤s for high-return programs, non-pecuniary bene�ts from di¤erent

programs and misinformation about program-speci�c returns. Our paper complements

HNZ by explicitly modeling student college-major choices in an equilibrium framework,

allowing for heterogenous program-speci�c pecuniary and non-pecuniary returns, peer

e¤ects and uncertainty over the quality of student-major matches.

The rest of the paper is organized as follows: Section 2 provides some background

information about education in Chile, which guides our modeling choices. Section 3

lays out the model. Section 4 describes the data. Section 5 describes the estimation

and identi�cation. Section 6 presents the empirical results. Section 7 conducts coun-

terfactual policy experiments. The last section concludes the paper. The appendix

contains additional details and tables.

2 Background: Education in Chile

There are three types of high schools in Chile: scienti�c-humanist (regular), technical-

professional (vocational) and artistic. Most students who intend to go to college attend

the �rst type. In their 11th grade, students choose to follow a certain academic track

based on their general interests, where a track can be humanities, sciences or arts.

From then on, students receive more advanced training in subjects corresponding to

their tracks.

The higher education system in Chile consists of three types of institutions: uni-

versities, professional institutes, and technical formation centers. Universities o¤er

licentiate degree programs and award academic degrees. In 2011, total enrollment

in universities accounted for over 60% of all Chilean students enrolled in the higher

education system. There are two main categories of universities: the 25 traditional

universities and the over 30 non-traditional private universities. Traditional universi-

ties comprise the oldest and most prestigious two universities, and institutions derived

from them. They are coordinated by the Council of Chancellors of Chilean Universities

(CRUCH), and receive partial funding from the state. In 2011, traditional universities

accommodated about 50% of all college students pursuing a bachelor�s degree.

In our analysis, colleges refer only to the traditional universities for several reasons.

First, we wish to examine the consequences of a centralized reform to the admissions

5



process. This experiment is more applicable to the traditional universities, which

are coordinated and state-funded, and follow a single admissions process. Second,

non-traditional private universities are usually considered inferior to the traditional

universities; and most of them follow (almost) open-admissions policies. We consider

it more appropriate to treat them as part of the outside option for students in our

model. Finally, we have enrollment data only for traditional universities.

The traditional universities employ a single admission process: the University Se-

lection Test (PSU), which is similar to the SAT test in the U.S. The test consists of

two mandatory exams, math and language, and two additional speci�c exams, sciences

and social sciences. Taking the PSU involves a �xed fee but the marginal cost of each

exam is zero.5 Students following di¤erent academic tracks in high school will take

either one or both speci�c exam(s). Together with the high school GPA, various PSU

test scores are the only components of an index used in the admissions process. This

index is a weighted average of GPA and PSU scores, where the weights di¤er across

college programs. College admissions are college-major speci�c. A student must choose

a college-major pair (program) jointly. A student is eligible for a program if her test

score index is above the program�s cuto¤. After the PSU test, a common centralized

application procedure is used to allocate students to di¤erent programs. A student

submits an ordered list of up to eight programs. A student is admitted to and only

to the program she listed the highest among all the programs she applied for and is

eligible for. Because the maximum number of programs one can apply for is smaller

than the total number of programs, a student may refrain from listing a program she

prefers but is ineligible for. However, it is always optimal for one to reveal her true

preferences for programs she is eligible for, i.e., to list her most preferred program �rst,

her second most preferred program second, etc. An applicant can either enroll in the

program to which she is admitted or opt for the outside option. As such, we can infer

that the program in which a student is enrolled is the one she prefers most among all

programs she is eligible for and the outside option. Similarly, a student (applicant or

not), who is eligible for at least one program but is enrolled in none, prefers the out-

side option over all programs she is eligible for. Given this logic, we model a student�s

choice among all programs she is eligible for and the outside option without modeling

the applications procedure.6

5In 2011, the fee was 23; 500 pesos (1 USD was about 485 Chilean pesos in 2011).
6The fact that some students were ineligible for some particular programs makes it impossible

to identify their preferences for these programs non-parametrically, an issue we will discuss in the
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Transfers across programs in CRUCH are rare.7 Besides a minimum college GPA

requirement that di¤ers across programs, typical transfer policies require that a student

have studied at least two semesters in her former program and that the contents of her

former studies be comparable to those of the program she intends to transfer to. In re-

ality, the practice is even more restrictive. According a report by the OECD, "students

must choose an academic �eld at the inception of their studies. With a few exceptions,

lateral mobility between academic programmes is not permitted, even within institu-

tions. This factor, combined with limited career orientation in high school, greatly

in�uences dropout rates in tertiary education."8 The same report also notes that the

highly in�exible curriculum design further limits the mobility between programs.9 If a

student dropped out in order to re-apply to other programs in traditional universities,

she must re-take the PSU test.10

It is worth noting that the institutional details in Chile are similar to those in many

other countries, such as many Asian countries (e.g., China and Japan) and European

countries (e.g., Spain and Turkey), in terms of the specialized tracking in high school,

a single admissions process and rigid transfer policies. Appendix C provides further

descriptions of the systems in these other countries.

3 Model

This section presents our model of Sys.J, guided by the institutional details described

above. A student makes her college-major choice, subject to college-major-speci�c

admissions rules. After the �rst period in college, she learns about her �tness for her

major and decides whether or not to continue her studies.

estimation section.
7The rigidity of transfer policies in private colleges di¤ers by college quality. Top private colleges use

similarly rigid transfer policies while lower-ranked private colleges use more �exible transfer policies.
8Reviews of National Policies for Education: Tertiary Education in Chile (2009) OECD, page 146.
9"A review of the curricular grid shows a rigid curriculum with very limited or no options (electives

classes) once the student has chosen an area of specialisation. In some cases, �exibility is incorporated
by making available a few optional courses within the same �eld of study." page 143.
10This was true for cohorts in our sample. A new policy was announced recently that allows students

to use one-year-old PSU test results for college application.
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3.1 Primitives

There is a continuum of students with di¤erent gender, family income (y), abilities (a)

and academic interests. There are J colleges, each with M majors. Let (j;m) denote

a program. Admissions are subject to program-speci�c standards. An outside option

is available to all students. To save notation, we omit student subscript i.

3.1.1 Student Characteristics

A student comes from one of the family income groups y 2 flow; highg ; 11 has multi-
dimensional knowledge in subjects such as math, language, social science and science,

summarized by s = [s1; s2; :::; sS], the vector of test scores. Various elements of such

knowledge are combined with the publicly known major-speci�c weights to form major-

speci�c (pre-college) ability,

am =
SX
l=1

!mlsl; (1)

where !m = [!m1; :::; !mS] is the vector of major-m-speci�c weights and
PS

l=1 !ml = 1.

!m�s di¤er across majors: for example, an engineer uses more math and less language

than does a journalist. Notice that abilities are correlated across majors as multi-

dimensional knowledge is used in various majors.

Given the di¤erent academic tracks they follow in high school, some students will

consider only majors that emphasize knowledge in certain subjects, while some are

open to all majors. Such general interests are re�ected in their abilities.12 Let Ma be

the set of majors within the general interest of a student with ability vector a.13 Denote

student characteristics that are observable to the researcher, i.e., the vector of abilities,

family income and gender by the vector x � [a; y; I (female)] ; and its distribution by
Fx (�).
11y = low if family income is lower than the median among Chilean households.
12Without increasing the test fee, taking both the science and the social science exams will only

enlarge a student�s opportunity set. A student who does not take the science exam will not be
considered by programs that require science scores, but her admissions to programs that do not
require science scores will not be a¤ected even if she scores poorly in science. However, some students
only take either the science or the social science exam; we view this as indication of their general
academic interests. We treat students�preferences and abilities as pre-determined.
13Letting am = NA if a student does not take the subject test required by major m; Ma is given by

Ma = fm 2 f1; :::;Mg : am 6= NAg:
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3.1.2 Course Bundles, Skills and Wages

The building blocks for skill formation are various categories of courses n = 1; :::; N .

Di¤erent college-major programs use di¤erent bundles of courses, which makes the

production of skills college-major-speci�c. Let �jmn 2 [0; 1] be the weight on course
category n required by program (j;m). Let �jm = f�jmngNn=1 be the vector of course
weights, such that

P
n �jmn = 1 for each (j;m) : The technological di¤erences between

two programs are governed by their bundlings
�
�jm
�
. The vector f�jmngMm=1 re�ects

how general Course n is. At the two extremes, a course is completely general if �jmn > 0

for all m�s; and a course is purely major-speci�c if �jmn = 0 for all but one major.

Given the course requirement
�
�jm
�
in program (j;m) ; a student�s skill attainment

depends on her own major-speci�c ability (am) ; the quality of her peers (Ajm) and how

e¢ cient she is at various courses, where peer quality Ajm is the average major-m ability

of enrollees in (j;m) :14 A student learns how e¢ cient she is in each course type after

being exposed to it. Let �n be the student�s e¢ ciency in course n. We assume that

�n�s are independent of each other, each drawn from N
�
0; �2�n

�
and that � = f�ngn is

i.i.d. across students.15 Notice that although �n�s are independent, a student�s �tness

for di¤erent courses are correlated because her ability a¤ects her skill formation in all

courses.

The human capital production function in (j;m) is given by16

lnhm
�
am; Ajm; �; �jm

�
= 'm ln (Ajm) +

X
n

�jmn [n ln (am) + �n] : (2)

The �rst term summarizes the contribution of one�s peers, governed by the major-

speci�c parameter 'm � 0: The second part summarizes the importance of own ability
and e¢ ciency, which is a sum of the contribution of each course required by program

(j;m).

Wages are major-speci�c functions of one�s human capital (hence of am; Ajm; �; �jm),

14Peer quality may a¤ect market returns via di¤erent channels, such as human capital production,
statistical discrimination, social networks, etc. Our data do not allow us to distinguish among var-
ious channels. For ease of illustration, we describe peer quality in the framework of human capital
production. Arguably, the entire distribution of peer ability may matter. For feasibility reasons, we
follow the common practice in the literature and assume that only the average peer quality matters.
15In our empirical analyses, similar courses are categorized into one group n; which makes the

assumption that �n�s are independent across course groups weaker.
16Notice that hm (�) represents the total amount of marketable skills. As such, hm (�) may be a

combination of pure major-speci�c skill and general skill.
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work experience (�) and gender, with a transitory idiosyncratic wage shock �� : The

wage for a graduate from program (j;m) is given by

ln
�
wm
�
� ; x; Ajm; �; �jm; ��

��
= �0m + �1m� � �2m�

2 + �3mI(female) (3)

+ ln(hm
�
am; Ajm; �; �jm

�
) + �� ;

where �� is i.i.d. normal with standard deviation �� .

Discussion We model various courses as the building blocks of human capital as a

parsimonious way to capture the following important features: 1) The ex-ante uncer-

tainties over a student�s �tness for di¤erent programs are naturally correlated across

programs that have overlapping course requirements. The correlation increases with

the degree of course overlapping between two programs. 2) Di¤erent programs involve

di¤erent degrees of uncertainty, depending on the way courses are bundled.17 For ex-

ample, a major (e.g., medicine) with a high concentration on one particular type of

courses is riskier than a major (e.g., education) that bundles courses in a more di-

versi�ed way. 3) As we will see in the data, course bundlings (�) vary mainly across

majors, re�ecting the fundamental di¤erences between, for example, the training of a

journalist and that of an engineer. 4) Given the same major, colleges di¤er in their

course requirements, which, together with peer quality, leads to di¤erent returns to

education across colleges.

3.1.3 Consumption Values and Costs

The per-period non-pecuniary consumption value of a program varies with gender, own

ability and peer ability as follows

vjm(x; �; Ajm) = �mI(female)+�1mam+�2ma
2
m+�3mAjm+�4(Ajm�am)2+ �jm: (4)

The mean major-speci�c consumption values for males are set to zero, and �m is the

mean major-m value for females, re�ecting the possibility that some majors may appeal

more to females than to males. �1m and �2m measure how consumption values in major

m change with one�s major-speci�c ability.18 For example, an individual with higher

17To see this, notice that the uncertain part of the human capital production in program (j;m) is

given by
P

n �jmn�n s N
�
0;
P

n �
2
jmn�

2
�n

�
; hence the variance depends on

�
�jmn

	
n
:

18In the estimation, we restrict �1m � 0 and �2m = �2 for all m.
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ability am may �nd it more enjoyable to study in majorm and work in major-m related

jobs. �3m captures the major-speci�c e¤ect of peer quality Ajm on one�s consumption

value: it may be more challenging or enjoyable to have higher-ability peers, which

di¤ers across majors. The second last term allows for the possibility that it might be

more/less enjoyable to have peers whose ability is similar to one�s own. Finally, �jm
represents permanent idiosyncratic tastes, drawn from the distribution F� (�). Tastes
are i.i.d. across all students, but each individual student�s tastes are correlated across

majors within a college, and across colleges given the same major.19

Let pjm be the tuition and fee for program (j;m) : The annual monetary costs of

attending program (j;m) is governed by20

Cjm(x) = pjm +
�
c1pjm + c2p

2
jm

�
I(y = low): (5)

We allow the same tuition level to have di¤erent cost impacts on students from low

family income group I (y = low) to capture possible credit constraints.

3.1.4 Timing

There are three stages in this model.

Stage 1: Students make college-major enrollment decisions:

Stage 2: A college enrollee in major m observes her e¢ ciency shocks e�jm and chooses
to stay or to drop out at the end of the �rst period in college, where

e�jm � ��nj�jmn > 0	Nn=1 (6)

is the subvector of a student�s e¢ ciency levels in courses required by (j;m).21 Student

choice is restricted to be between staying and dropping out, which is consistent with

the Chilean practice mentioned in Section 2. Later in a counterfactual experiment, we

explore the gain from more �exible transfer policies.

Stage 3: Stayers study one more period in college and then enter the labor market.

The following table summarizes the information at each decision period.

19Students�tastes have been shown to have major impacts on their choices of majors, e.g., Arcidi-
acono (2004) and Wiswall and Zafar (2014).
20Financial aid from CRUCH colleges to students is extremely rare.
21We also assume that an enrollee fully observes her e¢ ciency in her major by the end of Stage 2

(2 years in college). Without information on student performance in college, it is infeasible to allow
for gradual learning.
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Information Set: Sys.J

Stage Student Researcher

1: Enrollment x; � x

2: Stay/Drop out x; �;e�jm x

Remark 1 We have assumed away ex-ante unobserved ability heterogeneity due to
the non-trivial complications it will create for the estimation.22 Findings from previ-

ous studies suggest that biases from the omission of such heterogeneity are likely to

be small. For example, in Arcidiacono (2004), results are similar with and without

unobserved student types. Hastings, Neilson and Zimmerman (2013) �nd evidence of

enrollee selection on absolute advantages but no evidence of selection on comparative

advantages. Comparative advantages are the most relevant to our policy experiments,

which involve mainly the re-distribution of students across di¤erent majors.

3.2 Student Problem

This subsection solves the student�s problem backwards.23

3.2.1 Continuation Decision

After the �rst college period, an enrollee in (j;m) observes her e¢ ciency vector e�jm,
and decides whether to continue studying or to drop out. Let Vd (x) be the value

of dropping out, a function of student characteristics.24 Given peer quality Ajm; a

student�s second-period problem is

22In particular, one would no longer observe the equilibrium peer abilities, or which equilibrium was
realized among the set of potential equilibria.
23To ease the notation, we present the model as if each period in college lasts one year. In practice,

we treat the �rst two years in college as the �rst college period in the model, and the rest of college
years as the second period, which di¤ers across majors. Students�value functions are adjusted to be
consistent with the actual time framework. See the Appendix A2.1 for details.
24Ideally, one would model the dropout and the outside options in further detail, by di¤erentiating

various choices within the outside option, e.g., working, re-taking the PSU test and re-applying the
next year, or attending an open admissions private college. Unfortunately, we observe none of these
details. In order to make the most use of the data available, we model the values of the dropout and the
outside options as functions of student characteristics. Given the functional form assumptions, these
value functions, hence student welfare, are identi�ed up to a constant because 1) we have normalized
the non-pecuniary value of majors to zero for males and 2) a student�s utility is measured in pesos
and we observe wages.
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ujm(x; �;e�jmjAjm) =
max

( 
vjm(x; �; Ajm)� Cjm (x)+PT

� 0=3 �
� 0�2 �E�wm �� � 3; x; Ajm; �; �jm; �)�+ vjm(x; �; Ajm)

� ! ; Vd (x)) :
(7)

If the student chooses to continue, she will stay one more period in college, obtaining

the net consumption value vjm(x; �; Ajm)�Cjm (x) ; and then enjoy the monetary and
consumption value of her choice after college from period 3 to retirement period T = 45;

discounted at rate �. Let �2jm(x; �;e�jmjAjm) = 1 if an enrollee in program (j;m) chooses
to continue in Stage 2, and 0 otherwise.

Remark 2 We restrict Vd (x) to be the same regardless of one�s prior program, because
we do not have the data that would allow us to identify this value at a more disaggregated

level.25 For a dropout, the net bene�t from going to college will be captured in the in-

college net consumption value minus her tuition cost. This assumption rules out the

case where partial training is more useful in some majors than in others. In the current

speci�cation, these di¤erences will be absorbed in student�s major-speci�c preferences

and e¤ort costs.

3.2.2 College-Major Choice

Under the Chilean system, program (j;m) is in a student�s choice set if only if am � a�jm;

the (j;m)-speci�c admissions cuto¤. Given the vector of peer quality in every program

A � fAjmgjm, a student chooses the best among the programs she is eligible for and
25Aggregate statistics show that most students who drop out of CRUCH universities remain out

of the higher education system. For example, among those who entered CRUCH between 2008 and
2011 and later dropped out, within two years after they dropped out, about 18% enrolled in private
colleges, 12% enrolled in non-college higher education institutes (e.g., technical formation centers),
and 70% were not enrolled in the higher education system at any point in those two years.
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the outside option with value V0 (x),26 i.e.,

U(x; �ja�; A) = max
(

max
(j;m)jam�a�jm

(
�Ee�m(ujm(x; �;e�jmjAjm))
+vjm(x; �; Ajm)� Cjm (x)

)
; V0 (x)

)
: (8)

Let �1jm(x; �ja�; A) = 1 if program (j;m) is chosen in Stage 1. For a student, the

enrollment choice is generically unique.

3.3 Sorting Equilibrium

De�nition 1 Given cuto¤s a�; a sorting equilibrium consists of a set of student en-

rollment and continuation strategies
�
�1jm(x; �ja�; �); �2jm(x; �;e�jmj�)	jm ; and the vector

of peer quality A = fAjmgjm ; such that27

(a) �2jm(x; �;e�jmjAjm) is an optimal continuation decision for every (x; �;e�jm);
(b)
�
�1jm (x; �ja�; A)

	
jm
is an optimal enrollment decision for every (x; �) ;

(c) A is consistent with individual decisions such that, for every (j;m) ;

Ajm =

R
x

R
�
�1jm(x; �ja�; A)amdF� (�) dFx(x)R

x

R
�
�1jm(x; �ja�; A)dF� (�) dFx(x)

: (9)

A sorting equilibrium can be viewed as a �xed point of an equilibrium mapping

from the support of peer quality A to itself. Appendix B4 proves the existence of an

equilibrium in a simpli�ed model. Appendix A3 describes our algorithm to search for

26The value of the outside option and that of dropout depend on one�s test scores (s) and one�s
family income (y) ; both of which are elements in x. We assume that the intercepts of outside values
di¤er across income groups, and that the value of dropout is proportional to the value of the outside
option:

V0 (x) =
TX

� 0=1

��
0�1

"
LX
l=1

�ls
l + �01(1 + �02I(y = low))

#
;

Vd (x) = {V0 (x) :

27A sorting equilibrium takes the admissions cuto¤s as given. We choose not to model the cuto¤
rules under the status quo (Sys.J) because our goal is to consider a di¤erent admissions regime (Sys.S)
and compare it with the status quo. For this purpose, we need to understand student sorting and
uncover the underlying student-side parameters, which can be accomplished by estimating the sorting
equilibrium model without modeling the cuto¤s. We also need to model how the admissions policies
are chosen under Sys.S, which we do in the counterfactual experiments.
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equilibria, which we always �nd in practice.28

4 Data

4.1 Data Sources and Sample Selection

Our �rst data source is the Chilean Department of Evaluation and Educational Testing

Service, which records the PSU scores and high school GPA of all test takers and the

college-major enrollment information for those enrolled in traditional universities. We

obtained micro-level data for the 2011 cohort, consisting of 247; 360 PSU test takers.

We focus on the 159; 365 students who met the minimum requirement for admission

to at least one program and who were not admitted based on special talents such as

athletes.29 Most of these students did not enroll in any of the traditional universities,

i.e., they have chosen the outside option in our model. From the 159; 365 students, we

draw 10; 000 students as our �nal sample to be used throughout our empirical analyses

due to computational considerations.30

Our second data source is Futuro Laboral, a project by the Ministry of Education

that follows a random sample of college graduates (classes of 1995, 1998, 2000 and

2001). This panel data set matches tax return information with students� college

admissions information, so we observe annual earnings, months worked, high school

GPA, PSU scores, college and major. For each cohort, earnings information is available

from graduation until 2005. We calculated the monthly wage as annual earnings divided

by the number of months worked, and the (potential) annual wage as 12 times the

monthly wage, measured in thousands of de�ated pesos. Then, for each major, we

trimmed the calculated annual wages at the 2nd and the 98th percentiles. The two

most recent cohorts have the largest numbers of observations and they have very similar

observable characteristics. We combined these two cohorts to obtain our measures of

abilities and wages among graduates from di¤erent college-major programs. We also

use the wage information from the two earlier cohorts to measure major-speci�c wage

28Uniqueness of the equilibrium is not guaranteed. However, all equilibrium objects are observed
in the data, which is a fact we use in designing our algorithm.
29Ineligible students can only choose the outside option and will not contribute to the estimation.
30Some options are chosen by students at much lower frequency than others. To improve e¢ ciency,

we conduct choice-based sampling with weights calculated from the distribution of choices in the
population of 159; 365 students. The weighted sample is representative. See Manski and McFadden
(1981).
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growth at higher work experience levels. The �nal wage sample consists of 19; 201

individuals from the combined 2000-2001 cohorts, and 10; 618 from the 1995 and 1998

cohorts.

The PSU data contains information on individual ability, enrollment and peer qual-

ity, but not the market return to college education. The wage data, on the other hand,

does not have information on the quality of one�s peers while in college. We combine

these two data sets in our empirical analysis. We standardized the test scores according

to the cohort-speci�c mean and standard deviation to make the test scores comparable

across cohorts.31 Thus, we have created a synthetic cohort, the empirical counterpart

of students in our model.32

The wage data from Futuro Laboral contains wage information only in one�s early

career, up to 10 years. To obtain information on wages at higher experience levels,

we use cross-sectional data from the Chilean Characterization Socioeconomic Survey

(CASEN), which is similar to the Current Population Survey in the U.S. We compare
the average wages across di¤erent cohorts of college graduates to obtain measures of

wage growth at di¤erent experience levels. Although they are not from panel data,

such measures restrict the model from predicting unrealistic wage paths in one�s later

career in order to �t other aspects of the data.

We also draw information from the Indices database provided by the Ministry of

Education of Chile. It contains information on college-major-speci�c tuition, weights

(f!mlg) used to form the admission score index,33 the admission cuto¤s
��
a�jm
	�
;

and the numbers of enrollees for multiple years. Finally, we obtain information on the

program-speci�c course requirements
��
�jmn

	�
from webpages of the CRUCH colleges.

For each program, we calculate �jmn as the total credits required for course category

n divided by the total credits required by program (j;m).

31We standardize the test scores because of the grade in�ation over years. The summary statistics
of the test scores are available for multiple years, although the micro-level data are not.
32Given data availability, we have to make the assumption that there exists no systematic di¤erence

across cohorts conditional on comparable test scores. This assumption rules out, for example, the
possibility that di¤erent cohorts may face di¤erent degrees of uncertainties over student-major match
quality �.
33We have assumed that the weights used by the colleges are the same as the ones in Equation (1),

which implies colleges or the Ministry of Education, like the students in our model, have the right
beliefs about the wage equations.
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4.2 Aggregation of Academic Programs

For both sample size and computational reasons, we have aggregated majors into eight

categories according to the area of study, coursework, PSU requirements and aver-

age wage levels.34 The aggregated majors are: Business, Education, Arts and Social

Sciences, Sciences, Engineering, Health, Medicine and Law.35 We also aggregated indi-

vidual traditional universities into three tiers based on admissions criteria and student

quality.36 Thus, students have 25 options, including the outside option, in making their

enrollment decisions.37

Table 1 shows some details about the aggregation of programs. The second col-

umn shows the number of colleges in each tier. The third column shows the quality

of students within each tier, measured by the average of math and language scores.

Treating each college-level mean score as a variable, the parentheses show the cross-

college standard deviations of these means within each tier. The fourth columns shows

that the mean and the standard deviation of college size (total enrollment) within each

tier. The average college size decreases as one goes from Tier 1 to Tier 3. However, in

terms of total capacity at the tier level, Tier 2 is the largest and Tier 1 is the small-

est. The last column shows the distribution of tuition levels. Cross-tier di¤erences

are clear: higher-ranked colleges have better students, larger enrollment and higher

tuition. Throughout our empirical analyses, a program refers to the aggregated (tier,

major).

We divide all courses into 13 categories. Eight are purely major-speci�c, each

consisting of advanced courses required only for students in the relevant major. The

other �ve categories are each required by at least two majors. Table A1.4 presents

details about major-speci�c course requirements.

34Although we can enlarge the sample size of the PSU data by including more students, we are
restricted by the sample size of the wage data. Finer division will lead to too few observations in each
program.
35All these majors, including law and medicine, are o¤ered as undergraduate majors in Chile.

Medicine and health are di¤erent majors: medicine produces doctors and medical researchers while
health produces mainly nurses.
36The empirical de�nitions of objects such as program-speci�c retention rates are adjusted to be

consistent with the aggregation, see Appendix A2.2 for details.
37As a by-product of the aggregation of programs, the assumption that students cannot transfer

becomes even more reasonable because any transfer across the aggregated programs will involve very
di¤erent programs.
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Table 1 Aggregation of Colleges

Tier No. Colleges Mean Scorea Total Enrollmentb Tuitionc

1 2 702 (4.2) 21440 (2171) 3609 (568.7)

2 10 616 (17.7) 10239 (4416) 2560 (337.2)

3 13 568 (7.2) 5276 (2043) 2219 (304.2)
aThe average of math+language

2
across freshmen within a college.

bTotal number of enrollees per college.
cThe average tuition (in 1,000 pesos) across majors within a college.
dCross-college std. deviations are shown in parentheses.

4.3 Summary Statistics

Table 2 shows summary statistics by enrollment status. Both test scores and graduate

wages increase with the ranking of tiers. Over 71% of students in the sample were

not enrolled in any of the traditional universities and only 5% were enrolled in the top

tier.38 Compared to average students, females (53% of the sample) are less likely to

enroll in college and a larger fraction of female enrollees are enrolled in the lowest tier.

Table 2 Summary Statistics By Tier (All Students)

Matha Language Log Wageb Dist. for All (%) Dist. for Female (%)

Tier 1 709 (80.9) 692 (58.5) 8.91 (0.59) 5.1 4.5

Tier 2 624 (69.0) 611 (68.9) 8.57 (0.66) 14.1 12.2

Tier 3 572 (58.8) 570 (62.4) 8.32 (0.69) 9.0 9.1

Outside 533 (67.5) 532 (67.4) - 71.8 74.2
aThe maximum score for each subject is 850. Std. deviations across students are in parentheses.
bLog of starting wage in 1000 pesos.

Table 3 shows enrollee characteristics by major. The majors are listed in the or-

der of the observed average starting wages.39 This ranking is also roughly consistent

with that of average test scores across majors. Medical students score higher in both

math and language than all other students, while education students are at the other

38For students not enrolled in the traditional universities, we have no information other than their
test scores.
39See Table A1.6 for wage regressions by major. See Figure 1 for the average major-speci�c wages

by experience levels.
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extreme.40 Comparative advantages di¤er across majors. For example, law and social

science majors have clear comparative advantage in language, while the opposite is

true for engineering and science majors. The last two columns show the fraction of

students in each major among, respectively, all enrollees and female enrollees. Females

are signi�cantly more likely to major in education and health but much less so in

engineering.

Table 3 Summary Statistics By Major (Enrollees)

Math Language Dist. for All (%) Dist. for Female (%)

Medicine 750 (66.0) 719 (55.5) 3.4 3.2

Law 607 (74.2) 671 (72.1) 4.6 4.8

Engineering 644 (79.7) 597 (75.4) 36.6 23.4

Business 620 (87.3) 605 (73.9) 9.9 10.5

Health 628 (58.3) 632 (64.3) 11.7 17.1

Science 631 (78.2) 606 (82.1) 8.5 8.3

Arts&Social 578 (70.7) 624 (72.4) 11.2 14.1

Education 569 (59.5) 593 (64.2) 14.0 18.6

5 Estimation

The model is estimated via simulated generalized method of moments (SGMM). For a

given parameter con�guration, we solve for the sorting equilibrium and compute the

model-predicted moments. The parameter estimates minimize the weighted distance

between model-predicted moments (M (�)) and data moments
�
Md
�
:

b� = argmin
�

n�
M (�)�Md

�0
W
�
M (�)�Md

�o
;

where � is the vector of structural parameters, and W is a positive-de�nite weighting

matrix.41 � includes parameters governing the distributions of student tastes, the

40In majors like medicine, the quality of students remains high even in the lowest tier. As shown
in Table A1.5, an average medical student in Tier 3 has higher scores than an average Tier 1 student
majoring in health, science, social science or education.
41In particular, W is a diagonal matrix, the (k; k)th component of which is the inverse of the

variance of the kth moment, estimated from the data. To calculate the optimal weighting matrix, we
would have to numerically calculate the derivatives of the GMM objective function, which may lead
to inconsistency due to numerical imprecision. So we choose not to use the optimal weighting matrix.
Under the current weighting matrix, our estimates will be consistent but less e¢ cient. However, as
shown in the estimation results, the precision of most of our parameter estimates is high due to the
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distribution of major-speci�c e¢ ciency shocks, the human capital production function,

the wage function, the consumption values and costs of colleges and majors, and the

values of the outside and the dropout options.

Given that the equilibrium peer quality is observed and used as target moments,

we have also estimated the parameters without imposing equilibrium conditions, which

boils down to an individual decision model. We deem model consistency critical for the

empirical analysis we do, so we focus on the �rst approach because it favors parameters

that guarantee equilibrium consistency over those that may sacri�ce consistency for

better values of the SGMM objective function.42

5.1 Target Moments

The combined data sets contain information on various predictions of the model, based

on which we choose our target moments. The PSU data contains information that sum-

marizes the sorting equilibrium: program-speci�c enrollment and peer quality (Mo-

ments 1 (a) and 2 (a)). It also provides information critical for the identi�cation of

student preferences and costs. The wage data provides information about human capi-

tal production and wage functions. Together with college retention rates, the wage data

also re�ects the degree of match uncertainty faced by students. In total, we estimate

95 parameters by matching 448 moments.

1. Enrollment status:

(a) Fractions of students across tier-major (j;m) overall, among females and

among low-family-income students.

(b) Fractions of students enrolled in (j;m) with am � a�j0m where j0 is a tier

ranked higher than j and am � a�jm guarantees that the student can choose

(j0;m) :

(c) Fractions of students enrolled in j with am � a�jm by (j;m) :

2. Ability by enrollment status:

(a) First and second moments of major-m ability (am) by (j;m) :

relatively large sample size.
42Di¤erences between the estimates from these two estimation approaches exist but are not big

enough to generate signi�cant di¤erences in model �ts or in counterfactual experiments.
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(b) Mean test scores among students who chose the outside option.

(c) Retention rates by (j;m) calculated from enrollments in the college data.

3. Graduate ability: First and second moments of major-m ability among graduates

by (j;m) :

4. Starting wage:

(a) First and second moments of log starting wage by (j;m).

(b) First moments of log starting wage by (j;m) for females.

(c) Cross moments of log starting wage and major-speci�c ability by (j;m) :

5. Wage growth:

(a) Mean of the �rst di¤erences of log wage by major for experience � = 1; :::; 9:

(b) From CASEN: �rst di¤erence of the mean log wage at � = 10; :::; 40.

Although the entire set of model parameters work jointly to �t the data, one can

obtain some intuition about identi�cation from considering various aspects of the data

that are more informative about certain parameters than others.43 The �rst major set

of parameters governs student preferences for di¤erent academic programs. The enroll-

ment choices made by students with di¤erent demographics (Moments 1 (a)) reveal in-

formation about the relationship between these characteristics and student preferences

and costs. For example, gender-speci�c tastes (�m) help explain the gender-speci�c

enrollment patterns shown in Table 3 and summarized in further details by Moments

1 (a) that cannot be rationalized only by the gender ability di¤erence we observe in

the data. Similarly, in our model, students from di¤erent family income groups, who

are otherwise equivalent, may choose di¤erent academic programs because 1) they may

view tuition costs di¤erently and 2) their values of the outside options may be di¤erent.

To separately identify these two channels, we utilize the cross-program variation in tu-

ition levels (24 di¤erent levels).44 The two parameters (c1 and c2 in Equation (5)) that

43We have also conducted Monte Carlo exercises to provide some evidence of identi�cation. In
particular, we �rst simulated data with parameter values that we choose, treated as the "truth" and
then, using moments from the simulated data, started the estimation of the model from a wide range
of initial guesses of parameter values. In all cases, we were able to recover parameter values that are
close to the "truth."
44See Altonji, Blom and Meghir (2011) for a discussion of using major-speci�c prices for identi�ca-

tion.
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govern E¤ect 1) and the one parameter (�02 in V0 (x)) that governs E¤ect 2) adjust in

order to rationalize the di¤erent enrollment (non-enrollment) patterns across income

groups that are associated with the program-speci�c tuition levels (Moment 1 (a)).

Students also di¤er in their unobservable tastes (�jm). Among similar students who

pursued the same major, some chose higher-ranked colleges and others lower-ranked

colleges (Moments 1 (b)). This informs us of the dispersion in tastes for colleges. Simi-

lar students within the same college made di¤erent major choices (e.g., more lucrative

majors vs. less lucrative ones), re�ecting the dispersion of their tastes for majors (Mo-

ments 1 (c)). Together with student enrollment choices (Moments 1), the distribution

of abilities within a program (Moments 2 (a)) and the ability levels among those who

chose the outside option (Moments 2 (b)) are informative about the relationship be-

tween peer quality and e¤ort costs in Equation (4). For example, if high peer quality

increases or barely decreases one�s non-pecuniary utility (�3m), then more students

who are eligible, including those who are marginally eligible, will be drawn to pro-

grams with better peers in order to bene�t from the positive peer e¤ects on wages,

which will increase the ability dispersion within each of these programs. Similarly, too

strong a relationship between peer quality and e¤ort cost (�4) will decrease the ability

dispersion within a program.

The second major set of parameters governs match uncertainty (��), human capi-

tal production (2) and the wage function (3). Two assumptions greatly facilitate our

identi�cation: 1) student�s pre-college abilities are observable and 2) student tastes

(permanent and unobservable) are uncorrelated with student post-enrollment shocks,

and they do not a¤ect market returns. Given these two assumptions, the systematic dif-

ferences in wages among similar workers (Moments 4) arise from their post-enrollment

e¢ ciency shocks: all else equal, a higher dispersion in e¢ ciency shocks would lead to a

higher dispersion of wages. College retention rates (Moments 2 (c)) are a second major

source of information for identifying e¢ ciency shocks. A lower dispersion in e¢ ciency

shocks would lead to higher retention rates. Student ability distributions conditional

on choices are also informative. In particular, the likelihood that shocks are bad enough

for students with relatively high pre-college ability to drop out will be low if the disper-

sion of e¢ ciency shocks is low. In contrast, a highly dispersed distribution of shocks

will lead a non-trivial fraction of high-ability students to drop out. These e¤ects are

directly re�ected in the ability distribution among graduates relative to that among all

enrollees (Moments 2 (a) and 3).
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The relationship between wages and student�s observable characteristics (Moments

4 (b) and 4 (c)) provides key information about the importance of these characteristics

in the human capital production and wage functions. In particular, the importance

of pre-college ability is mainly captured by the correlation between wages and ability

levels. Correlations are not directly targeted but they are jointly captured by the

Moments 4(a) and 4(c):45

Finally, Moments 5 inform us of wage growth over the life cycle. Moments 5(a)

contain major-speci�c early-career wage information from Futuro Laboral. Moments

5 (b) contain information at higher experience levels. The weakness of the CASEN data

is that we do not observe college major. As such, the Futuro Laboral data is the main

source for us to identify di¤erent lifetime wage paths across majors, while the CASEN

data helps restrict the wage path in later years over all college majors.

Remark 3 Like many other constrained choice models, our model is not non-parametrically
identi�ed. For example, for students who are ineligible for some programs, it is not

possible to non-parameterically identify their preferences for those programs. For this

reason, we have to impose assumptions that allow us to "extrapolate," including 1)

student tastes for programs �jm and e¢ ciency shocks � are i.i.d. across students, inde-

pendent of observables x; and independent of each other; 2) the consumption value of

a program and the human capital production function are both continuous functions of

student characteristics.

6 Results

6.1 Parameter Estimates

This section reports the estimates of parameters of major interest. Tables A2.1-A2.6 in

the appendix report the estimates of other parameters. Standard errors (in parentheses)

are calculated via bootstrapping.46 Table 4 displays the roles of peer quality and

own ability in the human capital production for each major, which also measure the

elasticities of wages with respect to peer ability and own ability. The left panel shows
45Notice that Moments 4 are at the program level, the cross-program di¤erences arise from their

student quality and course requirements, both observed in the data.
46Calculating standard errors via standard �rst-order Taylor expansions might be problematic be-

cause we have to use numerical method to calculate the derivatives of our GMM objective function.
We took 500 bootstrap iterations. Given the sample size (10,000) and the sampling scheme described
in Footnote 38, the precison of most of our estimates is high.
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the parameter estimates and the standard errors of the coe¢ cients for peer quality,

i.e., 'm in (2) : As shown in (2), the total contribution of own ability is a weighted

sum of its course-speci�c contributions, governed by
P

n �jmnn; where
�
�jmn

	
is the

tier-major-speci�c course requirement weights from the data and fng is the vector of
production technology parameters. Instead of showing the estimates of fng ; which
are shown in Table A2.1, the right panel of Table 4 shows the overall importance of

own ability for a given major that is comparable with that of peer quality, i.e., the

cross-tier averages of
P

n �jmnn.
47

Table 4 Human Capital Production

Peer Ability ' Own Ability
P

n �mnn

Estimate Std. Err. Cross-Tier Average

Medicine 0.01 (0.01) 0.08

Law 0.25 (0.02) 1.40

Engineering 0.66 (0.02) 1.40

Business 2.04 (0.01) 1.05

Health 0.71 (0.03) 0.07

Science 2.32 (0.02) 0.31

Arts&Social 1.09 (0.01) 1.02

Education 1.23 (0.02) 1.16

E¢ ciency Shock �� 0.89 (0.01)

The left panel of Table 4 shows signi�cant di¤erences in the importance of peer

ability across majors: the elasticity of wage with respect to peer quality is high in

business and science, and close to zero in medicine.48 This �nding is consistent with

those found in previous studies. For example, HNZ �nd that among the eight �elds

they consider, the return to major is signi�cantly higher if one were admitted to a more

selective (higher-peer-quality) college than a less selective college for social science,

science, business and health, but not for other �elds.

Considering both the left and the right panels, we �nd that the relative impor-

tance of peer ability versus own ability di¤ers systematically across majors although

47Di¤erences exist in
P

n �jmnn across tiers, but they are small because course requirements�
�jmn

	
n
are similar across tiers for a given major.

48As mentioned earlier, our model is silent about why peer ability a¤ects market returns. The
reasons are likely to di¤er across majors. For example, the high elasticity of wages with respect to
peer quality in business may arise because the social network one forms in college is highly valued in
the business profession.
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no restriction has been imposed in this respect. In the three majors with the highest

average wages, the elasticity of wage with respect to peer ability is at most half of that

with respect to own ability.49 For the relatively lower-paying majors, peer ability is

more important than own ability in determining wages.50 Similar results have been

found in previous studies. For example, results from Arcidiacono (2004) indicate that

the importance of own SAT scores dominates that of the peers�SAT scores in high-

paying majors, while the opposite is true in low-paying majors. The major-speci�c

relative importance of peer quality versus own ability has important implications for

welfare analysis as Sys.J switches to Sys.S, because the quality of �rst-period peers will

decline for "elite" majors, while increase for "non-elite" majors. Table 4 suggests that

the former negative e¤ect is likely to be small, while the latter positive e¤ect may be

signi�cant.51

The last row of Table 4 shows the dispersion of course-speci�c e¢ ciency shocks.52 To

understand the overall impacts of such uncertainty, imagine reducing the dispersion by

25%, which would increase the overall college retention rate from 75% in the baseline

to 83%: Clearly, students face non-trivial uncertainty.53 Moreover, as mentioned in

the model section, uncertainty di¤ers across programs depending on how diversi�ed

the course requirements are. Majors like medicine and law involve higher degrees of

uncertainty than other majors because course bundlings in professional majors are

more concentrated (Table A1.4). However, this does not mean that one should expect

to see higher dropout rates in professional majors, because students in these majors

have higher academic abilities and have more to gain from college.

49It may be surprising to see small e¤ects of both own ability and peer ability in medicine. One
possible reason is that compared to their counterpart from lower-tier medical schools who have lower
pre-college ability, a higher fraction of graduates from top medical schools work in research/education-
related jobs and/or in the public sector, where wages are lower than those in the private sector.
50One possible explanation for this pattern is labor market statistical discrimination. For example,

in law and medicine, the practice of licensing and residency/internship reduces the need for statistical
discrimination, making peer quality less important than one�s own ability. Yet, for majors like edu-
cation and general science, where individual quality is hard to determine, employers may need to rely
more on statistical discrimination.
51Results in Table 4 are qualitatively consistent with those from data wage regressions (Table A1.6).
52We cannot reject the hypothesis that ��n�s are the same across courses, and therefore choose the

more parsimonious speci�cation with a common ��:
53There are cases where our estimate of �� may overstate the degree of uncertainty over student-

major matches. The �rst is the existence of some unobserved component of student ability not
captured by their test scores that leads to permanent wage dispersions across workers. A second
case is when there exists other post-enrollment shocks that cause a student to drop out besides the
e¢ ciency shocks.
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Table 5 reports parameter estimates for major-speci�c consumption values. Con-

sumption values increase most with own ability in the three majors with the highest

average wages, followed by social science. However, there is no signi�cant relationship

between consumption values and own ability in other majors. The second column

shows the relationship between consumption values and peer quality. The e¤ect of

high-ability peers on consumption value is negative in all majors except for engineer-

ing and science majors. The negative impact is greatest in law, followed by medicine

and then education. Our model is silent on why peers have di¤erent impacts on one�s

consumption values across majors. Yet, the results are not unreasonable. For exam-

ple, it may be costly to have high-quality peers in law programs, because students are

constantly placed in competitive situations. In contrast, engineering students often

need to collaborate for joint projects, which may be more enjoyable with high-quality

peers. Empirically, these di¤erential utility costs help explain why some eligible stu-

dents chose other majors despite of the expected high wage in majors like law and

medicine. Similarly, high peer costs in majors like education and social science help

explain why many students who were above the higher-tier cuto¤ chose the lower-tier

program. This is especially true in the choice between the second and the third tiers

for those majors, where the two tiers have similar cuto¤s (Table A1.2).

Table 5 Consumption Values (Major-Speci�c Parameters)

Own Ability Peer Ability Female

Medicine 12.99 (0.28) -8.57 (0.18) -2248.4 (167.9)

Law 6.26 (0.14) -11.95 (0.30) -2644.6 (225.5)

Engineering 4.82 (0.11) 3.76 (0.14) -2669.7 (115.1)

Business 0.02 (0.03) -2.44 (0.08) 347.1 (85.8)

Health 0.05 (0.06) -2.44 (0.05) 4578.0 (72.5)

Science 0.02 (0.01) 0.33 (0.10) -529.6 (109.1)

Arts&Social 1.77 (0.02) -3.53 (0.10) -963.3 (194.6)

Education 0.02 (0.04) -5.16 (0.12) 4372.8 (60.1)

The last column of Table 5 shows that compared to males, an average female has

signi�cantly higher tastes for the conventionally "feminine" majors, i.e., health and

education, slightly higher preference for business, but lower tastes for all other majors.

Empirically, these taste parameters help to explain the di¤erent enrollment patterns
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across genders as in Table 3.54 In Appendix B1, we show that when females are endowed

with the same preferences as males, there will no longer exist majors that are obviously

dominated by one gender. However, the di¤erence in comparative advantages across

genders also plays a nontrivial role in explaining their di¤erent enrollment patterns.55

6.2 Model Fit

Overall, the model �ts the data well. Table 6 shows the �ts of enrollment by tier, for all

students and for females.56 The model slightly underpredicts the fraction of students

enrolled in the top tier. Table 7 shows the distribution of enrollees across majors. The

�t for the distribution among all enrollees is very close, except an underprediction in the

fraction of law students. For female enrollees, the model underpredicts the fractions in

social sciences and law. Table 8 shows the �ts of average student ability and retention

rates by tier. Table 9 shows the same �ts but by major.57 The �ts are good overall,

but the retention rate is over-predicted for Tier 3.

Table 6 Enrollment by Tier (%)

All Females

Data Model Data Model

Tier 1 5:1 4:6 4.5 3.9

Tier 2 14:1 14:0 12.2 12.9

Tier 3 9:0 9:4 9.1 9.8

54The model explains this pattern via three channels: 1) the distributions of pre-college ability are
di¤erent across genders as seen in the data; 2) gender is allowed to enter the wage function directly;
3) preferences may di¤er across genders.
55The importance of gender-speci�c preferences has been noted in the literature. For example, Zafar

(2009) �nds that preferences play a strong role in the gender gap of major choices in the U.S.
56The �ts for students with low family income are in the appendix Tables B3-4.
57The retention rates reported seem to be high for two reasons. First, we focus on the traditional

colleges, which are of higher quality than private colleges. Second, consistent with our data aggrega-
tion, a student is said to have stayed in (j;m) if she stayed in any speci�c program within our (j;m)
category.
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Table 7 Enrollee Distribution Across Majors (%)

All Females

Data Model Data Model

Medicine 3.4 3.6 3.2 3.0

Law 4.6 3.5 4.8 3.1

Engineering 36.6 36.5 23.4 25.1

Business 9.9 10.4 10.5 11.0

Health 11.7 11.3 17.1 17.0

Science 8.5 9.1 8.3 8.9

Arts&Social 11.2 10.8 14.1 11.9

Education 14.0 14.8 18.6 19.4

Table 8 Ability & Retention (by Tier)

Abilitya Retention (%)

Tier Data Model Data Model

1 701 697 79.3 80.3

2 624 624 76.5 74.5

3 581 578 68.1 72.5
aThe average of major-speci�c ability across majors in each tier.

Table 9 Ability & Retention (by Major)

Abilitya Retention (%)

Data Model Data Model

Medicine 738 730 87.6 88.0

Law 658 632 81.3 79.0

Engineering 623 623 71.8 74.7

Business 619 618 74.6 73.0

Health 641 638 79.8 79.5

Science 622 613 63.7 63.8

Arts&Social 612 601 74.3 74.4

Education 590 590 77.1 76.4
aAverage major-speci�c ability am in each major m:

Excluded from our target moments, the next set of �t statistics utilizes the stringent

cuto¤ rules in Chile to examine students�preferences for majors. In particular, we
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contrast the fraction of students who opted for the same major m in a lower tier when

they missed the cuto¤ for a higher-tier program (j;m) by no more than 10 points.

Table 10 shows the results. For example, the �rst row shows that in the data, 12%

of the students who just missed the cuto¤ for medicine in a higher tier opted for the

same major in a lower tier, while this fraction is 13.5% in the model. Although these

are a small group of students, the model �t is good in general. A second set of �ts,

presented in Appendix Table B5, is the correlation between starting wage levels and

the major-speci�c ability of graduates from each (tier, major). In most programs, the

correlation is small and positive; in some cases, it is small and negative. Overall, the

model is able to capture the patterns well.

Table 10 Pursue the Same Major (Marginally Ineligible for a Higher Tier)

(%) Data Model

Medicine 12.0 13.5

Law 5.8 8.4

Engineering 24.8 18.6

Business 4.6 7.9

Health 14.0 11.6

Science 5.4 5.9

Arts&Social 8.0 3.9

Education 8.4 10.1

7 Counterfactual Policy Experiments

We �rst introduce the counterfactual admissions regime Sys.S, providing overall cross-

system comparisons. Next, we conduct a milder policy change that allows students

one chance to switch programs within Sys.J. We then examine the e¤ects of admis-

sions systems in detail, focusing on the contrast between the baseline Sys.J and Sys.S.

Finally, we check how robust our results are when human capital rental rates vary

with the supply of college graduates. We focus on short-run equilibrium and take the

distribution of student preferences and pre-college ability as �xed.
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7.1 Overall Comparison

7.1.1 Sys.S

Under Sys.S, students choose their majors after they learn about their �ts. We solve

a planner�s problem of maximizing total student welfare by setting college-speci�c,

rather than college-major-speci�c, admission policies.58 The constraints for the planner

include: 1) a student eligible for a higher-tier college is also eligible for colleges ranked

lower, and 2) the planner can use only ability a to distinguish students. These two

restrictions keep our counterfactual experiments close to the current practice in Chile

in dimensions other than the college-speci�c versus college-major-speci�c admissions.

Restriction 1 prevents the planner from assigning a student to the college that the

planner deems optimal, which is both far from the current Chilean practice and also

may lead to mismatches due to the heterogeneity in student tastes. Restriction 2 rules

out discrimination based on gender or family income.

There are four stages in this new environment:

Stage 1: The planner announces college-speci�c admissions policies:

Stage 2: Students make enrollment decisions, choosing one of the colleges they are

eligible for or the outside option: An enrollee chooses course taking intensity across

majors. Let M (x; �; j; Aj) denote the set of majors to take course in chosen by a

College-j enrollee (x; �) ; which we specify below.

Stage 3: An enrollee learns her e¢ ciency levels in courses she has taken, which are

[m2M(x;�;j;Aj)e�jm; i.e., the union of the course e¢ ciency levels in each major within
M (x; �; j; Aj). Given the additional information, she chooses her �nal major from this

set or drops out.

Stage 4: Stayers spend one more period studying in the �nal major of choice and then

enter the labor market.

Information and Decision: Sys.S

Stage 1 Stage 2 Stage 3

Info Planner Info Student Info Student

a Admissions x; � College(j),M (x; �; j; Aj) x; �;[m2M(�)e�jm fm 2M (�) ;Dropoutg

58The planner takes into account tuition and e¤ort costs for students. To maximize social welfare,
one would also include other costs of college education, for example, costs for colleges that are not fully
covered by tuition revenue. This will be a relatively straightforward extension yet one that requires
information that is unavailable to us.
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The planner acts as the Stackelberg leader in this game. Instead of simple unidimen-

sional cuto¤s, optimal admissions policies will be based on the whole vector of student

ability a. To calculate the bene�t of admitting a student of ability a to a certain set

of colleges, the planner has to �rst form an expectation of the student�s enrollment,

course-taking and major choices, integrating out student characteristics and tastes that

are unobservable to the planner, and the e¢ ciency shocks. Then, the planner calcu-

lates the expected value for this individual and her e¤ect on her peers. Peer quality

matters because it a¤ects both the market return and the non-pecuniary consumption

value. Overall, the planner�s optimal admissions policies lead student sorting toward

the maximization of total student welfare. Appendix B3 contains formal theoretical

details.

Further Speci�cations Under a typical Sys.S, students may take courses that are

more related to some majors than to others in the �rst period based on their preferences

and expectations. To capture this fact and yet still keep the exercise feasible, we assume

that in the �rst period, an enrollee will consider the probability that she may �nally

choose each of the majors if she has been exposed to all of them. Then, she will divide

her time and e¤ort across majors/departments according to these probabilities. In

particular, if a student i expects that, conditional on staying in college in the second

period, she will choose m with probability �im given her (x; �) and peer quality, where

the expectation is taken over
�e�jm0

	M
m0=1

; then her course-taking intensity (the fraction

of time spent) in major m during the �rst period is equal to �im.

To compare welfare, one factor that deserves special attention is the potential loss

of major-speci�c human capital due to the delay in specialized training.59 The data we

have does not allow us to predict the exact change in human capital associated with

the shift of admissions regimes because we do not observe the return to partial college

education or student performance in college. However, it is still informative to provide

bounds on welfare gains under Sys.S by considering various possible scenarios. In this

paper, we explore two di¤erent sets of scenarios. In the �rst, we assume that to make

up for the �rst period (2 years) of college spent without specialization, all students have

to spend, respectively, 0, 1 and 2 extra year(s) in college. The two extreme cases may

provide bounds for the welfare under Sys.S. In a second (more reasonable) scenario,

the extra time one needs to spend in college is a function of her time allocation in

59On the other hand, if the labor market values the width of one�s skill sets, one would expect
greater gains from the new system than those predicted in this paper.
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the �rst period, given by ext (�). To re�ect the fact that colleges are normally not

fully �exible and only provide two graduation seasons per year, we assume that the

extra time in college is measured in multiples of semesters (0.5 years), and that it is

a step function.60 Notice that the extension period is a function of student choice

f�imgm ; which in turn depends on the extension time. An equilibrium requires that

student choices be self-consistent.61

Remark 4 One of the choices available under the second scenario of Sys.S is to fully
specialize from the beginning, which is the only choice available for a college student

under Sys.J. However, it does not imply that a student will be better o¤, because equi-

librium peer quality will change when the system changes.

Results Table 11 shows the equilibrium enrollment, retention and student welfare

under the baseline and under Sys.S for the two sets of scenarios. In all cases, postponing

major choices increases the overall retention rate: a signi�cant fraction of dropouts

occur in the current system because of student-major mismatches.62 In the no-extra-

time case, enrollment increases from 28% to 36%; retention rate increases from 75%

to 88%, and the mean student welfare increases by about 3:7 million pesos or 3%.

When one has to spend extra time in college, enrollment decreases sharply. In the

extreme case where one has to spend 2 more years in college, the new system causes

a 1% welfare loss relative to the baseline. In the endogenous extension case, welfare

improves by 1%.

Table 11 Enrollment, Retention & Welfare: Sys.S

Baseline Extra Years in College

0 Year 1 Year 2 Years ext(�)

Enrollment (%) 28.0 36.2 30.7 27.2 31.4

Retention (%) 74.9 87.9 82.9 78.3 85.6

Mean Welfare (1,000 pesos) 146,495 150,166 146,997 145,162 147,834

60See Appendix B2.4 for details.
61In terms of algorithm, for every simulated student, we have an inner loop that searches for a �xed

point �i = f�imgm that maintains this self-consistency, i.e., the solution to

�im = Pr(m is chosen by i among the M majors in the 2nd periodjext(�i)); for all m:

62If students face uncertainties besides e¢ ciency shocks, we might over-predict the retention rate
in the new system.
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7.1.2 Rematch Under Sys.J

Although the same rigid transfer policies are practiced in many countries like Chile,

some other countries (e.g., England) with the same admissions system are more �exible

in terms of transfers. To explore how much can be gained from such �exibility, the

following policy experiment allows students under Sys.J one chance to rematch after

the �rst period in college. The timing under this policy is:

Stage 1: Students make college-major enrollment decisions, subject to college-major-

speci�c admissions policies:63

Stage 2: A college enrollee in major m observes her e¢ ciency vector e�jm, and chooses
to stay, to transfer to a di¤erent program, or to drop out at the end the �rst period in

college. To prevent arbitrage, we impose the same admissions standards on transfers.

Stage 3: Students who chose to stay in Stage 2 stay one more period in college and

then enter the labor market. Transfer students observe their �ts for their new majors

and decide whether to stay and later enter the labor market or to drop out.

We consider three cases where a transfer student has to spend 0, 1 or 2 extra

year(s) in college, compared to a non-transfer student. Under the rematch policy, the

enrollment rate is over 30% even if transfer students have to spend 2 more years in

college. However, the �nal retention rate remains similar to that in the baseline under

the no-extra-time scenario and lower than the retention rate in the baseline when extra

time is involved. The opportunity to rematch encourages more students to enroll but

is not very e¤ective keeping them in college. This is true despite the fact that in Stage

2 when a student makes transfer decisions, she already has partial knowledge about

her �ts to other majors for which the course requirements overlap with her �rst major.

Table 12 Enrollment, Retention & Welfare: Sys.S vs. Rematch

Baseline 0 Extra Year 1 Extra Year 2 Extra Years

Enrollment (%) 28.0 35.8 33.1 30.0

Retention (%) 74.9 75.0 73.7 73.2

Mean Welfare (1,000 Peso) 146,495 149,064 147,938 147,067

7.2 A Closer Look

We will focus on the endogenous extra time speci�cation (ext(�)) in our following

analyses of Sys.S.
63We impose the same admissions policies used in the current Chilean system and re-solve the

sorting equilibrium. Results from this experiment are subject to these exogenous admissions policies.
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7.2.1 Gainers and Losers

The impacts of a change from Sys.J switches to Sys.S di¤er across students. Table

13 presents the outcomes by quartiles of test scores (math+language). Enrollment

rates increase in all three lower quartiles, especially for the lowest quartile; the highest

quartile, in contrast, sees a decline in enrollment rates.64 Retention rates improve

for all groups.65 Average welfare improves for students in the �rst three quartiles,

especially the middle two quartiles, while it decreases for the highest quartile. To

further investigate who is likely to gain/lose, we run a regression of one�s winner/loser

status against one�s characteristics (Appendix B3). We �nd that females and students

from low income families are more likely to be gainers, and that when a student already

has a clear comparative advantage as re�ected in pre-college abilities, the cost of delayed

specialization is likely to outweigh its bene�t. All these �ndings suggest that Sys.J

favors more advantaged students and that a switch into Sys.S would improve equity.

Table 13 Outcome by Test Score Quartiles

<=1st Qua. 1st~2nd Qua. 2nd~3rd Qua. >3rd Qua.

Enrollment (%)

Baseline 1.8 11.0 37.1 62.1

ext(�) 7.6 20.3 43.0 54.9

Retention (%)

Baseline 83.9 78.3 72.1 76.0

ext(�) 87.3 85.8 85.2 85.6

Mean Welfare (1,000 pesos)

Baseline 129,034 133,396 150,629 173,118

ext(�) 129,856 136,993 152,666 172,004

Test score: (math+language)

7.2.2 Enrollment and Major Choice Distribution

Table 14 displays enrollment and retention rates by tier. Compared to the baseline case,

Sys.S features more students enrolled in every tier and a higher fraction enrolled in the

64Although not targeted, the enrollment rates under the baseline match the data well, where the
four rates are predicted as [2:6; 15:3; 32:6; 62:4] : We do not have data on retention rates by ability
groups.
65Notice that the retention rate for the lowest quartile is the highest. This is because those who have

low scores and choose to enroll are a highly selected group of students who have strong preferences
for college.
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top tier. Under the baseline, a nontrivial fraction of students were eligible to enroll in

Tier 1 but only for majors other than their ex-ante most desirable ones. Among these

students, some opted for their favorite majors in lower tiers rather than a di¤erent

major in Tier 1. Under Sys.S, the planner still deems (some of) these students suitable

for Tier 1, and some of them will matriculate. This is because, regardless whether or

not these students eventually choose their ex-ante favorite majors, given their relatively

high ability, enrolling them in Tier 1 does not have a signi�cant negative e¤ect on peer

quality, while the improved match quality signi�cantly increases the bene�t of doing so.

Retention rates in all three tiers improve signi�cantly with the change of the system.

Table 14 Enrollment and Retention (%)

Baseline ext(�)

Enrollment Retention Enrollment Retention

Tier 1 4.6 80.3 5.9 88.1

Tier 2 14.0 74.5 15.7 85.0

Tier 3 9.4 72.5 9.8 84.9

Table 15 displays the distribution of students across majors in the �rst and second

period in college. Focusing on the �rst four columns, we see that without major-speci�c

barriers to enrollment, the number of students majoring in law and medicine increases

signi�cantly compared to the baseline level. Business and health also grow.

Table 15 Distribution Across Majors (%)

Baseline ext(�) Rationed ext(�)

1st Period 2nd Period 1st Period 2nd Period 1st Period 2nd Period

Medicine 1.0 0.9 - 1.6 - 1.0

Law 1.0 0.8 - 1.6 - 1.0

Engineering 10.2 7.6 - 8.4 - 8.5

Business 2.9 2.1 - 3.1 - 2.9

Health 3.2 2.5 - 4.3 - 3.2

Science 2.6 1.6 - 1.5 - 1.7

Arts&Social 3.0 2.3 - 2.3 - 2.4

Education 4.1 3.2 - 4.0 - 4.0

All 28.0 21.0 31.4 26.9 31.0 24.7

For the 1st period, the distribution across majors is de�ned only for the baseline, since in

the new system students do not declare majors until the 2nd period.
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Capacity Constraints and Rationing In the short run, it may not be feasible

to expand each academic program to accommodate the demand. As such, we impose

program-speci�c cuto¤s in the second period such that only students above the cuto¤s

can choose a particular program. The cuto¤s are imposed on a student�s quality taking

into account her realized e¢ ciency levels.66We conduct a series of experiments to search

for the lowest necessary set of cuto¤s, such that the �nal number of students in each

program does not exceed the enrollment size of the corresponding program under the

baseline. The result under this �nal set of cuto¤s is shown in the last two columns.

Compared to the case without cuto¤s, there is a small in�ow to engineering, science

and social science from other majors with binding cuto¤s; yet all these three majors

remain under capacity as many students choose either to drop out or not to enroll

instead of opting for a di¤erent major. Compared to the baseline, however, every

major graduates more students.

7.2.3 Productivity

Next we compare major-speci�c productivity across the two systems. This comparison

is unclear ex ante because con�icting factors coexist, some of which include 1) Sys.S

provides students with information on their match quality before they choose their

majors, which should improve individual productivity ceteris paribus, 2) a switch to

Sys.S improves peer quality for some majors and decreases it for other majors, and 3)

under Sys.S, the pool of college graduates expands and some lower-ability students �ow

into majors that they were not eligible under the baseline. The results are in Table

16, which shows the average productivity as measured by mean log starting wages (in

1,000 pesos) in each major. Without rationing, productivity improves in law, health,

social science and education; while it decreases in the other four majors. Rationing

improves the average productivity in all majors relative to the case without rationing.

In particular, with binding cuto¤s, rationing reverses the ranking between Sys.J and

Sys.S in terms of the productivity in medicine. However, the average productivity in

business, engineering and science remain lower under Sys.S than their baseline levels.67

66In particular, a student i is evaluated based onX
n

�jmn [n ln (aim) + �in] :

67If post-enrollment shocks do not directly enter the wage function and if they are only partly
correlated with one�s future productivity, then, a switch from Sys.J to Sys.S is likely to have smaller
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Table 16 Log Starting Wage

Baseline ext(�) Rationed ext(�)

Medicine 9.08 8.66 9.16

Law 9.18 9.48 10.0

Engineering 8.88 8.70 8.71

Business 8.60 8.42 8.45

Health 8.65 8.77 9.06

Science 8.36 8.23 8.26

Arts&Social 8.46 8.47 8.48

Education 8.06 8.08 8.23

7.3 Endogenous Human Capital Rental Rates

In our analyses so far, we have taken the rental rates for human capital as given by the

parameters in the wage function fe�0mgm : In this subsection, we relax this assumption
and check how robust our results will be when labor market returns vary with the

number and the composition of college graduates.68 We endogenize rental prices as

marginal products of a nested aggregate CES production function, given by

�
g1L

�1 + g2H
�1
� 1
�1 ; (10)

where L is the low-skilled labor measured in unit of high-school equivalent,69 H is the

aggregate human capital among college-educated workers, and �e1 =
1

1��1 is the elastic-

ity of substitution between low-skill and high-skill human capital. For the aggregation

of skilled labor across di¤erent majors, we assume a CES functional form

H =

 
MX
m=1

g3mh
�2
m

! 1
�2

; (11)

where fhmgMm=1 is the vector of aggregate major-speci�c human capital, g3m > 0,P
g3m = 1. �e2 =

1
1��2 is the elasticity of substitution between di¤erent major-speci�c

e¤ects on productivity.
68This exercise is a robustness check. A more comprehensive model that accounts for broader

general equilibrium features will be a direction for future research.
69Following Card (2009), we assume that each worker without a high school degree supplies 0:7

units of high-school labor, and that each worker with some college education supplies 1:2 units of
high-school labor.
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skills.

Our data do allow us to back out all the parameters in (10) and (11) : Instead, we

will consider a range of �1 2 [0:3; 0:7], i.e., �e1 2 [1:43; 3:33] that has been estimated
in the literature, and a wide range of �2 including Cobb-Douglas and linear.70 Given

each pair of (�1; �2), baseline skill levels fL0; fh0mgmg and their baseline rental rates,71

we can solve for the rest of the parameters fg1; g2; fg3mgmg by setting the rental rates
equal to the marginal products, which gives us one set of (g; �) :

Given each set of (g; �), we embed the endogenous major-speci�c human capital

rental rates into our equilibrium Sys.S model. A change in the admissions system

may lead to several changes to the composition of labor supply: 1) an increase in

college enrollment will reduce the supply of high-school-educated workers; 2) a change

in the number of college dropouts will change the number of workers with some college

education; and 3) changes in the number and the distribution of college graduates across

majors will change the composition of the high-skilled labor force.72 The rental rates

of various types of skills will vary accordingly, which will in turn a¤ect the decisions

made by the social planner and the students. An equilibrium requires that the rental

rates are consistent with these decisions.

To focus on the short run, which is what our model is tailored for, we consider

changes in the �ow of one or two recent cohorts of workers into the labor market, while

holding the stock of older cohorts �xed. Again, we focus on Sys.S with the endogenous

extension time ext(�) without rationing: Comparing the results from the previous

subsection with their counterparts when rental rates are endogenized under di¤erent

sets of aggregate production parameters, we �nd that our results are robust. To save

space, we will report the case with the most signi�cant changes in human capital rental

rates, especially for the two fastest-growing majors, law and medicine. This happens

when two (instead of one) cohorts are put under Sys.S and when (�1; �2) = (0:7; 0) ;

i.e., when low skill and high skill are highly substitutable while di¤erent major-speci�c

70For example, �e1 is reported to be 1.786 in Acemoglu (2002), between 1.43 and 3.33 in Ottaviano
and Peri (2008), around 1.54 in Goldin and Katz (2008), between 1.5 and 2.5 in Card (2009). For �2;
to the best of our knowledge, there exists no estimate of the elasticity of substitution across di¤erent
college majors.
71The baseline rental rates are the estimated fe�0mgm :The baseline L0 and its rental rate are

calculated using CASEN data on labor supply and wages by education group. The baseline
�
h0m
	
m

is predicted by the baseline model and aggregated across experience groups. Details available upon
request.
72In calculating these changes, we assume that all college students are represented in our model,

not just those in the CRUCH colleges. This is likely to overstate the changes in labor supply and
rental prices. It will be reassuring if our results are robust even to these overstated changes.
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high skills aggregate in a Cobb-Douglas fashion.73 Table 17 contrasts the outcomes

under this speci�cation with those under the partial equilibrium case with �xed rental

rates. In particular, it shows the major-speci�c percentage changes, relative to the

partial equilibrium case, in the average starting wage and the measure of graduates

for the recent cohort. Medicine sees the biggest percentage decrease in the average

starting wage by 3.9% and the number of graduates by 4.6%. Law experiences similar

decreases but to a lesser extent. All other majors experience a slight increase in both

outcomes. Endogenous skill prices do a¤ect outcomes in the short run, but only very

slightly. As a result, the average student welfare is almost the same as in the partial

equilibrium case.

Table 17 Changes from Partial to GE (%)

Mean Starting Wage Graduates

Medicine -3.9 -4.6

Law -0.8 -2.3

Engineering 0.8 0.5

Business 1.6 1.8

Health 2.2 2.4

Science 1.0 0.2

Arts&Social 0.4 0.4

Education 2.8 2.1

8 Conclusion

College-major-speci�c admissions system (Sys.J) and college-speci�c admissions system

(Sys.S) both have their advantages and disadvantages: whether or not the total welfare

of students under one system will improve under the alternative system becomes an

empirical question, one that has signi�cant policy implications. However, answering

this question is very di¢ cult since one does not observe the same population of students

under both regimes. In this paper, we have taken a �rst step.

We have developed and estimated an equilibrium college-major choice model under

Sys.J, allowing for uncertainty and peer e¤ects. Our model has been shown to match

73Intuitively, when di¤erent major-speci�c skills are less substitutable, an imbalance of major com-
position will have a larger negative impact on the level of aggregate high skill, ceteris paribus. This
e¤ect will be stronger when low skill is a better substitute for high skill.
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the data well. We have modelled the counterfactual policy regime (Sys.S) as a Stack-

elberg game in which a social planner chooses college-speci�c admissions policies and

students make enrollment decisions, choose course portfolios in the trial period, learn

about their �ts and then choose their majors. We have shown how the distribution of

student educational outcomes changes and provided bounds on potential welfare gains

from adopting the new system.

Although our empirical application is based on the case of Chile, our framework

can be easily adapted to other countries with similar admissions systems. A natural

extension to our paper, given data on student performance in college and/or market

returns to partial college training, is to model human capital production as a cumu-

lative process and to measure achievement at each stage of one�s college life. This

extension would allow for a sharper prediction of the impacts on student welfare when

the admissions system changes. With data on in-college performance, it is also feasible

to model learning as a gradual process, and to allow for additional in-college uncer-

tainties. Another extension would introduce more heterogeneity across colleges besides

their student quality and course requirements. A more comprehensive model would

allow the social planner to choose college investment together with admissions policies,

which would require data on college investment.

One important question arises naturally from our �ndings: what explains the preva-

lence of Sys.J? Except in the most pessimistic case, our results reveal that a switch from

Sys.J to Sys.S would improve average student welfare. If the goal were to maximize the

overall student welfare, the fact that countries like Chile have not switched to Sys.S

might be explained by some switching costs, such as increases in college operational

costs. A comparison of average student welfare levels suggests that the switching cost

would need to be at least as high as 2,760 USD per student for Chile not to make the

switch.74 However, countries may use other criteria in their choices of admissions sys-

tems. For example, we also �nd that Sys.J better serves advantaged students although

at the cost of the others.
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Appendix A

A1. A student�s idiosyncratic taste consists of three independent parts, such
that

�jmi = "ji + "mi + "jmi:

"ji~i:i:d:N(�j; �
2
col) is one�s taste for college j; with �j being the consumption value

of college j for an average student. "mi~N(0; �
2
majorm

) is the taste for major m:

"jm~i:i:d:N(0; �
2
prog) is one�s taste for the speci�c program:

A2 Adjustment
A2.1 Adjusted Value Functions
The �rst period in college lasts two years for all majors. Letting the total length of

major m be lm; the adjusted second-period value function is given by

ujm(x; �;e�jmjAjm) =
max

8><>:
0B@
Plm

� 0=3 �
� 0�3(vjm(x; �; Ajm)� Cjm (x))+PT

� 0=lm+1
��

0�3

"
E�
�
wm(� � lm � 1; x; Ajm; �; �jm; �)

�
+vjm(x; �; Ajm)

# 1CA ; V d
jm (x)

9>=>; :

The adjusted �rst-period value function is given by

U(x; �ja�; A) = max

(
max
(j;m)

(
�2E�(ujm(x; �;e�jmjAjm))

+
P2

� 0=1 �
� 0�1(vjm(x; �; Ajm)� Cjm (x)

)
; V 0 (x)

)
s:t: E�(ujm(x; �;e�jmjAjm)) = �1 if am < a�jm:
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A2.2 Empirical De�nitions of !; a� and Retention Rates
1) Programs aggregated in majorm have similar weights !m: In case of discrepancy,

we use the enrollment-weighted average of f!mlgl across these programs.
2) For the cuto¤ a�jm; we �rst calculate the adjusted cuto¤s using weights de�ned in 1)

and then set a�jm to be the lowest cuto¤ among all programs within the (j;m) group.

3) The retention rate in (j;m) is the ratio between the total number of students staying

in (j;m) and the total �rst-year enrollment in (j;m) :

A3 Estimation and Equilibrium-Searching Algorithm
Without analytical solutions to the student problem, we integrate out their un-

observed tastes numerically: for every student x; draw R sets of taste vectors �. The

estimation involves an outer loop searching over the parameter space and an inner loop

searching for equilibria. The algorithm for the inner loop is as follows:

0) For each parameter con�guration, set the initial guess of o at the level we observe

from the data, which is the realized equilibrium.

1) Given o; solve student problem backwards for every (x; �), and obtain enrollment

decision
�
�1jm (x; �ja�; A)

	
jm
:75

2) Integrate over (x; �) to calculate the aggregate fAjmgjm ; yielding onew:
3) If konew � ok < �; a small number, end the inner loop. If not, o = onew and go to

step 1).

This algorithm uses the fact that all equilibrium objects are observed to deal with

potential multiple equilibria: we always start the initial guess of o at the realized

equilibrium level and the algorithm should converge to o at the true parameter values,

moreover, the realized equilibrium o also serves as part of the moments we target.

Additional Tables

1. Data

75Conditional on enrollment in (j;m) ; the solution to a student�s continuation problem follows a

cuto¤ rule on the level of
P

n �jmn�n s N
�
0;
P

n �
2
jmn�

2
�n

�
, which yields closed-form expressions for

E(ujm(x; �; �jjAjm)): Details are available upon request.
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Table A1.1 Score Weights (!) and Length of Study

Weightsa (%) Length

Language Math GPA Social Sc Science max(Social Sc., Science)b (years)

Medicine 22 30 25 0 23 0 7

Law 33 19 27 21 0 0 5

Engineering 18 40 27 0 15 0 6

Business 21 36 31 0 0 12 5

Health 23 29 28 0 20 0 5

Science 19 36 30 0 15 0 5

Arts&Social 31 23 28 18 0 0 5

Education 30 25 30 0 0 15 5
aWeights used to form the index in admissions decisions, weights on the six components add to 100%:
bBusiness and education majors allow student to use either social science or science scores to form

their indices, students use the higher score if they took both tests.

Table A1.2 College-Major-Speci�c Cuto¤ Index

Medicine Law Engineering Business Health Science Arts&Social Education

Tier 1 716 679 597 609 640 597 578 602

Tier 2 663 546 449 494 520 442 459 468

Tier 3 643 475 444 450 469 438 447 460

The lowest admissible major-speci�c index across all programs within each tier-major category.

Table A1.3 College-Major-Speci�c Annual Tuition (1,000 Peso)

Medicine Law Engineering Business Health Science Arts&Social Education

Tier 1 4,546 3,606 4,000 3,811 3,085 3,297 3,086 3,012

Tier 2 4,066 2,845 2,869 2,869 2,547 2,121 2,292 1,728

Tier 3 4,229 2,703 2,366 2,366 2,391 2,323 2,032 1,763

The average tuition and fee across all programs within each tier-major category.
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Table A1.4 Course Credit Weights (�) Averaged over Tiers

% General Coursesa Major-speci�cb

Science Social Sci.&Language Econ&Business Math&Stats Medical

Medicine 6.1 1.3 0 1.7 8.2 82.7

Law 0 5.6 5.9 0 0 88.5

Engineering 8.8 2.3 7.8 16.8 0 64.2

Business 0 5.7 10.9 14.1 0 69.3

Health 4.9 3.9 0 2.3 12.1 76.8

Science 33.9 5.3 0 17.6 0 43.1

Arts&Social 0.6 19.3 2.4 5.8 0 71.9

Education 17.6 19.9 0 11.0 0 51.5

Each row add up to 100%. We calculate the credits in a course category as a percentage of the total

credits in each (tier, major), then average over tiers for each major.
a Courses required in more than one major
b Course required exclusively for the major in question

Table A1.5 Average Test Scores

Medicine Law Engineering Business Health Science Arts&Social Education

Tier 1 773 709 719 722 696 687 664 661

Tier 2 723 634 619 605 636 590 598 595

Tier 3 704 575 578 557 588 559 545 564

The average Math+language
2

across all students within each tier-major category.

Table A1.6 Wage Regressions

Peer Ability Own Ability

Medicine -0.65 0.48

Law 0.45 1.00

Engineering 0.74 1.44

Business 1.64 1.47

Health 0.73 0.35

Science 1.68 0.97

Arts&Social 0.65 1.04

Education 0.84 0.45

Major-Speci�c wage regressions.

Other controls are experience, experience2; gender.
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2. Parameter Estimates
We �x the annual discount rate at 0:9.76 Table A2.1 shows the course-speci�c

contribution of own ability to human capital production, i.e., fngn. The left panel
shows n�s in major-speci�c courses. The right panel shows n�s in general courses,

where G. stands for "general."

Table A2.1 Human Capital Production: Own Ability ()

Major-Speci�c Courses General Courses

Medicine 0.04 (0.01) G. Science 0.06 (0.01)

Law 1.53 (0.03) G. Social Sci., Language 0.66 (0.10)

Engineering 1.77 (0.02) G. Econ and Business 0.14 (0.02)

Business 1.17 (0.01) G. Math and Stats 1.36 (0.17)

Health 0.01 (0.004) G. Medicine+Health 0.10 (0.03)

Science 0.03 (0.01)

Arts&Social 1.12 (0.02)

Education 1.69 (0.02)

Table A2.2 shows how the value of one�s outside option varies with one�s charac-

teristics.77 The constant term of the outside value for a student from a low income

family is only 57% of that for one from a high income family. Relative to a high school

graduate, the outside value faced by a college dropout is about 3% higher.

Table A2.2 Outside Value

Constant (�01) 13131.8 (60.1)

Low Income (�02) 0.57 (0.01)

Language (�1) 351.0 (5.6)

Math (�2) 330.7 (5.2)

Dropout (�) 1.03 (0.02)

Table A2.3 shows major-independent parameters that govern one�s consumption

value: the left panel for college programs and the right panel for majors. Relative

to Tier 3 colleges, Tier 2 colleges are more attractive to an average student, while

top-tier colleges are less attractive.78 We have restricted �majorm to be the same across

76Annual discount rates used in other Chilean studies range from 0:8 to 0:96:
77We cannot reject the hypothesis that the outside value depends only on math and language scores,

therefore, we restrict �l for other test scores to be zero.
78One possible explanation is that the two top tier colleges are both located in the city of Santiago,

where the living expenses are much higher than the rest of Chile.
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majors that are science-oriented (engineering, science, health and medicine) and the

same across the other four majors.79 The standard deviations of student tastes suggest

substantial heterogeneity in student educational preferences.

Table A2.3 Consumption Value (Major-Independent Parameters)

College Value Major Value

Tier 1 (�1) -664.0 (285.9) a2m (�2m) 0.017 (0.001)

Tier 2 (�2) 3820.5 (228.3)

�col 1094.0 (151.3) �majorjscience-related majors 4875.5 (34.3)

�prog 3079.0 (150.5) �majorjother majors 4497.1 (84.0)

�3 is normalized to 0:

Table A2.4 shows major-independent cost parameters. The impact of tuition is

larger for low-family-income students than their counterpart. A student�s costs increase

signi�cantly if her ability is far from her peers.

Table A2.4 College Cost (Major-Independent Parameters)

I(Low Inc)*Tuition (c1) 4.72 (0.09)

I(Low Inc)*Tuition2 (c2) -0.0004 (0.0001)

(am � Ajm)
2 (�4) -4.61 (0.13)

Table A2.5 shows parameters in the wage function, other than the e¤ects of own

ability and peer quality. It is worth noting that females earn less than their male

counterparts in most majors, which contributes to the lower college enrollment rate

among females.

79We have also tried more �exible speci�cations, but we cannot reject the null that distribution of
tastes are the same within each of the two broad categories.

48



Table A2.5 Other Parameters in Log Wage Functions

Constant Experience Experience2 female

Medicine 7.98 (0.04) 0.09 (0.01) -0.002 (0.001) 0.006 (0.002)

Law -1.93 (0.01) 0.10 (0.03) -0.007 (0.002) 0.22 (0.01)

Engineering -4.68 (0.10) 0.10 (0.01) -0.002 (0.001) -0.20 (0.02)

Business -11.62 (0.02) 0.11 (0.01) -0.003 (0.001) -0.22 (0.02)

Health 3.54 (0.02) 0.02 (0.002) -0.0001 (0.001) -0.29 (0.03)

Science -8.68 (0.02) 0.05 (0.01) -0.0007 (0.0001) -0.24 (0.03)

Arts&Social -5.15 (0.03) 0.05 (0.02) -0.0001 (0.0001) 0.15 (0.02)

Education -7.01 (0.04) 0.07 (0.01) -0.002 (0.001) -0.75 (0.03)

Wage Shock (��) 0.35 (0.04)

Appendix B

B1 Illustration: Gender Di¤erences
To explore the importance of gender-speci�c preferences in explaining di¤erent en-

rollment patterns across genders, we compare the baseline model prediction with a new

equilibrium where females have the same preferences as males.80 Table B1 shows the

distribution of enrollees within each gender in the baseline equilibrium and the new

equilibrium. When females share the same preferences as males, there no longer exists

a major that is obviously dominated by one gender. Some di¤erences between male

and female choices still exist. For example, although college enrollment rate among

females increases from 26:6% to 27:3% (not shown in the Table); it is still lower than

that among males (30:1%) : Moreover, compared with males, females are still more

likely to enroll in social science. One reason is that, on average, females have lower

test scores than females; and they have comparative advantage in majors that uses

language more than math.81

80The purpose of this simulation is simply to understand the importance of preferences; the simu-
lation ignores potential changes in admission cuto¤s.
81The average math score for males (females) is 572 (547), and the average language score for males

(females) is 557 (553).
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Table B1 Female Enrollee Distribution

(%) Baseline New

Male Female Male Female

Medicine 4.5 3.0 5.1 4.9

Law 3.6 3.1 3.3 6.5

Engineering 47.6 25.1 47.7 44.8

Business 9.8 11.0 10.2 9.5

Health 5.4 17.0 5.3 4.1

Science 9.3 8.9 9.2 10.3

Arts&Social 9.8 11.9 9.5 15.4

Education 10.2 19.4 9.8 4.4

B2 Counterfactual Model Details: Sys.S
B2.1 Student Problem
B2.1.1 Continuation Decision
Given her �rst-period course-taking choiceM (x; �; j; Aj) ; a student learn about her

�ts e�jM(�) � [m2M(x;�;j;Aj)e�jm. Given �x; �; e�jM(�)
�
and Aj � fAjmgm ; an enrollee in

college j chooses one major of interest or drops out:

uj(x; �; e�jM(�)jAj) =

max

8><>:maxm2Ma

8><>:
vjm(x; �; Ajm)� Cjm (x)+

E
PT

� 0=3 �
� 0�2

 
wm(� � 3; x; Ajm;e�jm; �jm; �)

+vjm(x; �; Ajm)

! 9>=>; ; V d
jm (x)

9>=>; :

Let �2mjj
�
x; �; e�jM(�)jAj

�
= 1 if an enrollee in j with

�
x; �; e�jM(�)

�
chooses major m:

B2.1.2 Enrollment and Course Choices
We assume that in the �rst period of college, an enrollee who allocates her time

according to f�mgm pays the weighted averaged cost for and derives the weighted

averaged consumption value from various majors, with weights given by f�mgm. A
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student chooses the best among colleges she is eligible for and the outside option:

U (x; �jq (a) ; A) =

max

(
max
j
f�E�uj(x; �; e�jM(�)jAj) +

X
m

�m(vjm(x; �; Ajm)� Cjm (x))g; V 0 (x)

)
s:t: E�uj(x; �; e�jM(�)jAj) = �1 if  j (q (a)) = 0;

�m =
E(�2mjj

�
x; �; e�jM(�)jAj

�
= 1)P

mE(�
2
mjj
�
x; �; e�jM(�)jAj

�
= 1)

:

where q (a) is the planner�s admissions rule for a student with ability a; and  j (q (a)) =

1 if the student is eligible for college j: The last constraint requires student�s choice of

f�mgm be consistent with her expected second-period major choice. Let �
1
j (x; �jq (a)) =

1 if the student chooses college j and �m (x; �; j) be the consistent �m for an enrollee

in j with (x; �) :

B2.2 Planner�s Problem
To formalize the constraint on the planner�s strategy space, we introduce the fol-

lowing notation. Let � � f�1; �2; �3; �4g = f[1; 1; 1] ; [0; 1; 1] ; [0; 0; 1] ; [0; 0; 0]g ; where
the j-th component of each �n represents the admissions to college j; i.e., �nj = 1 if a

student is eligible for college j: Denote the planner�s admissions policy for student with

ability a as q (a) ; we restrict the planner�s strategy space to be probabilities over �.

That is, for all a; q (a) 2 Q � �([1; 1; 1] ; [0; 1; 1] ; [0; 0; 1] ; [0; 0; 0]) ; a convex and com-
pact set. The probability that a student is eligible for college j, denoted as  j (q (a)),

is given by  j (q (a)) =
P4

n=1 qn (a)�nj:

Consistent with the assumptions on student course taking, we assume that in the

�rst period in college, a student with choice f�mgm will take �m slot in major m; and
that in the second period in college, she will take one slot in her chosen major and zero

slot in other majors. Let z = [y; I (female)] be the part of x that is not observable to

the planner, the planner�s problem reads:

� = max
fq(a)2Qg

�Z
a

eU (ajq (a) ; A) fa(a)da�
where eU (ajq (a) ; A) = R

z

R
�
U (x; �jq (a) ; A) dF� (�) dFz (zja) is the expected utility of

student with ability a; integrating out student characteristics that are unobservable to
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the planner.82

For each a; one can take the �rst order conditions with respect to fql(a)g4l=1 ; subject
to the constraint that q (a) 2 Q. Given the nature of this model, the solution is

generically at a corner with one of the ql (a)�s being one. Thus, we use the following

algorithm to solve the planner�s problem. For each student a; calculate the net bene�t

of each of the four pure strategies ([1; 1; 1] ; [0; 1; 1] ; [0; 0; 1] ; [0; 0; 0]). The (generically

unique) strategy that generates the highest net bene�t is the optimal admissions policy

for this student: Let "�" stand for (q (a) ; A) ; it can be shown that the net bene�t of
applying some q (a) to student with ability a is:

fa(a)

Z
z

Z
�

U (x; �j�) dF�(�)dFzja (z) (12)

+fa(a)
X
j

 j(�)�1j(aj�)
X
m

(am � Ajm)�m (�) bm'mA
'm�1
jm Kjm

�fa(a)
X
j

 j(�)�1j(aj�)
X
m

(am � Ajm)�m (�)

0@ �3m(1 +
P2

� 0=1 �
� 0�1 �2jm

�1jm
)

+2�4
P2

� 0=1 �
� 0�1 �2jm

�1jm
(Ajm � A0jm)

1A :

Elements in (12) will be de�ned in the next paragraph. The �rst line of (12) is the

expected individual net bene�t for student a: An individual student has e¤ect on her

peer�s net bene�ts because of her e¤ect on peer quality: the second line calculates her

e¤ect on her peers�market return; the third line calculates her e¤ect on her peers�

e¤ort costs. Peers of student a are those who study in the programs she takes courses

in. Student a0s e¤ect on her peers is weighted by her course-taking intensity �m (�).
To be more speci�c, �1j(aj�) =

R
z

R
�
�1j(x; �j�)dF�(�)dFzja (z) is the probability that

a student with ability a matriculates in college j:  j(�)�1j(aj�) is the probability that
student a is enrolled in college j: �1jm is the size of program (j;m) in the �rst period,

where a student �m (�) seat in majorm: Ajm is the average ability among these students.

�1jm =

Z
a

�1j(aj�) j(�)�m (�) fa(a)da;

Ajm =

R
a
 j(�)�1j(aj�)�m (�) amfa(a)da

�1jm
:

82Given that test scores are continuous variables, we nonparametrically approximate Fzja (z) by
discretizing test scores and calculating the data distribution of z conditional on discretized scores. In
particular, we divide math and language test scores each into l narrowly de�ned ranges and hence
generate l2 bins of test scores. All a0s in the same bin share the same Fzja (z) :
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The second line of (12) relates to market return. bm is the part of expected lifetime

income that is common to all graduates from major m:83 Kjm is the average individual

contribution to the total market return among students who take courses in (j;m) :

Kjm �
R
a
 j(�)kjm (a) fa(a)da

�1jm
;

kjm (a) =Z
z

e�3mI(female)
Z
�

�1j(x; �j�)�m (�)
Z
�

�2mjj (x; �; �jAj) a
P
n �jmnn

m e(
P
n �jmn�n)dF� (�) dF�(�)dFzja (z) :

Students with higher am contribute more to the total market return of their peers. The

third line of (12) relates to e¤ort cost. �2jm is the size of program (j;m) in the second

period: A
0
jm is the average ability among students enrolled in (j;m) in the second

period. Formally,

�2jm =

Z
a

�1j(aj�) j(�)�2mjj (aj�) fa(a)da;

A0jm =

R
a
 j(�)�1j(aj�)�2mjj (aj�) amfa(a)da

�2jm
;

where �2mjj (aj�) =
R
z

R
� �

1
j (x;�j�)

R
� �

2
mjj(x;�;�)dF�(�)dF�(�)dFzja(z)

�1j (aj�)
is the probability that student

a will take a full slot in (j;m) in the second period conditional on enrollment in j:

B2.3 Equilibrium

De�nition 2 An equilibrium in this new system consists of a set of student enroll-

ment and continuation strategies
n
�1j(x; �jq (a) ; A);

�
�2mjj(x; �; e�jM(�)jAj)

	
m

o
j
; a set of

admissions policies fq� (a)g ; and a set of program-speci�c vectors

83bm = E
�
e�
�PT

� 0=3 �
� 0�1e(�0m+�1m(�

0�3)��2m(� 0�3)2), so that the expected major-m market value
of student with ability a can be written as

bm

Z
z

e�3mI(female)
Z
�

�1j (x; �j�)
Z
�

�2mjj (x; �; �jAj)h (am; Ajm; �) dF� (�) dF�(�)dFzja (z)

= bm

Z
z

e�3mI(female)
Z
�

�1j (x; �j�)
Z
�

�2mjj (x; �; �jAj) a
P

n �jmnn
m A

'm
jm e

P
n �jmn�mdF� (�) dF�(�)dFzja (z)

= bmA
'm
jm

Z
z

e�3mI(female)
Z
�

�1j (x; �j�)
Z
�

�2mjj (x; �; �jAj) a
P

n �jmnn
m e

P
n �jmn�mdF� (�) dF�(�)dFzja (z) :
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f
jmgjm �
�
�1jm; �

2
jm; Kjm; Ajm; A

0
jm

	
jm
; such that

(a)
�
�2mjj(x; �; e�jM(�)jAj)

	
m
is an optimal choice of major for every (x; �; e�jM(�)) and

Aj;

(b)
�
�1j (x; �jq (a) ; A)

	
j
is an optimal enrollment decision for every (x; �) ; for all q (a)

and A;

(c) q� (a) is an optimal admissions policy for every a;

(d) f
jmg is consistent with fq� (a)g and student decisions.

B2.3.1 Equilibrium-Searching Algorithm:
We use the same random taste vectors � for each student as we did for the es-

timation. In the new model, student continuation problem does not have analytical

solutions, so we also draw K sets of random e¢ ciency vectors �. Finding a local

equilibrium can be viewed as a classical �xed-point problem, � : O ) O; where

O =
�
[0; 1]� [0; 1]�

�
0; A

�
�
�
0; A

�
�
�
0; K

��JM
; o = 
jm 2 O: Such a mapping ex-

ists, based on this mapping, we design the following algorithm to compute equilibria

numerically.

0) Guess o = f
jmgjm �
�
�1jm; �

2
jm; Kjm; Ajm; A

0
jm

	
jm
:

1) Given o; for every (x; �) and every pure strategy q (a) ; solve the student problem

backwards, where the continuation decision involves numerical integration over e¢ -

ciency shocks �: Obtain �2mjj (x; �jq (a)) and �1j (x; �jq (a)) :
2) Integrate over (�; z) to obtain �2mjj (ajq (a)) ; �1j (ajq (a)) and eU (ajq (a) ; A) :
3) Compute the net bene�t of each q (a) ; and pick the best q (a) and the associated

student strategies. Do this for all students, yielding onew:

4) If konew � ok < �; where � is a small number, stop. Otherwise, set o = onew and go

to step 1).

B2.3.2 Global Optimality
After �nding the local equilibrium, we verify ex post that the planner�s decisions

satisfy global optimality. Since it is infeasible to check all possible deviations, we

use the following algorithm to check global optimality.84 Given a local equilibrium

o =
�
�1jm; �

2
jm; Kjm; Ajm; A

0
jm

	
jm
; we perturb o by changing its components for a

random program (j;m) and search for a new equilibrium as described in B2.3.1. If

the algorithm converges to a new equilibrium with higher welfare, global optimality is

84Epple, Romano and Sieg (2006) use a similar method to verify global optimality ex post.
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violated. After a substantial random perturbations with di¤erent magnitudes, we have

not found such a case. This suggests that our local equilibrium is a true equilibrium.

B2.4 Endogenous Extension Time ext (�)
To re�ect the fact that colleges are normally not fully �exible and only provide two

graduation seasons per year, we assume that the extra time in college is measured in

mulitiples of semesters (0.5 years) and that ext(�) is a step function. In particular, if a

student i divide her time across majors according to �i = f�imgm and if her intended
�nal major is m; then her extra years in college is given by

ext(�i) =

8>>>>>><>>>>>>:

0 if �im � 7=8
0:5 if �im 2 [5=8; 7=8)
1 if �im 2 [3=8; 5=8)
1:5 if �im 2 [1=8; 3=8)
2 if �im < 1=8

: (13)

Given that the �rst period is 2 years or 4 semesters, 1
8
of the �rst period is equivalent

to half a semester. Therefore, (13) speci�es that if a student has spent more than

3.5-semester-worth time in major m in the �rst period, she can graduate on time (the

�rst line); otherwise if she has spent over 2.5-semester-worth of time in major m; she

needs to spend one more semester (0.5 years) in college (the second line) etc. We have

also tried other cuto¤s (e.g., instead of half a semester, we used multiples of 3
4
of a

semester or multiples of one semester to form the cuto¤s), the results are qualitatively

similar.

B3 A Closer Look at Sys.S: Gainers and Losers
To illustrate who are more likely to gain/lose, we generate an indicator variable

that re�ects whether the change in a student welfare is positive, zero or negative.

Then, we run an ordered logistic regression of this indicator on student observable

characteristics. Table B3 shows the regression results. Females and students from low

income families are more likely to be gainers than their counterparts. Students with

higher math scores are more likely to gain, while neither language score nor high school

GPA has signi�cant e¤ects. A welfare loss is more likely for students with higher score

in their track-speci�c subjects (science or social science) and for those with a larger

gap between language score and math score. In other words, when a student has a

clear comparative advantage, the cost of delayed specialization is likely to outweigh its
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bene�t.

Table B2 Welfare Gain and Student Characteristics

Female Low Income Language
1000

Math
1000

HSGPA
1000

Subject
1000

(language�math)2
1000

Coe¢ cient 0.42�� 9.62�� -1.83 9.82�� 0.63 -2.72� -0.025��

Std. Dev. 0.10 0.43 0.96 0.83 0.72 0.86 0.0058

Ordered logistic regression, dependent variable in order: positive/zero/negative welfare change.

Num of Obs: 10,000
� signi�cant at 5% level, �� signi�cant at 1% level.

B4 Proof of existence in a simpli�ed (baseline) model.
Assume there are two programsm 2 f1; 2g and a continuum of students with ability

a 2
�
0; A

�2
that are eligible for both programs. Let the average ability in program j

be Am.85 The utility of the outside option is normalized to 0. The utility of attending

program 1 is v1(a;A1) for all who have ability a; and v2(a;A2) � �, where � is i.i.d.

idiosyncratic taste, a continuous random variable.

De�nition 3 A sorting equilibrium consists of a set of student enrollment strategies

f�m(a; �j; �)gm ; and the vector of peer quality A = [A1; A2] ; such that
(a) f�m (a; �jA)gm is an optimal enrollment decision for every (a; �) ;
(c) A is consistent with individual decisions such that, for m 2 f1; 2g ;

Am =

R
a

R
�
�m(a; �jA)amdF� (�) dFx(x)R

a

R
�
�m(a; �jA)dF� (�) dFx(x)

: (14)

Proposition 1 A sorting equilibrium exists.

Proof. The model can be viewed as a mapping

� : O ) O;

where O =
�
0; A

�2
; o = [A1; A2] :. The following shows that the conditions required by

Brouwer are satis�ed and hence a �xed point exists.

85It can be shown that conditional on enrollment in a program, the solution to a student�s con-
tinuation problem follows a cuto¤ rule on the level of e¢ ciency shock �m, which yields closed-form
expressions for E�m(u(a; �; �mjAm)). As such, vm (�) can be viewed as the net expected utility of enroll-
ment, i.e., the di¤erence between E�m(u(a; �; �mjAm)) and the cost Cm (am; Am) ; both are continuous
functions. Details are available upon request.
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1) The domain of the mapping O =
�
0; A

�2
is compact and convex.

2) Generically, each student has a unique optimal enrollment decision. In particular,

let �� (a;A) � v2 (a;A2)�max f0; v1 (a;A1)g

� (a; �jA) =

8><>:
[0; 1] if � < �� (a;A)

[1; 0] if v1 (a;A1) > 0 and � � �� (a;A)

[0; 0] if v1 (a;A1) � 0 and � � �� (a;A)

9>=>; :

Given that both va (a;Aa) are continuous functions of (a;A) ; so are max f0; v1 (a;A1)g
and �� (a;A) :

3) Given the result from 2), the population of students with di¤erent (a; �) can be aggre-

gated continuously into the total enrollment in programm via
R
a

R
�
�m(a; �jA)dF� (�) dFx(x)

and the total ability inm via
R
a

R
�
�m(a; �jA)amdF� (�) dFx(x); hence the right hand side

of (14) ; being a ratio of two continuous functions, is continuous in A. That is, the map-

ping � is continuous.

4) "Every continuous function from a convex compact subset K of a Euclidean space

to K itself has a �xed point." (Brouwer�s �xed-point theorem)

In the full model, where there are more than two programs and the taste shock is

a vector, there will be cuto¤ hyperplanes. It is cumbersome to show, but the logic of

the proof above applies.

Model Fit

Table B3 Enrollment (Low Income) (%)

Data Model

Tier 1 2.3 2.5

Tier 2 12.6 12.0

Tier 3 9.7 9.5

Enrollment among students with low family income.
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Table B4 Enrollee Distribution Across Majors (Low Income) (%)

Data Model

Medicine 1.7 1.5

Law 3.4 3.1

Engineering 35.1 34.8

Business 10.0 10.1

Health 12.2 11.2

Science 8.2 8.9

Arts&Social 11.0 12.3

Education 18.5 18.5

Distribution across majors among enrollees with low family income.

Table B5 Correlation (starting wage, own ability)

Tier 1 Tier 2 Tier 3

Data Model� Data Model Data Model

Medicine 0.01 0.01 -0.01 -0.01 0.01 0.02

Law -0.07 -0.01 0.08 -0.004 -0.06 -0.01

Engineering 0.09 0.04 0.13 0.05 0.09 0.05

Business 0.14 0.04 0.14 0.04 0.02 0.04

Health -0.05 -0.01 0.08 0.01 0.08 0.02

Science 0.002 0.003 0.15 0.02 0.21 0.05

Arts&Social 0.19 0.05 0.05 0.02 0.09 0.05

Education 0.12 0.04 0.02 0.07 0.11 0.06
�Averaged corr(wjm; am) over 100 simulated cases, each

using an i.i.d. set of random draws to simulate the equilibrium.

Table B6 Mean Test Scores Among Outsiders

Data Model

Math 533 534

Language 532 534

HS GPA 542 542

Max(Science, Soc Science) 531 533

Mean test scores among students who chose the outside option.
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Appendix C. Other Examples of Sys.J86

C1 China (Mainland)
1. High School Track: Students choose either science or social science track in the

second year of high school and receive more advanced training corresponding to the

track of choice.

2. College Admissions: At the end of high school, college-bounding students take

national college entrance exams, including three mandatory exams in math, Chinese

and English, and track-speci�c exams. A weighted average of the national exam scores

forms an index of the student, used as the sole criterion for admissions. College ad-

missions are college-major speci�c: a student is eligible for a college-major pair if her

index is above the program�s cuto¤.87

3. Transfer Policies: Transfers across majors are either near impossible (e.g., be-

tween a social science major and a science major) or very rare (e.g., between similar

majors).88

C2 Japan
1. High School Track: similar to the case in C1.

2. College Admissions: Students applying to national or other public universities

take two entrance exams. The �rst is a nationally administered uniform achievement

test, which includes math, Japanese, English and speci�c subject exams. Di¤erent

college programs require students to take di¤erent subject exams. The second exam

is administered by the university that the student hopes to enter. A weighted average

of scores in various subjects from the national test forms the �rst component of the

admissions index; a weighted average of university-administered exam scores forms the

other. The �nal index is a weighted average of these two components. College admis-

sions are college-major speci�c in most public universities, except for the University of

Tokyo, which uses category-speci�c admissions (there are six categories, each consists

of a number of majors).

86Major Sources of Information: 1. "Survey of Higher Education System" (2004), OECD Higher
Education Programme, 2. OECD Reviews of Tertiary Education (by country), 3. Department of
Education (by country), 4. Websites of major public colleges in each country.
87The cuto¤s may be di¤erent based on the student�s home province.
88In 2001, Peking University started a small and very selective experiment program which admits

students to two broad areas (social science or science) according to their high school track. Students
are free to choose majors within their areas in upper college years.
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3. Transfer Policies:

1) University of Tokyo: Students choose one major within the broad category in their

sophomore year. After that, a student can transfer to a di¤erent major within her

current category but only with special permission and she has to spend one extra year

in college, besides meeting the grade requirement of the intended major. Transfer

across categories is rarely allowed.

2) Other public universities: Changing majors is normally possible only with special

permission at the end of the sophomore year, and it may require much make-up or an

extra year in college.

C3 Spain
1. High School Track: similar to the case in C1, but with three tracks to choose

from: arts, sciences and technology, and humanities and social sciences.

2. College Admissions: All public colleges use the same admissions procedure.

College-bounding students take the nation-wide Prueba de Acceso a la Universidad

(PAU) exams, which consist of both mandatory exams and track-speci�c exams. Ad-

missions are college-major speci�c, and the admissions criterion is a weighted average

of student high school GPA and the PAU exam scores.

3. Transfer Policies: Transfers across majors require that the student have accu-

mulated a minimum credit in the previous program that is recognized by the intended

program, where the recognition depends on the similarity of the contents taught in

the two programs. Transfers across similar majors can happen, although not common,

in which cases, the student usually has to spend one extra year in college. Transfers

across very di¤erent majors are rarely allowed.

C4 Turkey
1. High School Track: Students in regular high schools choose, in their second

year, one of four tracks: Turkish language�Mathematics, Science, Social Sciences, and

Foreign Languages. In Science High Schools only the Science tracks are o¤ered.

2. College Admissions: Within the Turkish education system, the only way to enter

a university is through the Higher Education Examination-Undergraduate Placement

Examination (YGS-LYS). Students take the Transition to Higher Education Examina-

tion (YGS) in April. Those who pass the YGS are then entitled to take the Undergrad-

uate Placement Examination (LYS) in June, in which students have to answer 160 ques-

tions(Turkish language(40), math(40), philosophy(8), geography(12), history(15), reli-
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gion culture and morality knowledge(5), biology(13), physics(14) and chemistry(13))

in 160 minutes. Only these students are able to apply for degree programs. Admis-

sions are college-major speci�c and students are placed in courses according to their

weighted scores in YGS-LYS.

3. Transfer Policies: Most universities require a student meet strict course and

GPA requirement and provide faculty reference in order to transfer majors. In a few

universities, the transfer policies are more �exible. However, transfers across very

di¤erent majors are near infeasible and transfers across similar majors are uncommon

as well.
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Figure 1: Wage Pro�le by Experience
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