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1 Backward Induction Solution Method

The backward induction solution method is applicable to a broad class of mechanisms, which

includes BM, constrained and unconstrained DA, first preference first, Chinese parallel, and

variants or hybrids of the above.1 In the following, we refer to this class as the class under

consideration. This section is organized as follows. First, we prove that the optimization

problem for strategic households can be fully solved via backward induction. Second, we

show how one can apply this method to mechanisms other than BM in the class under

consideration. Then, we formally describe the dimensionality involved in the solution.

1.1 Proof

In the following, we prove that our solution method solves a strategic household’s problem

fully, using the standard BM as an example. The proof is easily adaptable to other mech-

anisms in the class under consideration. Proofs for these other cases are available upon

request.

Proposition 1 Consider a standard Boston Mechanism where a household can choose up

to R schools out of J , who is given a vector of school-specific priorities
(
Si ≡ {sij}Jj=1

)
and

a random lottery number that is used in all rounds. Let vij be the value of being assigned to

School j for Household i, let χi be the vector of preference-related variables (e.g., household

characteristics, location and tastes), let π (Si, χi, A) be the expected payoff from listing A.
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‡University of Edinburgh, CEPR, FEDEA and IZA.
1Particular variants of the discussed algorithms can be characterized in a similar fashion, e.g., the mech-

anism in Cambridge, serial dictatorship and the Pan London Admissions.
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Then, the solution to maxA∈P(J ;R) π (Si, χi, A) is equivalent to the solution to the following

recursive problem, with value functions given by

V r
(
Si, χi, ξ

r
i

)
= max

j∈J

{
prj

(
Si|ξ

r
i

)
vij + (1− prj

(
Si|ξ

r
i

)
)V r+1

(
Si, χi, ξ

r+1
i

)}
, (1)

s.t. ξ
r+1
i =

{
min

{
cutj , ξ

r
i

}
if sij = sj and r = rj ,

ξ
r
i otherwise,

prj

(
Si|ξ

r
i

)
=


1 if r < rj or (r = rj and sij > sj),

max
{

0,
ξ
r
i−cutj
ξ
r
i

}
if r = rj and sij = sj ,

0 otherwise.

V R+1 (·) = vi0, ξ
1
i = 1.

Proof. Step 1: show recursive representation. An optimal strategy is a list A of

ranked schools of length n ≤ R. When n < R, there is a list of length R that yields the

same expected payoff and hence is also optimal (e.g., by adding a zero-probability school

for positions n + 1, ..., R). Therefore, without loss of generality, consider lists of length R.

Let prj(Si, A) be the probability of being admitted to school j when j is ranked the rth on A

for someone with priority score vector Si. As a common feature of mechanisms in the class

under consideration, the ranked schools on an application list are considered sequentially

in the procedure, and the rth-listed school (ar) is relevant only if one is rejected by all

previously listed schools. In particular, one’s probability of being admitted to ar does not

depend on which schools are listed after ar, i.e.,

prj(Si, A) = prj(Si, {ar′}
r−1
r′=1).

Therefore, the expected payoff from submitting A is given by

π (Si, χi, A)

≡ p1
a1(Si, A)vi,a1+(1−p1

a1(Si, A))

(
p2
a2(Si, A)vi,a2+(

1− p2
a2(Si, A)

) (
p3
a3(Si, A)vi,a3 + . . . (1− pRaR(Si, A))vi0)...

) )
=

p1
a1(Si)vi,a1+(1−p1

a1(Si))

(
p2
a2(Si, a1)vi,a2+(

1− p2
a2(Si, a1)

) (
p3
a3(Si, {ar′}

2
r′=1)vi,a3 + . . . (1− pRaR(Si, {ar′}R−1

r′=1))vi0)...
) ) .

It is easy to see that

max
A∈P (J,R)

π (Si, χi, A) (2)
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is equivalent to

V 1 (Si, χi) = max
j
{p1
j (Si)vij + (1− p1

j (Si))V
2(·, a1)},

with

V R+1(Si, χi, {ar′}Rr′=1) = vi0,

V R(Si, χi, {ar′}R−1
r′=1) = max

j

{
pRaR(Si, {ar′}R−1

r′=1)vij + (1− pRaR(Si, {ar′}R−1
r′=1))V R+1(·, {ar′}Rr′=1)

}
,

...,

V r(Si, χi, {ar′}r−1
r′=1) = max

j
{prj(Si, {ar′}

r−1
r′=1)vij + (1− prj(Si, {ar′}

r−1
r′=1))V r+1(·, {ar′}rr′=1)}.

That is, the best-permutation problem (2) can always be expressed in a recursive manner,

where the state space in value function V r (·) contains the ordered schools listed so far
{ar′}r−1

r′=1 . The recursive problem with {ar′}r−1
r′=1 as state variables in V

r (·) has the same
dimensionality as in (2) .

Step 2: show that the relevant information contained in {ar′}r−1
r′=1 is fully captured

by ξri . From the BM algorithm, it follows that admission probabilities to each school j can

be characterized by a triplet (rj , sj , cutj) , where rj is the round at which j is filled up,

sj is the priority score for which lottery numbers are used to break ties for j’s slots, cutj
is the cutoff of the lottery number for admission to j. School j will admit any rth-round

applicant before rj , any rthj -round applicant with sij > sj , and any rthj -round applicant

with score sj and random lottery higher than cutj ; and it will reject any other applicant.

That is, after being rejected by (a1, ...ar−1) , i will be rejected by ar if ar has been filled up

in some previous round; if ar still has available seats, whether or not ar will admit her at

Round r is fully determined by her score siar and her random lottery number. Among the

two factors, one’s priority score is fully determined by pre-determined characteristics (e.g.,

applicant characteristics, school characteristics and the interaction between the two) and

is independent of one’s application list. The lottery number is drawn after the application

is submitted and hence unknown to the applicant when making her decisions. Because

a household has a single lottery number across all tie-breaking cases, correlation arises

between admissions probabilities across rounds: the probability of being allocated in Round

r conditional on being rejected by (a1, ...ar−1) is (weakly) lower than the unconditional

probability. In particular, if one is rejected by a1 due to losing the lottery in Round 1

reveals that one’s lottery number is below cuta1 , if one is rejected again by a2 due to

losing the lottery in Round 2 reveals that one’s lottery number is below min {cuta1 , cuta2} ,
and so on. However, other than this, it follows from the algorithm that (a1, ...ar−1) bears

no information that is payoff relevant for one’s decision on ar. Therefore, the relevant
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information in (a1, ...ar−1) can be fully captured in an updated upper bound on one’s

lottery number ξ
r
i and the problem is fully described as in (1) .

Remark 1 Step 1 in the proof above holds in all mechanisms within the broad class under
consideration. Step 2 differs across specific mechanisms. For example, in some mechanisms,

one’s priority for a school also depends on the rank position of the school on her list, however,

it does not depend on other schools listed. One exception is the BM in Barcelona and Spain

in general, where one’s priorities for all schools depend on the school one listed first, which

makes these cases more complicated than regular cases, which can still be effi ciently solved

via backward induction, as shown in the main text. We show in the following that the

solution can be easily adapted to other mechanisms.

1.2 Backward Induction Solution Method under Various Mechanisms

The two properties, i.e., sequentiality and reducible history, are common across the class

of mechanisms under consideration.2 Therefore, our backward induction solution method

is applicable to all of them. In this class, mechanisms differ in two aspects. First, whether

or not the assignment in a given round is final (e.g., BM versus DA). Second, whether

or not the lottery numbers used to break ties for a given households for different schools

are correlated.3 In other words, the implementation of our solution method differs across

these mechanisms in the way a household computes and updates their beliefs about their

admissions probabilities when rejected by a school listed at position r. In the main text, we

have described the case of BM in detail. In the following, we show how these probabilities

may be constructed for some of the other best known mechanisms.4

1.2.1 DA (both constrained and unconstrained)

As in Abdulkadiroğlu, Chen and Yasuda (2015), we can characterize admissions probabilities

under DA through cutoffs (s̄j , cutj). In particular, the probability of being assigned to

school ar when rejected from the previously listed schools, pj (·), is independent of r and
depends only on whether one’s priority and/or lottery number are above or below the cutoffs

(s̄j , cutj). The probabilities can be characterized by (s̄j , cutj). Let ξ
r
i be the upper bound

2Across all mechanisms, it is commonly assumed in the literature that households are small players, who
take the equilibirum admissions probabilities as given.

3The most common practice is to use the same lottery number across all rounds for a given household.
4Particular variants of the discussed algorithms can be characterized in a similar fashion, e.g., the mech-

anism in Cambridge, serial dictatorship and the Pan London Admissions.
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of i’s lottery number after being rejected by first r − 1 choices (a1, ...ar−1) , then

pj

(
Si|ξ

r
i

)
=


1 if sij > sj ,

max
{

0,
ξ
r
i−cutj
ξ
r
i

}
if sij = sj ,

0 if sij < sj .

(3)

ξ
r+1
i =

{
min

{
cutj , ξ

r
i

}
if sij = sj ,

ξ
r
i otherwise.

1.2.2 The parallel Chinese system

This system is carefully described in Chen and Kesten (2017) as a hybrid of BM and DA. In

the parallel mechanism, rounds (r) and choice bands (b) shall be distinguished. Each choice

band consists of a number of rounds. Let l1 < l2 < ...lB be the cumulative numbers of rounds

at the end of each band. Allocation starts from Band 1, applicants are pre-accepted in every

round until Round l1 is reached (the end of the first choice band), when the assignment is

final. The algorithm proceeds into the rounds of the following choice band, starting from

Round l1 + 1, by pre-accepting applicants for the seats that are still available, until Round

l2 is reached. The procedure continues up until everybody is assigned a seat. Probability

of admissions can be characterized for each school by (b̄j , s̄j , cutj), where b̄j is the choice

band at which school j is filled up, and the remaining is as in BM or DA.

ξ
r+1
i =

{
min

{
cutj , ξ

r
i

}
if sij = sj and lbj−1 + 1 ≤ r ≤ lbj ,

ξ
r
i otherwise,

(4)

prj

(
Si|ξ

r
i

)
=


1 if r ≤ lbj−1 or (lbj−1 + 1 ≤ r ≤ lbj and sij > sj)

max
{

0,
ξ
r
i−cutj
ξ
r
i

}
if lbj−1 + 1 ≤ r ≤ lbj and sij = sj ,

0 otherwise.

1.2.3 First preference first systems

These systems include any mechanism where priorities are determined by the rank a par-

ticular school is given on the list. In cases where assignments are final in each round,

the implementation of the backward induction is similar to the BM case. In cases where

students are only pre-accepted in each round, the implementation is similar to the DA case.
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1.3 Dimensionality of Strategic Household’s Problem under BM

Case 1) School-Specific Priorities and Lottery Numbers: the dimensionality is J ×R, i.e.,
choosing the best school out of J for R times.

Case 2) School-Specific Priorities and Single Lottery Number
Let Or ⊆ J be the subset of schools that have been filled up by the beginning of Round

r, the size of which is given by |Or| ≡
∑J

j=1 I (r > rj) . Let Jr (Si) ⊆ Or+1 be the subset

of schools for which a household with priority score vector Si can possibly be subject to

lotteries in round r, the size of which is given by

|Jr (Si)| ≡
J∑
j=1

I (sij = sj , r = rj) . (5)

Let NAr (Si) ⊆ Or+1 be the subset of schools that would reject i for sure in Round r (NA

for not available).

In Round 1, ξ
1
i ∈ {1} . For Round r > 1, including the unconditional upper bound of 1, the

maximum number of different values the state variable ξ
r
i can take is 1 +

∑r−1
r′=1

∣∣∣Jr′ (Si)∣∣∣,
which happens when the cutj’s are all different and those occur in Round r are uniformly

higher than those occurring in Round r + 1.5 Notice 1) ξ
r
i = 1 for r > 1 is possible only if

the school listed ar′ ∈ NAr
′
(Si) for all r′ < r, and 2)

{
∪r′<rJr

′
(Si) ,∪r′<rNAr′ (Si)

}
⊆ Or

hence 1+
∑r−1

r′=1

∣∣∣Jr′ (Si)∣∣∣ ≤ |Or|; and the inequality is strict if |∪r′<rNAr′ (Si)| > 1. There-

fore, given there are J schools to choose from in each round (including those with zero

admissions probabilities), the dimension of the problem in Case 2) cannot be larger than

J
(

1 +
∑R

r=2

(
1 +

∑r−1
r′=1

∣∣∣Jr′ (Si)∣∣∣)) ≤ J
(

1 +
∑R

r=2 |Or|
)
, which is much smaller than

|P (J ;R)| .

Case 3) Constant Priority Score and Single Lottery Number
In Round 1, a household’s state variable is again ξ

1
i ∈ {1} . In Round r > 1, besides the state

variable ξ
r
i , there is also an additional state variable, the priority score of one’s top-listed

school. Let Ωi be the support of Household i’s priority scores and |Ωi| be the size of Ωi. For a

given s in Ωi, the number of schools for which Household i can possibly be subject to lotteries

in round r > 1 is given by |Jr (s1)| ≡
∑J

j=1 I (s = sj , r = rj) . Therefore given s, the maxi-

mum number of different values the state variable ξ
r
i can take is at most 1+

∑r−1
r′=1

∣∣∣Jr′ (s1)
∣∣∣.

Notice that ∪r′<r,s∈ΩiJ
r′ (s1) ⊆ Or, hence

∑
s∈Ωi

(
1 +

∑r−1
r′=1

∣∣∣Jr′ (s1)
∣∣∣) ≤ |Ωi| + |Or| .

5For example, suppose there is one cut1 in Round 1 and one cut2 in Round 2, so that ξ
1

i ∈ {1, cut1} .
Given the rule that ξ

2

i = min
{
cut2, ξ

1

i

}
, if cut1 ≤ cut2 then the ξ

2

i ∈ {1, cut1} , while if cut1 > cut2,

ξ
2

i ∈ {1, cut1, cut2} .
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Therefore, the dimension of the problem in Case 3) cannot be larger than

J
(

1 +
∑

s∈Ωi

∑R
r=2

(
1 +

∑r−1
r′=1

∣∣∣Jr′ (s1)
∣∣∣)) = J

(
1 +

∑R
r=2

∑
s∈Ωi

(
1 +

∑r−1
r′=1

∣∣∣Jr′ (s1)
∣∣∣))

≤ J
(

1 +
∑R

r=2 (|Ωi|+ |Or|)
)

= J
(

1 + (R− 1) |Ωi|+
∑R

r=2 |Or|
)
, which is in turn smaller

than |P (J ;R)|.

Example Consider the case with J = 30, R = 3 and |Ωi| = 2, i.e., one has 2 different

priority levels. Among the 30 schools, 5 are leftover schools, 10 are filled up in the first

round, 10 in the second, 5 in the third. In this case, O1 = 0, O2 = 10 and O3 = 20. The

dimensionality (D) under the best-permutation solution is D = |P (J ;R)| = 25, 260. For

each of the three BM cases, we have

Case 1) D < JR = 90.

Case 2) D < J
(

1 +
∑R

r=2 |Or|
)

= 30(1 + 10 + 20) = 990.

Case 3) D < J
(

1 + (R− 1) |Ωi|+
∑R

r=2 |Or|
)

= 30(1 + (2− 1)× 3 + (10 + 20)) = 1, 020.

2 Model Details

2.1 Properties of the optimal list for a strategic household

Consider an optimal list A1
i =

{
a1

1, ..., a
1
r , ...a

1
R′
}
derived via backward induction, if the

student does not face 100% admissions rate for any of the first r− 1 listed schools, and she

does for the rth listed school
(
pra1r

(
s1, ξ

r
i

)
= 1
)
, then the following lists all generate the

same value for the household as A1
i does, and hence are all optimal:

1) a list that shares the same first r elements of A1
i .
6

2) a list of length n (r < n ≤ R), which shares the same first r − 1 elements of Ai and the

last (nth) element is a1
r with 100% admissions probability for Household i at Round n, and

for all elements r′ ∈ {r, ..., n− 1}, i faces 0 admissions probability.

3) Furthermore, if this rth listed school is one’s backup school with par (:) = 1, then any list

of length n (r− 1 ≤ n ≤ R) is also optimal if it has the same first r− 1 elements of A1
i and

the admissions probabilities to the other elements are all 0.

Consider an optimal list A1
i =

{
a1

1, ..., a
1
r , ...a

1
R′
}
derived via backward induction, if the

student does not face 100% admissions rate for any of the first r− 1 listed schools, and she

does for the rth listed school
(
pra1r

(
s1, ξ

r
i

)
= 1
)
, then the following lists all generate the

same value for the household as A1
i does, and hence are all optimal:

1) a list that shares the same first r elements of A1
i .
7

6 In particular, one optimal list may have the same school j listed in two different rounds r < r′, with

prj

(
s1|ξri

)
= 1.

7 In particular, one optimal list may have the same school j listed in two different rounds r < r′, with

prj

(
s1|ξri

)
= 1.
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2) a list of length n (r < n ≤ R), which shares the same first r − 1 elements of Ai and the

last (nth) element is a1
r with 100% admissions probability for Household i at Round n, and

for all elements r′ ∈ {r, ..., n− 1}, i faces 0 admissions probability.

3) Furthermore, if this rth listed school is one’s backup school with par (:) = 1, then any list

of length n (r− 1 ≤ n ≤ R) is also optimal if it has the same first r− 1 elements of A1
i and

the admissions probabilities to the other elements are all 0.

2.2 Proof for Claim 1

An application list with the following features reveals that the household must be non-

strategic: 1) for some rth ( r > 1) element ar on the list prar (·) = 0, and 2) pr
′
ar′

(·) < 1

for all r′ < r, and 3) for some r
′′ ≥ r + 1, 0 < pr

′′

a
r
′′ (·) < 1 and pr

′′′

a
r
′′′ (·) < 1 for any

r < r′′′ < r
′′
.

The conditions characterize a dominated strategy: the applicant ranks a 0 probability

school when he is not guaranteed a slot in any previously-ranked school, and his chances at

at least one school listed immediately below are reduced by this act. Without Feature 2), the

list can still be strategically optimal due to Remark 2. Without Feature 3) a household may

still be strategic if it prefers some sure-to-get-in school listed later over any of the schools

listed after ar, including ar. All three features guarantee that the household is non-strategic.

The formal proof is as follows.8

Proof. Take a given list that satisfies all three features in Claim 1: A =
{
a1, ..., ar, ..., ar′′ , ...

}
,

where ar′′ is the first school that satisfies Feature 3). This implies that pr
′′′

a
r
′′′ (s1|ξ

r′′′

i ) = 0

for all r < r
′′′
< r

′′
, since Feature 3) ensures that they be smaller than 1 and r

′′
is the first

to be strictly positive. Let W r
i (A) be the residual value of this list starting from the rth

element. Given pr
′′′

a
r
′′′ (s1|ξ

r′′′

i ) = 0 for all r < r
′′′
< r

′′
, the continuation value at Round r is

8Notice that the proof, as consistent with the model and the allocation rule, uses the fact that vij =
Emax {uij , η} , i.e., a household can either choose to attend the school it is assigned to or the outside option.
If a household manages to give up its assigned seat in exchange for a seat in a leftover school that is not on its
application list, the proof still holds as long as there is a cost, even if tiny, involved in such post-assignment
re-arrangement.
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the same as that in Round r
′′
. That is,

W r
i (A) = prar

(
s1|ξri

)
viar + (1− prar

(
s1|ξri

)
)W r+1

i (A)

= W r+1
i (A)

= pr+1
ar+1

(
s1|ξri

)
viar+1 + (1− pr+1

ar+1

(
s1|ξri

)
)W r+2

i (A)

= W r+2
i (A)

= . . .

= pr
′′−1
a
r
′′−1

(
s1|ξri

)
via

r
′′−1

+ (1− pr
′′−1
a
r
′′−1

(
s1|ξri

)
)W r

′′

i (A)

= W r
′′

i (A) .

Consider an alternative (not necessarily optimal) application listB =
{
a1, ..., ar′′ , ..., ar′′ , ...

}
,

which differs from A only in that ar is replaced by ar′′ . Note that p
r
ar′′

(.) = 1 since the school

is filled up in round r
′′
> r.9 The residual value of this list at its rth element (now ar′′ ) is

given by

W r
i (B) = pra

r
′′

(
s1|ξri

)
via

r
′′ + (1− pra

r
′′

(
s1|ξri

)
)W r+1

i (B)

= pra
r
′′

(
s1|ξri

)
via

r
′′ + (1− pra

r
′′

(
s1|ξri

)
)W r+1

i (A)

= pra
r
′′

(
s1|ξri

)
via

r
′′ + (1− pra

r
′′

(
s1|ξri

)
)W r

′′

i (A)

> pr
′′

a
r
′′

(
s1|ξr

′′

i

)
via

r
′′ + (1− pr

′′

a
r
′′

(
s1|ξr

′′

i

)
)W r

′′

i (A)

= W r
′′

i (A)

The inequality holds because pr
′′

a
r
′′

(
s1|ξr

′′

i

)
∈ (0, 1) implies pra

r
′′

(
s1|ξri

)
= 1 for r < r

′′
,

and

via
r
′′ = Emax

{
uia

r
′′ , η
}
> E (η) = 0.

Given that the first r− 1 elements are also unchanged, it is immediate that the value of the

whole list W 1
i (B) > W 1

i (A) .

2.3 Discussion: Size Condition on Non-Strategic Households Application

A non-strategic household lists schools according to its true preferences {vij}j . Suppose
household i ranks its backup school as its n∗i -th favorite, then the length of i’s application

9Note that for both list A and list B, the value of ξ
r

i in every round is the same because there is no

updating for rounds when pr
′′′

a
r
′′′ (s1|ξ

r′′′

i ) = 0 for all r < r
′′′
< r

′′
. As a result, W r+1

i (B) =W r+1
i (A).
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list ni is such that

ni ≥ min {n∗i , R} . (6)

That is, when there are still slots left on its application form, a non-strategic household will

list at least up to its backup school.

In order to predict allocation outcomes and to calculate welfare, we need to predict the

content of a household’s application list at least up to the point beyond which listing any

additional schools will not affect the allocation outcome. Consider an application list of full

length A0
i =

{
a0

1, a
0
2, ..a

0
R

}
, if none of the R schools listed admits the household for sure in

the round it is listed, then the entire list is outcome-relevant. If some elements in A0
i are such

that i’s admissions probability to a0
r is 1 in Round r, then the list is outcome-relevant only

up to its r∗-th element a0
r∗ , where a

0
r∗ is the foremost-listed school that admits the household

for sure. To predict the outcome, we could impose a different condition labeled Condition

S (S for strong) that, when the list is incomplete, a non-strategic household list at least

up to a0
r∗. However, Condition S implicitly requires that a non-strategic household knows

that its admissions probability to School a0
r∗ in Round r

∗ is 1, which involves a substantial

amount of sophistication. In comparison, Condition (6) is a much weaker requirement that

a non-strategic household know which schools will be leftovers and list at least up to its

backup school. It requires far less sophistication than to know the admissions probabilities

by school and by round.10 One reason is the high persistence in whether or not a school

was left over, which was true even between the two years before and after the drastic re-

definition of priority zones: 265 out of the 317 schools were either left over twice or never left

over in the years of 2006 and 2007. Such high persistence makes it easy to predict the set

of leftover schools. Therefore, it may be reasonable to believe that even the non-strategic

households may have this (minimal) level of sophistication. With this weak requirement,

Condition (6) achieves the same goal as Condition S.11

10 In this model, we have assumed that it is free to fill in the application and, if failing to be assigned
within R rounds, to propose a leftover school. Given the knowledge of the set of leftover schools and that
leftover schools have 100% admissions probabilities, a non-strategic household would be indifferent between
adding or not adding its backup school to an incomplete list. Condition (6) specifies that, if indifferent, a
non-strategic household will add its backup school. It is also consistent with a situation where the cost of
proposing a leftover school after being rejected in all rounds is higher than listing one more school to one’s
list.
11To see why Condition (6) achieves the same goal as its much stronger counterpart, consider the following

exhaustive cases. Case 1: None of its R favorite schools admits the household for sure. Both Condition
S and Condition (6) require the same full list of length R. Case 2: At least one of its R favorite schools
admits the household for sure. By definition, a backup school admits the student for sure and therefore
r∗ ≤ n∗i . If r

∗ < n∗i , i.e., the first sure-to-get school is preferrable to the backup: lengthening the list to n
∗
i

will not change the outcome, because only the first r∗ elements are outcome-relevant. If r∗ = n∗i , then both
conditions lead to the same list.
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3 Identification

In this section, we will first prove the identification of our model in its simplified version.

Then, we will give more intuition by contrasting the original model with a re-estimated

model, the latter imposing that a lower fraction of households be strategic. Finally, we will

discuss the exclusion restriction.

3.1 Proof

Since the dispersion of post-application shocks is mainly identified from the enrollment

decisions, to ease the illustration, we show the identification of the model without post-

application shocks. A household has observables (xi, li) and can be one of two types T = 0, 1.

Home-school distance is given by dji = d (li, lj) and zli is the zone that li belongs to. Let

the taste for school be εij ∼ i.i.d. N(0, 1).12 In line with (A2) and (A3) in the paper, assume

that d is independent of T conditional on (x, zl) and ε is independent of (x, l, T ) . To give

the idea, consider the case where a household can apply only to one school from the choice

set of schools 1 and 2, and where all households face the same admissions probabilities.

Household-specific admissions probabilities provide more variations, which will provide more

identification power.

Let uij be the utility net of individual taste, uij = g (κj , wj , xi)−C (dij) , where g (·) is the
reduced form function given by

g (κj , wj , xi) = τ1xi4 + τ2 [I (xi5 = j)− I (xi5 = 0)] +
∑
e

(δ0e + δ1eκj + ρewj) I (edui = e) .

Let pj > 0 be the probability of admission to school j and p1 6= p2 (A1). Let y be the

decision to list School 1. y is related to the latent variable y∗ in the following way

y (xi, li, εi, T ) = 1 if only if

y∗ (xi, li, εi, T ) = T (pi1ui1 − pi2ui2) + (1− T )(ui1 − ui2) > 0.

Hence the probability of observing the decision to list 1 by someone with (xi, li) is

H (xi, li) = λ (xi, zli) Φ

(
p1ui1 − p2ui2√

p2
1 + p2

2

)
+ (1− λ (xi, zli)) Φ

(
ui1 − ui2√

2

)
.

12Given that the linear distance enters the utility function with coeffi cient of minus one, the standard
deviation of ε is identified from the variation in distance within (x, zl) group. To simplify the notation, we
will present the case where σε is normalized to 1.
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Fix (x, zl) , H (·) only varies with d, so we can suppress the dependence on (x, zl) and let

g (κj , wj , xi) = gj such that

H (d) = λΦ

(
(p1g1 − p2g2)− (p1C (d1)− p2C (d2))√

p2
1 + p2

2

)
(7)

+ (1− λ) Φ

(
(g1 − g2)− (C (d1)− C (d2))√

2

)
.

3.1.1 Identification of g (·) and λ (·)

The following theorem shows that for any fixed (x, zl) , g (κj , wj , x) and λ (x, zl) are identi-

fied.

Theorem 1 Assume that 1) λ ∈ (0, 1) , 2) there exists an open set D∗ ⊆ D such that for

dij ∈ D∗, C ′ (dij) 6= 0. Then the parameters θ = [g1, g2, λ]′ in (7) are locally identified from

the observed application decisions.

Proof. The proof draws on the well-known equivalence of local identification with positive
definiteness of the information matrix. In the following, I will show the positive definiteness

of the information matrix for model (7) .

Step 1. Claim: The information matrix I(θ) is positive definite if and only if there exist no

ω 6= 0, such that ω′ ∂H(d)
∂θ = 0 for all d.

The log likelihood of an observation (y, d) is

L (θ) = y ln(H(d)) + (1− y) ln(1−H (d)).

The score function is given by

∂L

∂θ
=

y −H (d)

H (d) (1−H (d))

∂H(d)

∂θ
.

Hence, the information matrix is

I(θ|d) = E

[
∂L

∂θ

∂L

∂θ′
|d
]

=
1

H (d) (1−H (d))

∂H(d)

∂θ

∂H(d)

∂θ′
.

Given H (d) ∈ (0, 1), it is easy to show that the claim holds.

Step 2. Show ω′ ∂H(d)
∂θ = 0 for all d =⇒ ω = 0.

Define p∗j =
pj√
p21+p22

, B1 (d) = (p∗1g1 − p∗2g2)−(p∗1C (d1)− p∗2C (d2)) , andB0 (d) =
(

(g1−g2)−(C(d1)−C(d2))√
2

)
,

12



∂H(d)
∂θ is given by:

∂H(d)

∂λ
= Φ (B1 (d))− Φ (B0 (d))

∂H(d)

∂g1
= λφ(B1 (d))p∗1 + (1− λ)φ(B0 (d))

1√
2

∂H(d)

∂g2
= −λφ(B1)p∗2 − (1− λ)φ(B0)

1√
2
.

Suppose for some ω, ω′ ∂H(d)
∂θ = 0 for all d :

ω1[Φ(B1)− Φ(B0)] + ω2

(
λφ(B1)p∗1 + (1− λ)φ(B0)

1√
2

)
−ω3

(
λφ(B1)p∗2 + (1− λ)φ(B0)

1√
2

)
= 0

Take derivative with respect to d2 evaluated at some d2 ∈ D∗

ω1[φ(B1)p∗2 −
φ(B0)√

2
]C ′ (d2) + ω2

(
λφ′(B1)p∗1p

∗
2 + (1− λ)φ′(B0)

1

2

)
C ′ (d2) (8)

− ω3

(
λφ′(B1) (p∗2)2 + (1− λ)φ′(B0)

1

2

)
C ′ (d2) = 0.

Define γ (d) = φ(B1)
φ(B0) , divide (8) by φ(B0) :

ω1[γ (d) p∗2 −
1√
2

]− ω2

(
λB1γ (d) p∗1p

∗
2 + (1− λ)B0

1

2

)
+ω3

(
λB1γ (d) (p∗2)2 + (1− λ)B0

1

2

)
= 0

γ (d) [ω1p
∗
2 − λB1p

∗
2(ω2p

∗
1 − ω3p

∗
2)]− [

ω1√
2

+ (ω2 − ω3) (1− λ)B0
1

2
] = 0 (9)

Since γ(d) is a nontrivial exponential function of d, (9) hold for all d ∈ D∗ only if both

terms in brackets are zero for each d ∈ D∗, i.e.

ω1p
∗
2 − λB1 (d) p∗2(ω2p

∗
1 − ω3p

∗
2) = 0 (10)

ω1√
2

+ (ω2 − ω3) (1− λ)B0 (d)
1

2
= 0.
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Take derivative of (10) again with respect to d2, evaluated at d2 ∈ D∗ :

−λC ′ (d2) (p∗2)2 (ω2p
∗
1 − ω3p

∗
2) = 0

(ω2 − ω3) (1− λ)C ′ (d2)
1

2
√

2
= 0.

Since λ ∈ (0, 1), pj > 0 (hence p∗22 > 0) and C ′ (d2) 6= 0 for some d, we have

ω2p
∗
1 − ω3p

∗
2 = 0

ω2 − ω3 = 0.

Given p1 6= p2 (hence p∗1 6= p∗2), follows that ω = 0.

3.1.2 Identification of C(dij) and (τ, δ, κ, ρ)

1) Given the identification result from B2.1, and given that C(dij) is common across (x, zl)’s,

the parameters in C(dij) solves for the system of equations (7), where one equation corre-

sponds to one (x, zl) .

2) Once the value of g (κj , wj , xi) is identified for each (j, xi) , the parameters governing

g (·) are identified using the variations in (wj , xi) . In particular, for the middle-education

group δ02 = 0, δ12 = 1, α2 = 0 are normalized, which means g (κj , wj , xi) = τ1xi4 +

τ2 [I (xi5 = j)− I (xi5 = 0)] + κj . As a result,
(
τ, {κj}j

)
are identified using the variation

of (xi4, xi5) within the middle-education group, so the value (δ0e + δ1eζj + wjαe) is known

for e = 1, 3. The variation of wj thus identifies (δe, αe) .

3.2 A Model with Fewer Strategic Households

To obtain further insights into our identification, we have re-estimated our model imposing

that a lower fraction of households be strategic. In particular, we have re-estimated all

model parameters other than the type distribution parameters, which are restricted such

that 80% of households are strategic.13 The new estimates are reported in Tables B5 and

B6. The differences between the original parameter estimates and those from this new

model are intuitive. For example, the cost of distance becomes more convex and the taste

dispersion increases. These findings are intuitive, schools with shorter distance are more

likely to be in-zone (high-priority) schools; when fewer households are strategic, preferences

for shorter distance need to be stronger in order to explain why households listed in-zone

schools. Similarly, larger taste dispersion helps explain why they left out schools that look

13 In particular, we adjusted the constant in type distribution λ (xi, li) such that 80% of all households are
strategic. The fractions by education level from low to high are 72%, 77% and 87% respectively.
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better than those on their application lists. Table B7 shows the in-sample (2006) fit of this

model alongside with the original model fit. Given that the new model has fewer degrees of

freedom, the fit is naturally worse. However, the comparison reveals some intuition behind

the identification of our model. For example, with fewer strategic households, the new

model over-predicts the fraction of households top-listing schools that are not in their zones

(Row 2); similarly, it underpredicts the fraction of households assigned in Round 1 and

overpredicts the fraction unassigned.

3.3 The Exclusion Restriction

Although types are usually unobservable, they are observed for the group of obviously

naive households. We utilize this data feature to provide some supporting evidence for our

assumption that distance enters preferences but not type distribution (conditional on zone

characteristics). In particular, we test whether or not obvious naivety is correlated with

distance measures. At least, the two sets of regressions suggest that our exclusion restriction

may not be unreasonable.

First, we run the following regression

naivei = α1d
near
i + α2q

near
i + α3n

500m
i + α4n

1km
i + α5n

2km
i + α6d

ave
i +XiB1 + ZiB2,

where naivei = 1 if i is obviously naive, dneari is the distance to the school that is closest to

i, qneari is the quality of this school. n500m
i , n1km

i , n2km
i are the number of schools within 500

meters, 1 km and 2 km, respectively. davei is the average school-home distance across all

in-zone schools for i. Xi is the vector of household observable characteristics, and Zi is the

vector of characteristics of the zone i lives in. As Table B8 shows, none of the α coeffi cients

are significant, nor can one reject the hypothesis that they are jointly insignificant (Prob >

F = 0.7825). That is, naive households are not more or less likely to live closer to a school

(α1) or closer to a better school (α2) , to have more schools nearby (α3 to α5), or to have

lower average distance to in-zone schools (α6).

Second, we run three regressions of the following form

yi = β1I (naivei = 1) +XiA1 + ZiA2.

The dependent variables in the three regressions are 1) whether or not i top-listed the

closest school, 2) whether or not i included the closest school in the application list, and

3) whether or not i top-listed an in-zone school. The Results are shown in Table B9 in the

appendix. β1 is insignificant in 1) and 2), but significantly negative in 3). That is, naive

households are less likely to top-list an in-zone school, for which one has higher priorities, as

is consistent with their naive labels. However, they do not seem to exhibit different tastes
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for distance.

4 Data Details

4.1 Priority Score Structure

Case 1: Those who do not have a sibling in school have two levels: xia (xia+ b1) for out-

of-zone (in-zone) schools.

Case 2: Those whose sibling(s) is (are) in in-zone schools have 3 levels: xia (xia+ b1) for

out-of-zone (in-zone) non-sibling schools, and xia+ b1 + b2 for sibling schools.

Case 3: Those whose sibling(s) is (are) in out-of-zone schools have 3 levels: xia (xia+ b1)

for out-of-zone (in-zone) non-sibling schools, and xia+ b2 for sibling schools.

Case 4: Those with sibling(s) in some in-zone school and sibling(s) in some out-of-zone

school have 4 levels: xia (xia+ b1) for out-of-zone (in-zone) non-sibling schools, and xia+b2

(xia+ b1 + b2) for out-of-zone (in-zone) sibling schools.

4.2 Data Sources

The final data set consists of merged data sets from five different administrative units:

the Consorci d’Educacio de Barcelona (local authority handling the choice procedure in

Barcelona), Department d’Ensenyament de Catalunya (Department of Education of Catalunya),

the Consell d’Avaluacio de Catalunya (public agency in charge of evaluating the Catalunya

educational system), the Instituto Nacional de Estadistica (national institute of statistics)

and the Institut Catala d’Estadistica (statistics institute of Catalunya).14

From the Consorci d’Educacio de Barcelona, we obtain access to every applicant’s appli-

cation form, as well as the information on the school assignment and enrollment outcomes.

An application form contains the entire list of ranked schools a family submitted. In addi-

tion, it records family information that was used to determine the priority the family had

for various schools (e.g., family address, the existence of a sibling in the first-ranked school

and other relevant family and child characteristics). The geocode in this data set allows us

to compute a family’s distance to each school in the city.

From the Census and local register data, we obtain information on the applicant’s family

background, including parental education and whether or not both parents were registered

in the applicant’s household. Since information on siblings who were not enrolled in the

school the family ranked first is irrelevant in the school assignment procedure, it is not

available from the application data. However, such information is relevant for family’s

14These five different data sources were merged and anonimized by the Institut Catala d’Estadistica
(IDESCAT).
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application decisions. From the Department of Education, we obtained the enrollment data

for children aged 3 to 18 in Catalunya. This data set is then merged with the local register,

which provides us with the ID of the schools enrolled by each of the applicant’s siblings at

the time of the application.

To measure the quality of schools, we use the external evaluation of students conducted

by Consell d’Avaluacio de Catalunya. Since 2009, such external evaluations have been

imposed on all schools in Catalunya, in which students enrolled in the last year of primary

school are tested on math and language subjects.15 From the 2009 test results that we

obtained, we calculated the average test score across subjects for each student, then use

the average across students in each school as a measure of the school’s quality.16 Finally,

to obtain information on the fees charged by semi-public schools (public schools are free to

attend), we use the survey data collected by the Instituto Nacional de Estadistica.17

4.3 Data Evidence on Strategic Behavior via Regression Analyses

Using each household-school pair as an observation, we run regressions of the following form

yij = Xiα+ sibijβ1 + dijβ2 + d2
ijβ3 + d3

ijβ4 + I
(
li ∈ zlj

)
β5 + µj + εij ,

where yij = 1 if j was i’s top choice, Xi are household characteristics, sibij = 1 if i has

a sibling in School j, dij is school-home distance, I
(
li ∈ zlj

)
= 1 if i lives in School j’s

zone, µj is a school fixed effect, and εij is the error term. The results are shown in Table

B3. Conditional on a third-order polynomial of distance, in-zone status still significantly

increases the choice probability.18

15As mentioned in the background section, a student has the priority to continue her primary-school
education in the same school (with the same capacity) she enrolled for preschool education, which makes
it very unlikely that one can transfer to a better school between preschool-primary school transition. For
example, at least 94% of the 2010 preschool cohort were still enrolled in the same school for primary school
education in 2013.
16Following the same rule used in Spanish college admissions, we use unweighted average of scores across

subjects for each student.
17See http://www.idescat.cat/cat/idescat/publicacions/cataleg/pdfdocs/dossier13.pdf for a summary of

the survey data.
18There are 317 observations per household in these regressions. The results are robust when we restrict

attention to a smaller number of schools for each household (which always include the applied schools), e.g.,
the closest N schools, N randomly drawn schools, all in-zone schools plus N randomly drawn out-of-zone
schools (N = 30, 50, 100).
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5 The DA and TTC Algorithms

5.1 DA

The DA algorithm assigns students as follows.

Round 1: Each school j tentatively assigns its seats to students who top-listed it, one at

a time following their priority order. If school j is over-demanded, lower-ranked applicants

are rejected.

In general, at Round r: Each school j considers the students it has been holding, together

with students who were rejected in the previous round but listed j as their rth choice. Seats

in school j are tentatively assigned to these students, one at a time following their priority

order. If school j is over-demanded, lower-ranked applicants are rejected.

The algorithm terminates when no student is rejected and each student is assigned her final

tentative assignment.

The key differences between DA and BM are 1) in each round, students are only tem-

porarily assigned to a school until the whole procedure ends; and 2) temporarily held

students are considered based only on priorities along with students who were rejected

from their choices in previous rounds and added into a school’s student pool in the current

round. As such, a previously held student can be crowded out by a newly-added student

who has higher priority. That is, top-listing a school does not improve one’s chance of being

finally admitted to this school, which makes truth-telling a (weakly) dominant strategy for

households under DA. Moreover, DA eliminates justified envy. The appealing properties of

DA, however, may conflict with Pareto effi ciency, as shown by Abdulkadiroğlu and Sönmez

(2003).

5.2 TTC

The TTC algorithm assigns students as follows.

Round 1: Assign a counter for each school which keeps track of how many seats are still

available at the school, initially set to equal the school capacity. Each school points to the

student who has the highest priority for the school. Each student points to her favorite

school under her announced preferences.19 This will create ordered lists of distinct schools

(j) and distinct students (i) : (j1, i1, j2, i2, ....), where j1 points at i1, i1 points at j2, and

j2 points at i2, etc. Because there are finite number of schools, at least one cycle will be

formed, where ik (k ≥ 1) points at j1. Although there may be multiple cycles formed in a

round, each school can be part of at most one cycle and each student can be part of at most

one cycle. Every student in a cycle is assigned a seat at the school she points to and is

19A student announces her entire list of schools before the assignment starts. As such, the “pointing”by
a student is mechanically following her announced list.
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removed. The counter of each school in a cycle is reduced by one and if it reduces to zero,

the school is also removed. Counters of all schools that are not in any cycle stay put.

In general, at Round r: Each remaining school points to the student with highest priority

among the remaining students and each remaining student points to her favorite school

among the remaining schools. Every student in a cycle is assigned a seat at the school that

she points to and is removed. The counter of each school in a cycle is reduced by one and

if it reduces to zero the school is also removed. Counters of all other schools stay put.

The algorithm terminates when all students are assigned a seat.

Intuitively, in each round TTC creates cycles of trade between individuals. Each individ-

ual in a cycle trades off a seat in her highest-priority school for a seat in her most preferred

school among those that still have seats. Whenever such a cycle is formed the allocation is

final. Hence, the only way for an individual to improve her allocation is through “stealing”

another individual’s school assignment, which will in turn make this other individual worse

off. As such, TTC is Pareto effi cient as shown by Abdulkadiroğlu and Sönmez (2003), who

also prove that TTC is truth-revealing. However, TTC does not eliminate justified envy

because student-school priorities are ignored in the TTC trade between individuals

5.3 BMmay respect cardinal preference better than truth-revealing mech-
anisms

The intuition can be explained by the following simple example with equal priorities. Con-

sider three schools and a set of households who share the same ordinal but different cardinal

preferences for these schools, where the schools are ranked from high to low as Schools 1,

2 and 3. Under BM, the strategic decision is whether to take the high risk and top-list

School 1 or to play it safe and top-list School 2. Given the same evaluation for School 1,

a household whose evaluations for Schools 2 and 3 are similar is more likely to choose the

risky strategy because it has less to lose from the gamble. Given the same evaluation for

School 3, a household that values School 1 much higher than School 2 is more likely to

choose the risky strategy because it has more to gain from the gamble.

6 Welfare under a Standard BM

Following a referee’s suggestion, we have simulated an equilibrium under a standard BM,

i.e., BM with school-specific priorities and a single lottery number. The welfare comparison

between the standard BM, DA and TTC is shown in Table B10. The results are similar to

those shown in Table 11 of the paper. The welfare calculation under a standard BM carries

two caveats. C1: in computing a standard BM, we hold the distribution of household

(non)strategic types invariant. C2: BM may admit multiple equilibria. We search for an
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equilibrium numerically, with initial guesses set at the current Barcelona equilibrium.

The counterfactuals in the main text are free from these caveats. First, when we re-

place the mechanism in Barcelona with truth-revealing mechanisms, all households, strate-

gic or not, will rank schools according to their true preferences. We can compare the

current regime with truth-revealing alternatives without worrying about whether or not

(non)strategic type distribution is policy variant because type does not matter when all

households tell the truth. However, switching to another manipulable mechanism, e.g., a

standard BM, we have to make assumptions like C1. Second, although BM may admit mul-

tiple equilibria, we observe the equilibrium in the data. We take the realized equilibrium as

given and estimate household preferences and type distribution. Then we can make a very

clean comparison between the counterfactual truth-revealing mechanisms and the current

Barcelona equilibrium.

7 Additional Tables

7.1 Data

Table B1 Prob of Admission to one’s First Choice p1
ia1

(Si)

Enrolled Opted out

All Households 91.8% 75.3%

Assigned within 10 Rounds 92.7% 86.8%

Unassigned within 10 Rounds 48.5% 44.8%

Admission prob in Round 1, averaged for each group of households.

Table B2 “Better”Schools Than the Top-Listed One

% Households # Better Sch %Better w/ Higher p

All Households (6836)

Have Sch. Better in Quality, Fees 97.5% 66.6 (44.3) 9.1%

Have Sch. Better in Quality, Dist 41.1% 4.7 (10.6) 14.5%

Have Sch. Better in Fees, Dist 62.2% 14.3 (30.6) 24.3%

Sib School not Top-listed (4025)

Have Sch. Better in Quality, Fees 98.2% 69.4 (44.2) 15.4%

Have Sch. Better in Quality, Dist 39.6% 4.3 (9.1) 25.7%

Have Sch. Better in Fees, Dist 60.2% 12.4 (27.0) 42.7%

% Households: % of households that satisfy the condition specified in each row.

#Better Sch: average (std.dev.) num. of better schools for households with such schools.

%Better w/ higher p: % of better sch with higher admission prob. than one’s top choice.
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Table B3 Evidence on Strategic Behavior: Regression

In-zone Distance Distance2 Distance3

0.0165 -0.0187 0.0038 -0.0002

(0.0001) (0.0001) (0.00003) (0.00001)

Regression controls for school fixed-effect, sibling school, and household characteristics.

Table B4 School Filled Round∗(%)

2006 2007

1 44.2 46.4

2 7.6 11.4

≥ 3 8.2 6.0

Leftover 40.0 36.3
∗A school is filled in Round r if it has open seats

in rounds 1 to r, but not in later rounds.

7.2 Model Contrast: Original vs 80% Strategic

Table B5 Structural Preference Parameters

Modela 80% strategicb

Distance2 -0.05 -0.06

Distance>5 (100m) -55.3 -59.8

Distance>10 (100m) -46.5 -45.4

Sibling School 1339.0 1164.9

Single Parent -404.3 -253.6

σε(taste dispersion) 66.3 70.4

ση(post-app shock) 1937.8 1965.7
a original model, b80% households are strategic
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Table B6 Preference Parameters

Summarize School FEb

By Edu Edu < HS Edu = HS Edu > HS

Model 80% Strategic Model 80% Strategic Model 80% Strategic

Constant 2766.3 2846.1 2783.3 2749.1 2423.0 2272.6

Quality 152.0 163.2 176.4 187.1 187.8 201.3

Fee -1.0 -1.0 -0.6 -0.6 -0.3 -0.4

Semi-Public -0.6 -1.4 6.5 6.4 0.8 0.5

Common for all Model 80% Strategic

Capacity 0.7 0.8

Capacity2 -0.001 -0.001

Quality2 -9.9 -10.7
bOLS regression of the estimated school value parameters on observables.

Table B7 Model vs. 80% Strategic (2006)

Data Model 80% Strategic∗

Top-Listed Schools

In Zone 06 Only (%) 24.1 24.1 23.1

In Zone 07 Only (%) 3.0 4.5 5.1

Quality 7.9 7.9 7.9

Distance (100m) 7.1 7.2 7.4

Fee (100 Euros) 8.1 8.1 8.0

Assignment Round (%)

1 93.0 91.3 88.2

2 2.8 4.0 3.9

≥ 3 1.5 0.9 1.2

Unassigned 2.7 3.8 6.7

Enrollment in the Public System (%)

All 96.7 96.5 94.9

Assigned in R1 97.8 97.1 96.7
∗Adjust the fraction of strategic household to 80% by changing the constant term in the type

distribution function, all parameters are re-estimated other than the type distribution parameters..
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7.3 The Exclusion Restriction

Table B8 Naivety and Distance: Part 1

Naive=1

Dist_nearest 0.006 (0.016)

Q_nearest -0.0015 (0.0035)

N_500m ∗ 100 0.007 (0.114)

N_1km ∗ 100 0.049 (0.072)

N_2km ∗ 100 -0.032 (0.032)

Dist_ave -0.013 (0.011)

Other controls: education, single parent, I(have sibling), zone characteristics

Table B9 Naivety and Distance: Part 2

Top-Closest Apply-Closest Top-Inzone

Naive 0.033 (0.040) -0.003 (0.044) -0.15 (0.03)

Edu=mid -0.047 (0.013) -0.012 (0.015) -0.024 (0.010)

Edu=high -0.073 (0.013) -0.027 (0.015) -0.015 (0.010)

Other controls: single parent, I(have sibling), zone characteristics

7.4 Standard BM

Table B10 Household Welfare: Standard BM vs. DA vs. TTC

% DA-Std BMa TTC-Std BMb

∆utils ∆100 euros ∆utils ∆100 euros

All -5.7 -11.6 1.6 3.2

Edu< HS -10.3 -10.4 0.1 0.1

Edu= HS -7.5 -24.2 0.7 2.2

Edu> HS -1.2 -2.2 3.6 6.4
achange from Std BM to DA, bchange from Std BM to TTC

∆utils: welfare change in utils. ∆100 euros: welfare change in 100 euros.
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