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B1 Data Details

B1.1 Sample Construction

We construct our samples as follows. For estimation and empirical analysis, we focus on full-

time Grades 4-6 math teachers employed in Wisconsin school districts in 2014 (411 districts

and 6,625 individuals).1 We exclude 3 teachers from the sample, whose schools did not report

test scores. We also exclude 22 teachers with missing information on years of experience.

This leaves us with 6,600 teachers and 411 districts in the final estimation sample.

For the validation sample, we focus on 6,751 full-time Grades 4-6 math teachers employed in

411 districts in 2010. We exclude 10 teachers with missing information on years of experience.

This leaves us with 6,741 teachers and 411 districts in the final validation sample.

B1.2 Teacher’s Previous District

Our model requires identifying the district where each teacher was working at the beginning

of the model period (di0). For the estimation sample, which is based on 2014 data, we define

di0 as follows. If the teacher never moved or moved only once between 2011 and 2014, di0

∗Biasi: Yale School of Management and NBER, barbara.biasi@yale.edu; Fu: University of Wisconsin and
NBER, cfu@ssc.wisc.edu; Stromme: Vanderbilt University, john.stromme@vanderbilt.edu.

1Wisconsin had 424 school districts in 2014, 11 of which did not have any elementary school, and 2 of
which did not have any full-time Grades 4-6 math teachers.
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is the district where she was employed in 2011. If a teacher moved more than once between

2011 and 2014, we set di0 to be the last employer she worked for before 2014. For example,

if teacher i worked in District A in 2011 and 2012, and District C in 2013 and 2014, then

di0 = C. If teacher i worked in District A in 2011 and 2012, in District B in 2013, and in

District C in 2014, then di0 = B.

For the validation sample, based on data from 2010, we obtain teachers’ di0 following the

same procedure as above, using a teacher’s employment history between 2007 and 2010.

B1.3 Teacher Effectiveness

Students were tested on math and language in the Wisconsin Knowledge and Concepts

Examination (WKCE, 2007-2014) and Badger test (2015-2016); we focus on their math

scores. The WKCE was administered in November of each school year, whereas the Badger

test was administered in March. To account for this change, for the years 2007–2014 we

assign each student a score equal to the average of the standardized scores for the current

and the following year. The test score data also include individual characteristics of test

takers, such as gender, race and ethnicity, socioeconomic (SES) status, migration status,

English-learner status, and disability status.

Our data allow us to link students and teachers up to the school-grade level, rather than

the classroom level. To account for this data structure, we estimate two student achievement

models and derive teacher effectiveness measures from each of them. In the following, we

first describe the achievement model used in our empirical analysis, and its estimation and

identification. The distribution of effectiveness measures estimated with this achievement

model is summarized in Tables B1 and B2 and Figures B1 and B2. Next, we describe

the alternative model, and its estimation and identification. Finally, we show that the

effectiveness measures we obtain from both models are strongly correlated and that our

auxiliary models used in our structural estimation are robust to the choice of effectiveness

measures.

B1.3.1 Achievement Model 1 (Main)

The effectiveness measures used in our empirical analysis are estimated using the following

achievement model:
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Akt = γZs
kt +

∑
i:SGkt=SGT

it

2∑
n=1

I (τk = n) (ρnxit + vin) + εkt (1)

= γZs
kt +

∑
i:SGkt=SGT

it

2∑
n=1

I (τk = n) ρnxit + φkt (2)

where Akt is achievement (measured as the standardized Math test score) of student k in

year t. The vector Zs
kt contains the following: a cubic polynomial of previous year’s test

scores, interacted with grade fixed effects; a cubic polynomial of previous year’s average test

scores for k’s cohort in the school, interacted with grade fixed effects; a set of student charac-

teristics, including gender, race and ethnicity, disability status, English-language status, and

socioeconomic status; the same average characteristics for student k’s cohort; cohort size;

grade-by-school fixed effects; and year fixed effects. The variable εkt is an i.i.d. unobservable

component of achievement, idiosyncratic to each student and year. SGkt (SG
T
it) denotes the

school-grade of student k (teacher i) in year t. The variable τk equals 1 for low-achieving

students and 2 for high-achieving ones; we consider a student to be low-achieving if their

test score in the previous year was below the grade-specific median in the state, and high-

achieving otherwise. The contribution of teacher i to the achievement of a student of type

n ∈ {1, 2} is ρnxit + vin, where xit denotes i’s education and experience in year t and vin is

the part unexplained by xit.

The achievement model in (1) assumes that all teachers in a given school-grade contribute

to the achievement of all students in the same school-grade. We make this choice to be able

to allow xit to directly enter teacher effectiveness (since experience has been shown to affect

teacher effectiveness (Wiswall 2013), especially in the first years of a teacher’s career (Rockoff

2004)), even if we do not observe all the teacher-student classroom links in the data. Model

(1) allows us to identify the component of teacher effectiveness that depends on a teacher’s

experience and education.

Constructing our measures of effectiveness (ci1, ci2) requires estimating vin and ρn for

n ∈ {1, 2}. We make the following two assumptions:

A1. εkt is i.i.d. with mean 0 and variance σ2
ε .

A2. Cov(εkt, vin) = 0 ∀k, i, t, n : SGT
it = SGkt. This implies that there is no sorting on

unobservables of teachers across school-grades within a district. Although there is no direct

test of this assumption, in Section B3.3 we combine the approaches of Chetty et al. (2014)

and Rothstein (2010) and we do not find evidence of non-random sorting.
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Estimation Procedure: Model 1

1. Given A1 and A2, we estimate γ and ρn via OLS on equation (1), to obtain γ̂ and ρ̂n.

2. With the estimated γ̂ and ρ̂n, we can then estimate vin using an empirical Bayes

estimator similar to the one of Kane and Staiger (2008) which we adapt to take into

account the structure of our data.

(a) Let

φ̂kt = Akt − γ̂Zs
kt −

∑
i:SGkt=SGT

it

2∑
n=1

ρ̂nxitI(τk = n). (3)

The quantity φ̂kt is an estimate for φkt, i.e.,

φkt ≡
∑

i′:SGkt=SGT
i′t

2∑
n=1

vi′nI(τk = n) + εkt.

Let KSGT
itn

be the number of achievement type-n students in the school-grade that

i belongs to. For each teacher i we define, for n ∈ {1, 2}

v̂int =
1

KSGT
itn

∑
k:SGkt=SGT

it

φ̂ktI (τk = n) (4)

which is an estimate of ∑
i′:SGT

i′t=SGT
it

vi′n +
1

KSGT
itn

∑
k:SGkt=SGT

it

εkt.

This quantity corresponds to the average test score residuals of type-n students

in teacher i’s school-grade in year t, conditional on observables Zs
kt and the char-

acteristics x of all teachers in the same school-grade in t.

(b) We form a weighted average of the residuals {v̂int}t by weighting each v̂int by

ϖint =
K

SGT
it

n∑
t KSGT

it
n

, so that residuals corresponding to more observations receive

more weight:

v̄in =
∑
t

ϖintv̂int (5)

Note that assumption A1 implies

E(v̄in) = vin +
∑
t

ϖint

∑
i′ ̸=i:SGT

i′t=SGT
it

vi′n
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Taking the limit of this expectation as t approaches infinity yields

lim
t→∞

E(v̄in) = vin + lim
t→∞

∑
t

ϖint

∑
i′ ̸=i:SGT

i′t=SGT
it

vi′n

It follows that a requirement for the estimator v̄′in to be asymptotically unbiased

is that limt→∞
∑

tϖint

∑
i′ ̸=i:SGT

i′t=SGT
it
vi′n = 0. In words, the weighted sum of the

effects of all teachers in i’s school-grade over time has to approach 0 as the number

of periods grows large. This requirement is met because 1) the teacher effect vin

is defined as a residual component of standardized test scores conditioning on

grade-by-school fixed effects (which implies that, across time, the mean of vin is

zero within each school-grade) and 2) Assumption A2 guarantees that there is no

sorting of teachers on unobservables across school-grades over time.

(c) Armed with v̄in, we can construct the empirical Bayes estimator of vin by mul-

tiplying v̄in by the shrinkage factor, a measure of the reliability of the estimator

defined as the ratio between the estimated variance of the quantity to be esti-

mated, σ̂vn = V ar(vin), and the variance of the estimator:

v̂in = v̄in

(
σ̂2
vn

V ar(v̄in)

)
,

where, given assumptions A1 and A2, we can estimate σ̂2
vn as

σ̂2
vn =

Cov(v̂int, v̂int−1)

JSGT
it,t−1

and JSGT
it,t−1

=
∑

i′ I(SG
T
i′t = SGT

it)I(SG
T
i′t−1 = SGT

it−1) is the number of teachers

who are in the same school-grade as i in both t and t− 1.

Identification: Model 1 The identification of teacher effects vin leverages teacher turnover

across school-grades over time. Our identifying assumption is that turnover of teachers across

school-grades, within a district, is unrelated to vin (Assumption A2). Importantly, this as-

sumption allows for the endogenous sorting of teachers across districts based on vi1 and vi2,

as is the case in our model. In the estimation of vin, this type of sorting is accounted for by

the school-grade fixed effects included in Zs
kt.

Teacher turnover across school-grades allows us to identify vin from v̄in for all i and n. In

particular, we can stack all the equations (5) for all I teachers and n = 1, 2, forming a system

of 2I equations (where I is the total number of teachers) in 2I unknowns ({vin}i,n∈{1,2}).
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Identification is achieved if the rank condition of the system is satisfied, i.e., if the coefficient

matrix of the system is full-rank.

In practice, this requires that the set {i′ : SGT
i′t = SGT

it∀t} is empty for all i, which

means that there are no two teachers who teach the same school-grade in all t. When this

is the case, the system (and the vin for all i and n) is perfectly identified. In our data,

{i′ : SGT
i′t = SGT

it∀t} is empty for 75% of teachers, for whom we can precisely estimate

(vi1, vi2) . For the remaining 25% of teachers, {i′ := SGT
i′t = SGT

it∀t} is non-empty, and our

estimated vin is the average of vi′n for i′ : SGT
i′t = SGT

it∀t.

B1.3.2 Achievement Model 2 (Alternative)

An alternative model would feature the assumption that each teacher contributes only to the

achievement of the students in her classroom, while also assuming that teacher effectiveness is

fixed over time. These assumptions have been used extensively in the value-added literature

(e.g. Rockoff, 2004; Aaronson et al., 2007; Kane and Staiger, 2008).2 The achievement model

in this case would be:

Akt = γZs
kt +

2∑
n=1

I (τk = n) vi(kt)n + εkt (6)

= γZs
kt + φkt (7)

where i(kt) denotes student k’s teacher in year t, i.e., k is in teacher i’s classroom in year t.

The contribution of teacher i to the achievement of a student of type n ∈ {1, 2} is simply

vin. To estimate this quantity, we add the following assumptions to A1 and A2:

A3. Assumptions about within school-grade sorting: 1) The variable jint = Kint/KSGT
itn

is i.i.d. with mean 1/JSGT
itn
, where Kint is the number of students of type n in the classroom

of teacher i in year t and JSGT
it
is the number of teachers in school-grade SGT

it in t.

2) Cov(jint, vi′n) = 0 ∀i, i′, t. That is, class size is unrelated to teacher effectiveness within

each school-grade.

3) There is no systematic re-sorting of students across classrooms upon cross-school-grade

teacher turnovers.

Estimation: Model 2 With A1-A3, we can adapt the estimation procedure as follows.

1. We estimate γ via OLS on equation (6) to obtain γ̂.

2Besides assuming that teacher effectiveness is fixed over time, these studies assume that teacher effec-
tiveness is one-dimensional, rather than student-type-specific.
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2. We construct

φ̂′
kt = Akt − γ̂Zs

kt (8)

which is an estimate for
∑2

n=1 vi(kt)nI(τk = n) + εkt. For each teacher i, we define, for

n ∈ {1, 2}

v̂′int=
1

KSGT
itn

∑
k:SGkt=SGT

it

φ̂′
ktI (τk = n) (9)

which is an estimate of
∑

i′:SGT
it=SGT

i′t

ji′ntvi′n +
1

KSGT
itn

∑
k:SGkt=SGT

it

εkt (10)

3. We form a weighted average of {v̂′int}t, with the same weights ϖint as before:

v̄′in =
∑
t

ϖintv̂
′
int

Assumption A1. implies

E(v̄′in) = vin
∑
t

ϖint

JSGT
it

+
∑
t

ϖint

JSGT
it

∑
i′:SGT

it=SGT
i′t

vi′n

Taking the limit of this expectation as t approaches infinity implies

lim
t→∞

E(v̄′in) = vin
∑
t

ϖint

JSGT
it

+ lim
t→∞

∑
t

ϖint

JSGT
it

∑
i′:SGT

it=SGT
i′t

vi′n

It follows that the estimator

¯̄v′in =
1∑

t
ϖint

J
SGT

it

v̄′in (11)

is asymptotically unbiased if limt→∞
∑

t
ϖint

J
SGT

it

∑
i′:SGT

it=SGT
i′t
vi′n = 0. As before, this

requirement implies that the weighted average of the effects of all teachers in i’s school-

grade over time has to approach 0 as the number of periods grows large. Assumption

A2 and the fact that we are conditioning on school-grade fixed effects guarantees that

this is the case asymptotically.

4. Finally, we construct the empirical Bayes estimator for vin as

v̂′in = ¯̄v′in

(
σ̂2′
vn

V ar(¯̄v′in)

)
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and we can estimate the variance of vin, σ̂
2′
vn, as

σ̂2′
vn = JSGT

it
JSGT

it−1

Cov(v̂′int, v̂
′
int−1)

JSGT
it,t−1

Identification: Model 2 The identification of this alternative model also relies on within-

district school-grade turnover as in Model 1. Equation (11) represents a system of 2I equa-

tions (where I is the total number of teachers) in 2I unknowns, where the unknowns are

{vin}i,n∈{1,2}. Teacher effectiveness vin is perfectly identified for teachers for whom there are

at least two periods t and t′ with SGT
it ̸= SGT

it′ .

B1.3.3 Teacher Effectiveness: Model 1 vs Model 2

Correlation of Teacher Effectiveness Measures Table B3 displays the correlations be-

tween (ci1, ci2), the measures of teacher effectiveness we use in our preferred model (Model 1),

and (v̂′i1, v̂
′
i2), estimates of teacher effectiveness obtained with the alternative model (Model

2). We report these for both the estimation sample (2014) and the validation sample (2010).

Teacher effectiveness measures estimated from the two models are highly correlated.

Inferred Offer Sets As discussed in the identification section of the paper, an important

step of our estimation is to infer subsets of the offers received by each teacher from the

observed teacher-district matches (we denote these as Os
i ). To show that the model estimates

are robust to using (v̂′i1, v̂
′
i2) in place of (ci1, ci2), we re-constructed the inferred offer (sub)sets

using (v̂′i1, v̂
′
i2), denoted by Õs

i . Comparing Os
i with Õs

i for each of the 6,600 teachers in our

estimation sample, we find that 1) Os
i = Õs

i for 27% of teachers, 2) Os
i ⊃ Õs

i for 23% of

teachers, 3) Os
i ⊂ Õs

i for 21% of teachers, and 4) for the rest 28% of teachers, there are some

districts in Os
i but not in Õs

i and some districts in Õs
i but not in Os

i . For the robustness of

teacher preferences under Os
i in place of Õs

i , case 1) is ideal, and cases 2) and 3) are not

concerning, because we only need subsets of offers to infer teacher preferences (Fox, 2007).

These three cases account for 72% of teachers.

Auxiliary Models A key source of identification comes from our auxiliary models Aux

1a and Aux 1b that characterize teacher-district matches via regressions,

yid = βm
1 wid+I

(
d0i > 0,

d ̸= d0i

)[
βm
2 (xi1) + βm

3 ln (distid)

+βm
4 I (zd ̸= zd0i)

]
+qdβ

m
4 +βm

5 e
λd+βm

6 c1iλd+ψi+ε
m
id,
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In Aux 1a, i’s are all the teachers whose inferred subsets of offers Os
i contain more than one

district, and an observation (i, d) is a teacher-district pair in these inferred subsets. In Aux

1b, an observation is any teacher-district pair, with I ×D total observations.

In Table B4, we compare Aux 1a and Aux 1b when a teacher is characterized by (x, c)

(Model 1) against their counterparts when a teacher is characterized by (x, v̂′) (Model 2).

Between the two cases, regression coefficients in Aux 1a are very similar, and those in Aux

1b are almost identical.

Precision of Teacher Effectiveness Estimates We compare the precision of our esti-

mates with that in previous studies. In particular, it is useful to compare the signal-to-noise

ratio of our measure with that reported by other papers that estimate teacher value-added

using data with classroom links. We perform this comparison in Table B5. Since all pre-

vious papers use one-dimensional value-added (VA) measures, we begin by comparing a

one-dimensional measure of VA constructed with our data. Row 1 compares the signal-to-

noise ratio of the estimated one-dimensional VA in our data and those found in previous

papers. The precision of our estimate is comparable to that in previous studies; we believe

this assuages concerns about the noise in our estimates due to the absence of classroom

linkages and classroom effects from our model.

For completeness, in rows 2 and 3 we also report the signal-to-noise ratios of c1and c2,

the effectiveness measures used in our model. These are 0.55 and 0.61, respectively. Since

previous papers do not estimate multi-dimensional VA, we do not have a benchmark for

these metrics. However, we believe these values to be reasonably smaller than that in row

1, since they involve estimating two effectiveness measures per teacher using the same data.

Together with the estimate in row 1, they suggest that our estimators perform reasonably

well.

B1.3.4 Teacher Effectiveness: Two-Dimensional vs One-Dimensional

To check whether allowing teacher effectiveness to vary by student type provides gains in

terms of explaining the overall variation in test scores, we estimate a counterpart of Model

(1) with one-dimensional rather than two-dimensional teacher effectiveness and compare it

with Model (1). Table B6 compares the average sum of squared test score residuals φ̂kt, by

student type, obtained from each model. Our two-dimensional teacher effectiveness model

explains approximately 20% more variation in test scores compared to its one-dimensional

effectiveness counterpart.
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B1.3.5 Teacher Effectiveness: Race

Previous studies suggest that the match between the teacher’s race and the student’s race

can matter for achievement. In comparison, we focus on teachers’ comparative advantages

in teaching students with different prior achievement types. We make this choice for two

reasons. First, as shown in Table B7, if we add teacher race and the interaction of teacher and

student race to our achievement model (student race is already included in our achievement

model), almost none of the added terms are significant. Second, if we add a teacher’s race and

gender and their interactions with the district’s racial and gender composition of students

to our Aux 1a (Column 1 of Table 2 in the main text), the R2 is barely improved (from 0.68

to 0.681).

B1.4 Wage Schedules

B1.4.1 Pre-Reform Wage Schedules

We obtain W 0
d (xi) as the predicted values from the following regression, estimated using

data from 2007 to 2011:

w0
it = δ0d + Expitδ

e
g(i) +MAitδ

m
g(i) + εit, (12)

where i and t refer to teacher and year, respectively; w0
it is the wage of teacher i in year

t; Expit is a vector of indicators for six classes of years of experience: 0, [1, 2], [3, 4], [5, 9],

[10, 14], and [15,+∞); and MAit is an indicator for having a Master’s degree (MA) or a

higher degree. The parameter δ0 can be interpreted as the average wages for teachers with

zero experience and without a MA; with δeg(i) normalized to 0 for those with zero experience,

δeg(i) is the average wage premium for teachers in each of the higher experience category,

relative to those with zero experience with the same education; and δm is the wage premium

for teachers who have a MA.

We estimate the intercept δ0d separately for each district. Trading off the accuracy of our

wage schedules with power, we estimate the coefficients δe and δm by groups of districts,

defined as follows:

1. For the 35 large districts (i.e., those with at least 10 teachers in each experience and

education category), each group corresponds to a district.

2. For the remaining 356 districts, we construct groups based on the similarity in their

salary schedules. To do so, we proceed as follows.
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(a) For each district, we calculate the following summary statistics for their salary

schedules: (i) wages for teachers with 0 years of experience and MAit = 0 (i.e.,

the lowest possible wage category); (ii) wages for teachers with over 15 years

of experience and MAit = 0 (i.e., the highest possible wage category for those

without MA); (iii) average salary difference between a teacher with more than 15

years of experience and a MA, and one with the same experience and no MA.

(b) We check whether each district is above or below the median of the cross-districts

distribution for each of the three statistics.

(c) We form eight groups based on the statistics (i), and (ii), and (iii), and assign

each district to a group as follows:

Group (i) (ii) (iii)

1 ≥median ≥median ≥median

2 ≥median ≥median <median

3 ≥median <median ≥median

4 <median ≥median ≥median

5 <median <median ≥median

6 <median ≥median <median

7 ≥median <median <median

8 <median <median <median

Table B8 summaries the point estimates from Equation (12). In particular, it reports the

cross-district means and standard deviations of the estimated vectors δ. Figure B1 shows

a binned scatter plot of W 0
d (xi) and data wage w0

it in 2010. The former predicts the latter

remarkably well, with a correlation coefficient of 0.93 (significant at 1 percent).

B1.4.2 Districts’ Choice Set of Wage Schedules

A district’s wage rule is given by

wd (x, c|ω) = max
{
min

{
ω1W

0
d (x) + ω2 (λdc1 + (1− λd) c2) , w

}
, w
}
. (13)

A district chooses (ω1, ω2) from a discrete set Ω, the grid points of which are chosen as

follows.

1. We start by estimating the parameters (ω̃d1, ω̃d2) ≥ 0 separately for each district from

wi = ω̃d1W
0
d (xi) + ω̃d2TC (ci, λd) + εwi , for i : d (i) = d

11



where wi is the observed 2014 wage for teacher i working in district d (i : d (i) = d),

W 0
d (xi) is defined as in Section B1.4.1, and teacher contribution TC (ci, λd) is given by

TC (ci, λd) = λdci1 + (1− λd) ci2.

2. Based on the estimated {(ω̃d1, ω̃d2)}d , we choose a set of equally spaced grid points

that provides a good coverage of the empirical distribution in the data:

Ωo = {0.9, 0.95, 1, 1.05, 1.1} × {0, 10, 30, 50, 75, 100, 200} .

3. We assign each district the wage schedule (ωo
d1, ω

o
d2) ∈ Ωo that best summarizes the

distribution of teacher wages in that district {i : d(i) = d}, i.e.,

(ωo
d1, ω

o
d2) = arg max

(ω1,ω2)∈Ωo

∑
i:d(i)=d

(wi − wd (xi, ci;ω))
2 ,

s.t. wd (xi, ci;ω) =


w if ω1W

0
d (xi) + ω2TC (ci, λd) < w

w if ω1W
0
d (xi) + ω2TC (ci, λd) > w

ω1W
0
d (xi) + ω2TC (ci, λd) otherwise

,

where w (w) is 0.3 standard deviations below (0.2 standard deviations above) the

observed 1st (99th) wage percentile in the sample.

• The (ωo
d1, ω

o
d2) selected with this procedure predicts teachers’ actual salaries quite

well: 1) the absolute percentage deviation of predicted wages from actual wages in

2014, i.e.,
∣∣∣1− wd(xi,ci;ω)

wi

∣∣∣ , is less than 10% for 95% of teachers in our sample; and

2) regressing wi on wd (xi, ci;ω) yields a slope coefficient of 0.98 (with a standard

error of 0.001) and an R2 of 0.99.

4. Finally, we expand the grid range to allow for the possibility that district choices may

go out of the empirical range in counterfactual scenarios. The choice set in the model

is given by

Ω = {0.9, 0.95, 1, 1.05, 1.1, 1.15} × {0, 10, 30, 50, 75, 100, 200, 225} .

where both ω1 = 1.15 and ω2 = 225 are outside of Ωo.
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B1.4.3 Alternative Wage Rules

Three ω’s We have also tried to allow for a more flexible alternative wage schedule as

follows

wd (x, c|ω) = max
{
min

{
ω1W

0
d (x) + ω2λdc1 + ω3 (1− λd) c2, w

}
, w
}
. (14)

Wage rule (13) we use in the paper is a special case of (14) with ω2 = ω3. We repeat the

exercise as in Section B1.4.2, but under the three-ω specification (14) . This procedure yields

the triplet (ω′
d1, ω

′
d2, ω

′
d3) that best summarizes the observed distribution of teacher wages in

each district d. Figure B4 compares the predicted wage under rule (13) and that under rule

(14). The two predicted wages are nearly indistinguishable from each other, indicating the

absence of large predictive gains associated with the use of (14) instead of (13).

Tenured vs untenured We have also tested for the possibility that the relationship be-

tween teacher contribution and wages depends on whether the teacher is tenured or not. To

do so, we modify the wage function in the paper to be

wd (x, c|ω) = max
{
min

{
ω1W

0
d (x) + ω21TC (c, λd)x1 + ω22TC (c, λd) (1− x1), w

}
, w
}
(15)

where x1 = 1 if the teacher is untenured, and zero otherwise. We then estimated ω for each

district and constructed each teacher’s wage using this new schedule.

Figure B5 shows a scatter plot of wage residuals (i.e., the difference between actual

wages and wages predicted using the wage schedule) obtained using the schedule originally

contained in the paper (y-axis) and the alternative schedule shown above (x-axis). The

relationship is close to a 45-degree line, indicating that the predicted wages are very similar

using the two schedules.

Experience = 0 vs experience > 0 teachers Next, we test whether the relationship

between teacher contribution and wages depends on experience. We do so by defining, in

equation (15), x1 = 1 for teachers with no experience. Figure B6 below shows a scatter

plot of wage residuals obtained using the schedule originally contained in the paper (y-axis)

and the alternative schedule shown above (x-axis). As before, the relationship is close to a

45-degree line, indicating that the predicted wages are very similar using the two schedules.
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B2 Algorithms

Teachers’ decision rule implies that if District d makes an offer to the teacher, the teacher’s

acceptance probability is given by

hd (x, c, d0) =
exp

(
Vd(x,c,d0)

σϵ

)
exp

(
Vd(x,c,d0)

σϵ

)
+
∑

d′∈D\d od′ (x, c, d0) exp
(

Vd′ (x,c,d0)
σϵ

) . (16)

We assume that districts make decisions based on a simplified belief, given by

h̃d (x, c, d0|w (x, c) , σw (x, c)) =
1

1 + exp (f (x, c, d0, wd, qd, λd))
, (17)

with f (·) = xζ1 + ζ2
c1 + c2

2
+ ζ3

(
wd − w (x, c)

σw(x,c)

)
+ ζ4qd + ζ5e

λd + ζ6λdc1

+ (1− I (d0 = 0)) [I (d ̸= d0) (ζ7 + ζ8x1) + ζ9I (zd ̸= zd0)] ,

where w (x, c) and σw (x, c) are the mean and standard deviation of wages across all districts

for a teacher with (x, c) , i.e.,

w (x, c) ≡ 1

D

∑
d

wd (x, c;ωd) (18)

σw(x,c) ≡
√

1

D − 1

∑
d

(wd (x, c;ωd)− w (x, c))2. (19)

An equilibrium requires beliefs h̃d (x, c, d0), and in particular the vector ζ and the wage

statistics
{
w (x, c) , σw(x,c)

}
x,c

, to be consistent with decisions made by teachers and districts.

B2.1 Estimation Algorithm

The estimation algorithm involves an outer loop searching for the parameter vector Θ and

an inner loop solving the model for each given Θ. This inner loop does not require finding

the fixed point for all components in {ζ, w (·) , σw (·)}: Assuming that data were generated

from an equilibrium, {w (·)} and {σw (·)} can be derived directly from the observed district

wage schedules {ωo
d}d, where the superscript o denotes “observed.” For estimation, one only

needs to find the fixed point for ζ; the observed equilibrium wage statistics {wo (·) , σo
w (·)}

can be plugged directly into the belief function (17) . Given a parameter vector Θ, the inner

loop of the estimation algorithm involves the following steps.

1. Search for ζ∗ (Θ)
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(a) Guess ζ, which, together with wo (·) and σo
w (·), implies a belief

{
h̃d (·|ζ, wo (·) , σo

w (·))
}

as defined in (17).

(b) Given h̃d (·|ζ, wo (·) , σo
w (·)), solve for the optimal job offers o∗d (·;ωo

d) under the

observed ωo
d for each district d.

(c) Given the job offers and the wages implied by {o∗d (·;ωo
d) , ω

o
d}d, calculate each

teacher’s acceptance probabilities hd (·) for each d, as in (16), and the distance∥∥∥h (·)− h̃ (·|ζ, wo (·) , σo
w (·))

∥∥∥ .
(d) Repeat Steps 1a-1c until

∥∥∥h (·)− h̃ (·|ζ, wo (·) , σo
w (·))

∥∥∥ is below a tolerance level;

the associated ζ is the consistent belief parameter vector ζ∗ (Θ).

2. Given job offers {o∗d (·;ωo
d)}d under h̃d (·|ζ∗ (Θ) , wo (·) , σo

w (·)) and wages implied by

{ωo
d} , each teacher chooses the most preferred among their received offers. The implied

teacher-district matches will be compared with the observed matches in the outer loop.

3. Given h̃d (·|ζ∗ (Θ) , wo (·) , σo
w (·)), each district makes optimal decisions on its wage

schedule ω∗
d (Θ) .3 The resulting {ω∗

d (Θ)}d will be compared with the observed {ωo
d}d

in the outer loop.

B2.2 Solving for the Equilibrium

Both the teacher-specific wage statistics
{(
w (x, c) , σw(x,c)

)}
x,c

and the wage rules {(ωd1, ωd2)}d
that govern these statistics are high-dimensional objects. However, notice that districts’

wages are given by

wd (x, c;ω) =


w if ω1W

0
d (x) + ω2 [λdc1 + (1− λd) c2] < w

w if ω1W
0
d (x) + ω2 [λdc1 + (1− λd) c2] > w

ω1W
0
d (x) + ω2 [λdc1 + (1− λd) c2] otherwise

, (20)

where the pre-reform wage schedule W 0
d (x) is a linear function of experience categories (x1)

and the MA dummy (x2). It follows that the mean wage is a linear function of the following

form governed by some parameter vector θ1

w̃ (x, c) =


w if

∑
n θ

1
1nI (x1 = n) + θ12x2 + θ13c1 + θ14c2 < w

w if
∑

n θ
1
1nI (x1 = n) + θ12x2 + θ13c1 + θ14c2 > w∑

n θ
1
1nI (x1 = n) + θ12x2 + θ13c1 + θ14c2 otherwise.

(21)

3We assume that changing a single district’s wage for Teacher i has a negligible effect on wage statistics
(wo (xi, ci) , σ

o
w (xi, ci)), i.e., the mean and standard deviation of Teacher i’s wage across the 411 districts in

our sample.
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Similarly, the cross-district wage standard deviation for a teacher will be the square root of

a quadratic function (Q) , governed by some parameter vector θ2, and bounded from above

by the largest possible wage spread, i.e.,

σ̃w(x,c) = min
{√

max {Q (x1, x2, c1, c2; θ2) , 0}, w − w
}
. (22)

Instead of searching for fixed points of
{
{hd (x, c, d0)}x,c , (ωd1, ωd2)

}
d
, one can search for

parameter vectors ζ, θ1, and θ2 in (17) , (21) and (22) to guarantee equilibrium consistency.

Note that ζ, θ1, and θ2 are not structural parameters; rather, they serve to summarize the

equilibrium under a given policy scenario and are policy dependent. We now describe the

algorithm we use to simulate the equilibrium outcomes, for a given policy environment.

B2.2.1 Equilibrium Algorithm

We draw M economies, each with D districts and N teachers. All economies share the

same observable teacher and district characteristics as those in the data, but each economy

is assigned a different realization of wage-choice-specific shocks {{ηdω}ω}d, drawn from the

i.i.d. extreme value distribution, with the scaling parameter ση. The expected equilibrium

outcomes are calculated as the average outcomes across M economies. For each economy m,

we apply the following procedure.

1. Guess parameters ζ, θ1, and θ2, which imply
{
w̃ (x, c) , σ̃w(x,c), h̃d

(
x, c, d0|w̃ (x, c) , σ̃w(x,c)

)}
from (17) , (21) and (22) .

2. Given
{
h̃d

(
x, c, d0|w̃ (x, c) , σ̃w(x,c)

)}
, each district d chooses its optimal wage and offer

policies {ωd, O (ωd)} .

3. Given {ωd, O (ωd)}d, compute teacher acceptance probabilities hd (·) from their decision

rules (16), the mean wage w (x, c) based on (18), and standard deviation σw(x,c) based

on (19).

4. Calculate the distance between
{
w̃ (x, c) , σ̃w(x,c), h̃d

(
x, c, d0|w̃ (x, c) , σ̃w(x,c)

)}
and{

w (x, c) , σw(x,c), hd
(
x, c, d0|

(
w (x, c) , σw(x,c)

))}
.

5. Repeat Step 1 to Step 4 and search for {ζ∗, θ1∗, θ2∗} that bring the distance in Step

4 below a tolerance level. The vector {ζ∗, θ1∗, θ2∗} renders the consistent belief (17) .

Equilibrium outcomes in economy m consist of the decisions made by districts and

teachers under this consistent belief.
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B3 Across-District vs Within-District Variation

In our model we abstract from within-district competition for teachers, focusing on compe-

tition across districts. Here we show that cross-district variation clearly dominates within-

district, cross-school variation in terms of both teacher wages and the share of low-achieving

students.

B3.1 Wages

Table B9 shows the adjusted R2 and the root mean-squared error (MSE) of a regression of

post-Act 10 salaries on c1, c2, experience and education (first row). It then shows how the

R2 and MSE change as we sequentially add district fixed effects (second row) and school

fixed effects (third row). Adding district fixed effects reduces the root MSE by 31.3%; this

implies that differences across districts explain 31.3% of the residual variation in salaries,

conditional on teacher characteristics. Adding school fixed effects instead only explains an

additional 2.7% of the root MSE. We can conclude that the main source of variation in wages

is across districts, not across schools within districts.

B3.2 Student Composition

The cross-district variation in the share of low-achieving students (λ in our model) largely

dominates the within-district, cross-school variation. We provide evidence of this in three

different ways.

1. Estimates from an OLS student-level regression of an indicator for being low-achieving, to

which we progressively add district and school fixed effects, indicates that districts explain

8.7% of the variation in this probability whereas schools only explain an additional 2.7%.

2. The estimated R2 of an OLS regression of the school-level share of low-achieving students

on district fixed effects, weighted by enrollment, indicates that 74% of the variation in the

school-level share is explained by the district.

3. For each school, we calculate the absolute difference between the school-level and the

district-level shares of low-achieving students. This absolute difference has a mean of 0.05

and a standard deviation of 0.06. The 25th, 50th and 75th percentile of this absolute

difference are 0.01, 0.03 and 0.07 respectively.

B3.3 Teacher Assignment Across School-Grades Within a District

The identification of c1 and c2 in our achievement model relies on the assumption of random

sorting of teachers across school-grades within each district and school, conditional on all
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the covariates described in Appendix B1.3. To test for the presence of non-random sorting,

in Table B10 we combine the approaches of Chetty et al. (2014) and Rothstein (2010). In

columns 1 and 2 we follow Chetty et al. (2014) and estimate the slope of the relationship

between changes in students’ test score residuals (obtained from a regression of test scores on

all the covariates in equation (13)) and changes in c1 and c2. As in Chetty et al. (2014), we

control for school-by-grade and school-by-year fixed effects. These tests, shown in columns

1 and 2, reveal a slope coefficient that is statistically indistinguishable from one, indicating

that our estimates of (c1, c2) are forecast unbiased for (c1, c2).

In columns 3 and 4 of Table B10 we combine the above empirical design with the test

proposed by Rothstein (2010) and estimate the relationship between changes in (c1, c2) and

changes in lagged test score residuals. If the estimates in this specification were significant,

they would indicate non-random sorting of teachers across grade-schools. Reassuringly, the

slope coefficients in columns 3 and 4 are smaller than those in columns 1 and 2 and statisti-

cally indistinguishable from zero.

B4 Identification Assumptions

B4.1 The Information Structure

There can be various plausible information structures in terms of how much the agents in

the model and the researcher know about a teacher’s quality. For the discussion in this

subsection, we will label teacher quality (value-added) as c and our VA estimates as ĉ. In

our paper, we make two types of informational assumptions:

AA1. Agents in the model and the researcher share the same information about teacher

quality c,

AA2. ĉ = c.

Major alternative information structures can be categorized into the two broad cases in

terms of whether AA1 and/or AA2 are relaxed; we will discuss them one by one.

Case 1: AA1 is maintained but ĉ is only a noisy measure of c In this case, districts

and the researcher see ĉ, a noisy measure of c. If districts do not realize that ĉ is noisy, then,

our model and empirical strategy remain unchanged: districts will make all decisions based

on what they think is teachers’ quality, i.e., ĉ. A potentially more concerning subcase is one

where districts realize that ĉ is noisy, which may raise two questions:

Q1: Will this bias our estimates of (b1, b2) downward relative to b0 in the districts’ preference
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function?

xb0 + b1λdc1 + b2 (1− λd) c2, (23)

Q2: Will this cause districts to reduce wage rewards (ω2) in their wage schedule, Equation

(24), because they know they only see a noisy measure of TC?

ω1W
0
d (x) + ω2TC (c, λd) , (24)

where

TC (c, λd) = λdc1 + (1− λd) c2. (25)

For Q1: Given that ĉ is an unbiased estimate of c and that the researcher and the district

see the same ĉ, the answer is No.

Regardless of whether districts know what they see is noisy, districts would act the same

way. This is because if districts realize that ĉ is noisy, the expected value of a teacher given

what the district observes is

xb0 + b1λdE (c1|ĉ1) + b2 (1− λd)E (c2|ĉ2) (26)

= xb0 + b1λdĉ1 + b2 (1− λd) ĉ2.

As such, they would evaluate teachers by (x, ĉ1, ĉ2) and rank teachers by xb0 + b1λdĉ1 +

b2 (1− λd) ĉ2, as is the case in our original model. Given that the researcher and the dis-

tricts have the same information about teachers, we would proceed with the same estimation

procedure with the same identification strategy. The estimated (b1, b2) would not be affected.

Moreover, we would still reach the same conclusion about how our policy intervention would

affect the expected student outcomes, because the expected VA is E (c|ĉ) = ĉ and VA enters

students’ outcomes in a linear manner.

For Q2: As long as ĉ is an unbiased estimate of c, the answers is No, with or without

Assumption AA1.

It is important to notice that in our model, districts reward TC in their wage schedule

not because they think higher TC teachers deserve higher wages and should be rewarded,

but rather as a strategic tool to compete for teachers they would like to hire (i.e., those

with high expected value (26)). Accounting for the constraints it faces (budget, capacity,

and resistance cost), the district uses the most effective combination of (ω1, ω2) to attract

its desired teachers; this most effective combination is the best response to other districts’

strategies and it can have high or low ω2. In addition, from Equation (25) , we know that
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the best predictor of TC given ĉ is

E (TC (c, λd) |ĉ) = λdĉ1 + (1− λd) ĉ2, (27)

which is the same input that enters the districts’ wage function in our original model (re-

warded at the rate of ω2). This implies that if (ω∗
1, ω

∗
2) is the best strategy for a district to

attract high-value teachers in a complete information scenario, it is also the best strategy

in an incomplete information scenario where the district observes ĉ (a noisy but unbiased

measure of c) and holds expectations (26) and (27). This is because, in expectation, (ω∗
1, ω

∗
2)

will lead to the same best payoff for the district in these two cases. In other words, dis-

tricts would not reduce wage rewards in their wage schedule simply because they know what

they observe (ĉ) is a noisy unbiased estimate of c. Moreover, this is a direct implication of

districts’ optimal decisions: It holds for any districts’ preference parameters b.4

In summary, our original estimates and policy implications are robust to Assumption

AA2 given AA1. Moreover, the answer to Q2 is No even if AA1 is violated.

Case 2: AA1 is relaxed.

In this case, the researcher no longer observes the same teacher traits that the district uses

to make offer decisions. The information asymmetry between the district and the researcher

would break our identification strategy. To separate teachers’ and districts’ preferences, we

rely on our ability to construct, from the realized matches, subsets of offers for teachers; this

in turn depends critically on the assumption that we observe teachers’ traits that are used by

districts to make offer decisions. Therefore, AA1 is a fundamental identification assumption

that we maintain throughout. To gauge how much our estimates might change if we are in

Case 2, we conduct the following robustness checks.

B4.2 Robustness Checks

We conduct two sets of robustness checks with respect to the two maintained assumptions

underlying our identification strategy:

A1: (x, c) are observable to all districts.

A2: Districts cannot discriminate among teachers by factors other than (x, c).

As a partial test for the robustness of our results with respect to A1, we conduct the

following exercise: Instead of (c1, c2) , districts observe (c1 + err1, c2 + err2) and make wage

and job offer decisions based on these noisy measures. Assuming that errk ∼ N
(
0, σ2

errk

)
4Of course, one can come up with very different models of districts’ behaviors and informational environ-

ment that reach different conclusions.
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are i.i.d. random noises and considering values of σerrk equal to one, two, or four times

the standard deviation of ck, for k = 1, 2, we repeat the procedure described in Section

4.1.2 of the main text to construct sub-offer sets using the observed matches. Column 1 of

Table B11 reports the baseline estimates of Aux 1a, which are key for the identification of

teachers’ preferences. Columns 2-4 show estimates obtained assuming that both teachers’

and districts’ decisions are based on (c1 + err1, c2 + err2) , while the researcher observes

(c1, c2). Columns 5-7 show the corresponding estimates assuming that districts’ decisions are

based on (c1 + err1, c2 + err2), while teachers’ decisions are based on (c1, c2). Throughout

these exercises, the estimates of Aux 1a are robust.

To investigate robustness to a violation of A2, we consider the possibility that some

ineffective teachers may have been hired for reasons other than (x, c). Table B12 compares

our auxiliary model Aux 1a with its counterpart that does not use observed teacher-district

(i, d) matches to infer offers for other teachers if i’s effectiveness with either low- or high-

achieving students is below the 10th percentile among all teachers. Doing so has a significant

impact on the number of inferred offers for other teachers; yet Aux 1a remains robust.

It should be noted that although our robustness checks give some comfort that simple

violations of A1 and A2 may not seriously affect our inference, they do not constitute proof

that these assumptions (maintained throughout) are innocuous.

B4.3 Districts’ Preferences: Illustrating The Identification

Given that the distribution of teachers’ preferences is revealed from their choices within

Os
i , we can predict the probability that a teacher would choose to work in each district if

they had offers from all districts. As long as at least some districts are selective (i.e., they

do not make offers to all teachers), accounting for teacher preference shocks, this predicted

distribution of teacher-district matches will be systematically different from the observed

matches, because a teacher can choose a district d only if they have an offer from d. That

is, given teachers’ preferences, districts’ offer decisions—which are governed by districts’

preferences—must rationalize the realized match distribution.

For example, consider the simpler case where teachers do not have preference shocks and

suppose that two teachers i and j both prefer district 1 over district 2. If we observe i

working in district 1 and j working in district 2, it must be the case that district 1 prefers

i over j. The same argument applies when teachers have preference shocks: If teachers

systematically prefer district 1 over district 2, then district 1 must prefer their hires over

(most) teachers working in district 2. As long as the distribution of (x, c) in district 1 does not

systematically dominate the distribution of (x, c) in district 2 in all dimensions, we can infer
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how much district 1 cares about x and c2 relative to c1 (the coefficient for c1 is normalized

to 1).

Figure B9 illustrates this identification argument with a simple example. There are two

districts, d1 and d2, that make offer decisions. There is a unit measure of teachers who vary

only in their effectiveness in teaching low- and high-achieving students (c1 and c2). Both

districts have the same capacity, 0.5, and identical preferences over teachers:

B (c) = c1 + bc2,

where b is the importance of c2 relative to c1. Teachers’ preferences for district d = d1, d2 are

given by

I (d = d1) + ϵd,

where ϵd’s are type-1 extreme-value preference shocks that are i.i.d. across district-teacher

pairs with mean 0 and a scale parameter of 1. That is, teachers prefer d1 over d2 on average,

but they are subject to their preference shocks.

To maximize the expected total B (c) among their hires, d1, the more desirable district,

extends offers to its favored teachers, those with higher B (c) , until it reaches its capacity;

d2, the less desirable district, extends offers to every teacher. Panels (a), (b) and (c) in

Figure B9 plot three cases with b = 0.2, 1, and 5, respectively. Were teachers able to choose

freely, we would see most teachers, regardless of their c, end up working in d1. However, given

districts’ preferences and capacity constraints, d1 only makes offers to a subset of teachers.

In each panel, the hollow red circles are teachers who end up working in district d1, and the

solid blue squares are teachers who end up working in d2. Because teachers are subject to

preference shocks, there are teachers with higher (c1, c2) working in d2 than those who work

in d1; however, the opposite is never true, because d1 is selective. For example, when b = 0.2

(b = 5), low-c1 (low-c2) teachers are not observed in d1 whereas in d2 we see teachers across

the whole (c1, c2) distribution. Moreover, differences in the overall distribution of (c1, c2)

between d1 and d2 identifies b.

B5 The Impact of Changes in Parameter Values on

Auxiliary Models

Following Einav et al. (2018), we provide more evidence on the mapping between data and

parameters via a perturbation exercise. We adjust each parameter one at a time and measure

responses of the predicted auxiliary models we use for estimation.
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To be specific, letting
{
θ̂n

}N

n=1
be the vector of estimated structural parameters and

{σ̂θn}
N
n=1 be the vector of their standard errors, we re-simulate our model N times. In the

nth simulation, we use the parameter vector
{
θ̂1, θ̂2, ..., θ̂n−1, θ̂n + σ̂θn , θ̂n+1, ..., θ̂N

}
, where the

nth parameter is perturbed by its standard error, and obtain new estimates of the auxiliary

models. We then compute the percent change in absolute terms for each auxiliary model

(regression coefficient or moment). This exercise produces a matrix of dimension (number

of auxiliary models × number of parameters). To ease exhibition, we take simple averages

within sub-blocks of this matrix. Specifically, we split the auxiliary models into five groups

as specified in the paper (Aux 1a, Aux 1b, Aux 2, Aux 3, and Aux 4) and split parameters

into three groups (teacher preference parameters, district preference parameters, and wage-

setting resistance cost parameters). This results in the 5 x 3 summary matrix shown in Table

B13. Each cell in Table B13 shows the average percent change across auxiliary models and

parameter permutations within a given sub-block.

Column 1 of Table B13 shows that teacher preference parameters primarily affect the sub-

offer and all-offer regression models (Aux 1a and Aux1b), as well as the regression coefficients

that link districts’ wage choices to their pre-determined conditions (Aux 3). It is unsurprising

that Aux 1a and Aux 1b are closely related to teachers’ preferences, as these regressions are

designed to mimic a conditional logit model of teachers’ choices. Additionally, as teachers’

preferences change, districts change their wage schedules in order to attract their preferred

teachers; such responses are captured by changes in Aux 3.

Column 2 shows that district preference parameters mostly affect the regression coeffi-

cients that link wages to districts’ pre-determined conditions (Aux 3) and the offer regression

models (Aux 1a and Aux1b). As we argued in our identification section, Aux 3 should be

informative of districts’ preferences as districts can use wage choice to push or pull teachers;

moreover, the difference between Aux 1a and 1b are also informative of districts’ preferences.

Finally, Column 3 shows that the wage-setting resistance cost parameters affect the wage

regressions and cross-district wage moments (Aux 3 and Aux 4). This is unsurprising as these

two auxiliary models directly summarize wage choices. Notice that, by design, resistance cost

parameters should have zero impact on Aux 1a, Aux 1b, and Aux 2, because these auxiliary

models are obtained while holding wage schedules at the observed equilibrium levels.

B6 Counterfactual Experiments

In the following, we examine the efficiency and equity of several alternative allocations of

teachers to districts. First, we attempt to improve efficiency or equity by allocating teachers
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at will, regardless of their preferences. Second, we re-examine the effects of teacher bonus

programs under additional assumptions about teachers’ entry/exit decisions and the evolu-

tion of the market over multiple years. Finally, we present further details of the state bonus

programs we presented in the main text, as well as the results from additional simulations.

B6.1 Allocating Teachers at Will

To gauge the potential gain in efficiency and that in equity if one can assign teachers at

one’s will (e.g., under a dictatorship), we conduct two exercises that we label as Dictator1

and Dictator2, respectively.

In Dictator1, our goal is to maximize efficiency, i.e., to increase the total TC in the market.

To do so, we allocate teachers with the largest comparative advantage in teaching low-

achieving students (measured as (c1−c2)) to districts with the highest share of low achieving

students. To implement this allocation, we sort districts by λd (fraction of low-achieving

students) and teachers by (c1 − c2). We first fill the highest-λd district with the highest-

(c1 − c2) teachers until the district’s capacity is filled. We then move to the next district

and fill its capacity with the highest-(c1 − c2) teachers among those yet to be assigned. We

proceed by filling the capacity of all districts according to this rule, in decreasing order

according to λd.

In Dictator2, we aim at improving the performance of low-achieving students. To do so, we

sort teachers based on their absolute advantage towards teaching low achieving students (c1).

We first fill the highest-λd district with the highest-c1 teachers until the district’s capacity

if filled; then, we move to the next district to fill its capacity with the highest-c1 teachers

among those yet to be assigned. We proceed by filling the capacity of all districts according

to this rule, in decreasing order according to λd.

Table B14 shows the results from these two exercises. Under Dictator1, total efficiency

(TC) improves by 31.0%. These gains are unequally distributed: High-achieving students

gain 43% and low-achieving students gain 19%. Under Dictator2, low-achieving students

gain 70.5% and high-achieving student lose 55.8%. These estimates indicate that there exist

reallocations of teachers that yield large increases in teacher contributions, which implies

that the baseline market equilibrium under flexible pay leaves room for improvement.

B6.2 Policy Impacts: Entry/Exit Margin and Repeated Games

In our model, we model the teachers’ labor market in a static equilibrium setting and we

abstract from teachers’ decisions to enter or exit the market. A rigorous analysis of pol-

icy impacts in the long run with teachers’ extensive-margin responses is beyond the scope
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of our paper. To begin understanding how the impact of our policies could differ with

extensive-margin responses as well as in the medium run, in this section we conduct further

counterfactual policy simulations under additional assumptions about teachers’ entry/exit

decisions and about how the market evolves over multiple years.

B6.2.1 Setting 1: One-Shot Game

To incorporate teachers’ entry/exit decisions into our framework, we extend our model to

include a Stage 0, where teachers make these decisions. At stage 0, potential entrants

decide whether or not to enter and incumbents decide whether or not to exit. We refer

to the potential entrants who decide to enter and the incumbents who decide to stay as

participants on the market, i.e., they are the pool of teachers who are available for districts

to hire. After Stage 0, districts and participant teachers make decisions as specified in our

model in the main text. More specifically, our exercise involves the following assumptions

and steps.

1. Baseline Entry Probability: Specifying the entry process requires both a distribution of

potential entrants, as well as estimated probabilities that these potential entrants will

actually enter. Unfortunately, data on potential entrants and their entrance choices

are not directly available. To proceed, we make the following assumptions.

For potential entrants, we assume that the distribution of the characteristics (x, c1, c2)

of potential entrants is the same as the distribution of all Wisconsin teachers in our

2013–2015 pooled sample, including new and experienced teachers but excluding those

beyond the age of 62 (a standard retirement age; our results are robust to this choice).

This assumption essentially treats the Wisconsin teachers’ labor market as being sur-

rounded by a larger market of teachers: Any teacher, new or experienced, in this larger

market may potentially enter Wisconsin. Moreover, this assumption also implies that

teachers who work in Wisconsin between 2013–2015 are a representative sample of all

teachers (i.e., potential entrants) in this larger market.

For the baseline entrance probabilities, we model them as a function of teachers’ char-

acteristics. To be more specific, using the pool of potential entrants, we estimate a

logistic model to predict the baseline probabilities for all potential entrants, given their

observable characteristics. The explanatory variables of the model include age group

fixed effects; experience group fixed effects; an indicator for holding a Master’s degree;

the interaction of these three sets of fixed effects; teacher contributions c1, c2; the in-

teraction between contributions and experience-education fixed effects; and year fixed

effects.
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Notice that, for each teacher, this procedure estimates the probability of entry given

their expected market wage at the baseline equilibrium level, where the expectation is

taken in Stage 0 with respect to the next stage (the market interactions as described in

the main model). Conditional on the teachers’ observables, this expected market wage

is a fixed number without any variation. We therefore cannot credibly estimate an

entry elasticity with respect to pay from this data.5 Instead, under our counterfactual

bonus programs, the expected market wage will change for each teacher, inducing a

change of entry probability away from their baseline level, given an assumed level of

elasticity (in Step 4).

2. Baseline Exit Probability: Using a similar logistic model with the same explanatory

variables, we also estimate each incumbent teacher’s exit probability in the baseline

equilibrium. To improve the precision of our estimates, we pool incumbent teachers in

the 2013-2015 sample and control for year fixed effects. Consistent with the Stage-0

framework, here we aim at estimating baseline probabilities of voluntary exits rather

than layoffs (layoffs almost exclusively affect untenured teachers). To achieve this, we

exclude untenured teachers (i.e., those with fewer than 3 years of experience) from the

estimation sample; we then extrapolate untenured teachers’ voluntary exit probability

using the estimated coefficients for teachers with 3-4 years of experience.6 As is the case

for baseline entry probability, for each incumbent teacher, this procedure estimates the

probability of exit at their baseline equilibrium expected market wage.

3. Given 1 and 2, we can simulate the baseline equilibrium with entry and exit. In Stage

0, the pool of market participants is determined: Potential entrants decide whether to

enter and incumbents decide whether to exit. Then, districts and participating teachers

make decisions as specified in our main model. In this process, we allow the number

of participants to be different than the number of total slots; however, thanks to the

flexible specification we used to estimate the baseline entry and exit probabilities, the

realized number of participants is very close to the number of slots (in some cases, it

exceeds the number of slots and some teachers are not matched; we never have cases

where we do not have enough teachers).

4. We then additionally simulate the model under a given counterfactual bonus program.

5That is also why we do not include wages in this baseline estimation: Were we include wages in this
baseline estimation, we would be (mistakenly) using the variation of wages across teachers who have different
characteristics. For example, we could mistakenly conclude that higher wages causes less entry because older
teachers (who have higher wages) are less likely to enter.

6Observed exit rates are very similar across experience levels from 0 to 4, suggesting that this extrapolation
may not cause large biases.
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The main hurdle is to incorporate the effect of bonus money on entry and exit. To do

so, we predict the new entry and exit probabilities as follows:

(a) Using the baseline equilibrium, we calculate each teacher’s expected pay under

the baseline and under a given state bonus program. This gives us an (expected)

percentage change in a teacher’s pay.

(b) Assuming a given entry/exit elasticity with respect to pay that is consistent with

the literature, we can calculate the change in a teacher’s entry/exit probability in

response to the pay change calculated in 4 (a). This further allows us to construct

the new pool of market participants in the counterfactual. In our application, we

follow Rothstein (2015) and use three elasticities: 0.5, 1.0, and 1.5.

(c) Given this new pool of participants, we simulate the equilibrium interaction be-

tween districts and participating teachers as specified in our main model. Notice

that, because our counterfactual bonus programs make the market more attrac-

tive, we do not have any case where the number of participating teachers is smaller

than total number of slots in the market. However, we may have more partici-

pants than the number of slots; if that happens, some participants will end up

without a district match.

Given the additional assumptions we have made (e.g., entry/exit elasticities), results

from this exercise allow us to assess the impact of our counterfactual policies when we take

exit/entry into account in a static setting.

B6.2.2 Setting 2: Repeated Static Game

Lastly, we attempt to understand how our bonus programs may affect the market after having

been in effect for T years. To do so, we assume that teachers and districts play the static

game (as described in Section B6.2.1) repeatedly over T years.7 For each year t, we assume

that the distribution of potential entrants remains the same; for each participating teacher,

we update their matched district, age, and experience from year to year and calculate their

exit probability accordingly. For example, if a teacher works in district d in year t, d will

be their origin when they make their year t+ 1 decisions (whether or not to exit and which

district’s offer to accept if they stay); if this teacher decides to move from d to d′ in t + 1,

then d′ will be their origin for their t + 2 decisions. That is, across time, the location of an

7In particular, when simulating entry/exit decisions, we assume that an individual teacher calculates their
expected pay (wage plus bonus) in t based on the equilibrium wage schedules in t− 1.
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incumbent teacher is updated. This path of cross-district movements, together with exits

and entries, will determine the allocation of teachers across districts over time.

To simplify the simulation exercise, we assume that the state uses the baseline district

characteristics, including λd, to calculate teacher bonuses. As a caveat, this assumption is

reasonable when we consider shorter T , but is not well suited for very long T .8 Therefore,

we consider a relatively short T = 5 in our following simulation.

B6.2.3 Results: State-Funded Teacher Bonus Programs

For illustration, we simulate the results for our counterfactual bonus programs New1 and

New2. As described in the main text, both programs use the following formula

B (c, λd, ωd) = min
{
max {[r0TC (c, λd) + r1c1λd]ωd2, 0} , B

}
. (B)

In New1, we seek to improve efficiency, with bonus rates (r0, r1) = (2.3, 3.1) . In New2,

we seek to improve equity by rewarding teachers only based on c1λd , with bonus rates

(r0, r1) = (0, 7.0).

We begin by studying the impact of alternative programs in the short run, i.e., when

teachers and districts play a static game (as in our main model), and accounting for entry

and exit. For each program, Table B15 contrasts its impacts in four cases. Within each block

of columns, the first column refers to the setting in our main text (a static game without

teachers’ extensive-margin responses); the next three columns refer to the setting described

in Section B6.2.1 with three different entry/exit elasticities (0.5, 1.0, and 1.5). Under the

assumptions about entry/exit stated in Section B6.2.2, we find that both programs would

lead to larger gains in student achievement than our baseline setting and the impacts increase

with higher entry/exit elasticities.

Next, we study the impact of the same programs in the medium run, i.e., allowing teachers

and districts to repeatedly play the static game. For each program, Table B16 contrasts its

impacts in two cases. Within each block of columns, the first column refers to the setting

in our main text (a static game without teachers’ extensive-margin responses); the second

column refers to the setting in Section B6.2.2 (the game played repeatedly for 5 years) with

an entry/exit elasticity of 1.0.9 Under the assumptions stated in Section B6.2.2, we find

that both programs would lead to much larger gains in efficiency (total TC in the state)

after 5 years of implementation: 2.99% under New1 and 2.08% under New2. Moreover,

8State transfers to school districts tend to be stable over time as functions of district-level observables
(e.g., property values) that get reassessed very infrequently (Biasi, 2023)

9The second column compares the year-5 outcomes from the repeated static game with versus without
the bonus program.
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these programs benefit both low- and high-achieving students, although New1 benefits high-

achievers more and New2 benefits low-achievers more.

Taken together, these findings suggest that if teachers’ extensive-margin responses are

non-trivial and if the programs last longer, the equity-efficiency gains from our bonus pro-

grams can be significantly larger than those reported in the main text. However, we would

like to emphasize that findings in Tables B15 and B16 are obtained with additional assump-

tions, including externally set entry/exit elasticity parameters; readers should interpret these

tables with the due caveats.

B6.3 Further Details and Additional Simulations

Detailed Program Effects Table B17 presents the impact of New1, New2, New3, as well

as the purely-TC based program (New4), all at the same total cost. That is, in New4, we

set bonus rate r2 = 0 and the bonuses on TC exhausts the bonus budget. Relative to Table

7 in the main text, this table shows more detailed impacts: for each student group within a

district group.

Program Generosity To illustrate the role of program generosity in shaping counterfac-

tual impacts, we simulate three bonus programs with bonus rates (r0, r1) set at 1.5, 2.0, and

2.5 times (2.3, 3.1), (the latter is the bonus rates used in New1). These three programs are

increasingly more costly for the state and they all lead to higher efficiency gains than the

gain achieved by New1 (0.26%). However, the increase in program effect levels off quickly:

The efficiency gain under these three programs are 0.32%, 0.34%, and 0.34% respectively

(Table B18). This result demonstrates that with equilibrium responses from both sides of

the market, one should not expect a simple linear relationship between program costs and

their impacts. As such, the design of the bonus program is at least as important as the

bonus budget.

The Role of R (·) To study the role of districts’ resistance cost R (·) by itself, we re-

simulated our bonus programs by setting R (·) = 0 while keeping all other parameters at their

estimated values (Table B19). Perhaps not surprisingly, without resistance costs, districts

are more responsive to our bonus programs. For example, at New1’s bonus rates (2.3, 3.1), if

we set R (·) = 0, this program will yield an efficiency gain of 0.34% rather than 0.26% but at

a substantially larger cost for the state ($3,340 per teacher rather than $1,620 per teacher).
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B7 Tables

B7.1 Tables for Section B1

Table B1: Estimated parameters of teacher effectiveness

ρ̂1 ρ̂2
exp = 0 0 0
exp ∈ [1, 2] 0.0068 0.0009
exp ∈ [3, 4] 0.0154 0.0057
exp ∈ [5, 9] 0.0117 0.0028
exp ∈ [10, 14] 0.0117 0.0049
exp ∈ [15,+∞) 0.0112 0.0038
R2 0.677 0.625

Notes: The table shows the parameters on indicators for teacher experience categories in achievement Model

1.

Table B2: Distribution of teacher effectiveness

c1 c2
min -0.1398 -0.1988
p1 -0.0630 -0.0779
p5 -0.0345 -0.0417
p10 -0.0225 -0.0278
p25 -0.0049 -0.0075
median 0.0115 -0.0108
mean 0.0116 0.0110
p75 0.0282 0.0300
p90 0.0454 0.0503
p95 0.0582 0.0664
p99 0.0894 0.0978
max 0.1532 0.2362
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Table B3: Correlation of Teacher Effectiveness between Model 1 and Model 2

Estimation Sample (2014) Validation Sample (2010)

experience corr(ci1, v̂
′
i1) corr(ci2, v̂

′
i2) corr(ci1, v̂

′
i1) corr(ci2, v̂

′
i2)

= 0 0.91 0.98 0.86 0.90

∈ [1, 2] 0.85 0.87 0.86 0.90

∈ [3, 4] 0.88 0.93 0.88 0.91

∈ [5, 9] 0.85 0.91 0.85 0.87

∈ [10, 14] 0.85 0.86 0.86 0.88

≥ 15 0.86 0.87 0.84 0.86

Table B4: Auxiliary Models Aux 1a and Aux 1b, Under Achievement Models 1 and 2

Aux 1a Aux 1b

Achievement Model 1 Model 2 Model 1 Model 2

wage 0.001 (0.0002) 0.002 (0.0003) -0.00002 (0.000002)) -0.00002 (0.000003)

eλd -0.002 (0.008) 0.011 (0.010) -0.0001 (0.0001) -0.0002 (0.0001)

c1×λd 0.57 (0.29) 0.178 (0.496) -0.02 (0.006) -0.02 (0.015)

I (d ̸= d0) -0.83 (0.01) -0.83 (0.02) -0.98 (0.002) -0.98 (0.002)

I (d ̸= d0)×untenured 0.48 (0.10) 0.39 (0.13) 0.83 (0.04) 0.84 (0.04)

I (d ̸= d0)×exp ∈ [4, 5] 0.267 (0.031) 0.317 (0.039) 0.236 (0.026) 0.237 (0.027)

I (d ̸= d0)×exp ∈ [6, 10] 0.085 (0.013) 0.099 (0.016) 0.099 (0.010) 0.095 (0.010)

I (d ̸= d0)×exp ∈ [11, 15] 0.020 (0.011) 0.009 (0.011) 0.014 (0.005 0.012 (0.005)

I (zd ̸= zd0) -0.0269 (0.005) -0.0357 (0.007) -0.0004 (0.0001) -0.0001 (0.00002)

ln(distance) -0.019 (0.0019) -0.019 (0.0026) -0.0001 (0.00002) -0.0001 (0.00002)

qd : urban 0.01 (0.002) 0.003 (0.003) 0.004 (0.0002) 0.003 (0.0002)

qd : suburban 0.01 (0.002) 0.011 (0.002) 0.001 (0.0001) 0.001 (0.0001)

qd : large metro 0.10 (0.03) 0.02 (0.03) 0.01 (0.002) 0.01 (0.002)

# Obs 60,841 36,566 2,712,600

Notes: Achievement Models 1 and 2 as described in Section B1.3.3. Standard errors are in parentheses.
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Table B5: Comparison of Signal-to-Noise Ratios with Estimates of Math Teacher Value-
Added in The Literature

Estimate signal-to- calculated as
noise ratio

c (no comparative advantage) 0.69 see Appendix B1.3.4

c1 0.55 σ̂i1 (adjusted) /σ̄i1 (unadjusted) ,
as defined in our Online Appendix B1.3.1

c2 0.61 σ̂i2 (adjusted) /σ̄i2 (unadjusted)
as defined in our Online Appendix B1.3.1

Chetty et al. (2014) elem VA 0.70 ratio between sds in Appendix
Figure 1 and in Table 2

Aaronson et al. (2007) high-school VA 0.70 ratio between adjusted and
unadjusted sds in Table 6, column 5

Kane and Staiger (2008) elem VA 0.85 ratio between sds in Table 1 and in
Table 2 (specification w/student
controls)

Table B6: Sum of Squared Test Score Residuals Under c and Under (c1, c2)

Effectiveness measure c (c1, c2) % difference
Student type:
All students 0.1680 0.1370 22.61%
τk = 1 0.1922 0.1552 23.87%
τk = 2 0.1438 0.1189 20.97%
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Table B7: Achievement Production Function: Controlling for Teachers and Students’
Race/Ethnicity

τ = 1 τ = 2
(1) (2)

Black S -0.056∗∗∗ -0.067∗∗∗

(0.003) (0.003)

Hisp S -0.007∗∗ -0.022∗∗∗

(0.003) (0.003)

Asian S 0.053∗∗∗ 0.081∗∗∗

(0.004) (0.004)

Black T -0.001 0.0001
(0.005) (0.005)

Black T * Black S -0.008 -0.019∗

(0.006) (0.010)

Hisp T -0.010∗ -0.006
(0.005) (0.005)

Hisp T * Hisp S 0.007 0.008
(0.007) (0.009)

Asian T 0.003 0.004
(0.007) (0.008)

Asian T * Asian S 0.015 0.022
(0.017) (0.016)

Observations 3,360,517 3,635,942

Notes: Estimates of achievement model in equation (13), obtained controlling for teachers’ (T) and

students’ (S) race/ethnicity indicators and their interactions.

Table B8: Cross-district Summary of Pre-Reform Wage Schedules

Cross-district Mean Cross-district Std Dev.

δ0 34,686.8 3,286.1

δe: [1, 2] 1,719.2 598.3

[3, 4] 3,939.1 1,103.3

[5, 9] 8,227.8 1,536.6

[10, 14] 14,644.0 2,348.5

≥15 21,235.4 3,063.4

δm(MA) 7,008.5 2,456.6
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B7.2 Tables for Section B3

Table B9: Variation in Salaries Across and Within Districts, 2013-2016

Specification sqrt(MSE) R2 ∆sqrt(MSE) from Baseline

Baseline: Experience, Education, c1,c2 6,856 0.69 –

+ District FE 4,711 0.86 31.3%

+ School FE 4,523 0.87 34.0%

Table B10: Test for Non-Random Teacher Sorting Across Grade-Schools (Rothstein 2010)

Residuals Lagged residuals
(1) (2) (3) (4)

∆c0 1.204∗∗∗ 0.365
(0.072) (0.250)

∆c1 0.905∗∗∗ 0.394
(0.164) (0.286)

School-by-year FE Yes Yes Yes Yes
N 6448 1269 1518 298
# school-grades 1950 694 582 174
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B7.3 Tables for Section B4

Table B11: Estimates of Aux 1a Assuming Noisy Measures of (c1, c2)

Baselinea For teachers and districts For districts only
σerrk 2*σerrk 4*σerrk σerrk 2*σerrk 4*σerrk

(1) (2) (3) (4) (5) (6) (7)
wage 0.0012*** 0.0017*** 0.0018*** 0.0028*** 0.00172*** 0.00177*** 0.00280***

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
eλd -0.0024 -0.0230** -0.0177 -0.0416*** -0.0137 -0.00835 -0.00671

(0.0084) (0.0114) (0.0148) (0.0154) (0.0093) (0.0095) (0.0076)
c1 × λd 0.5680** 1.0365*** 0.6565** 0.8840*** 1.025*** 0.792** 0.826***

(0.2828) (0.2964) (0.3086) (0.2386) (0.3029) (0.3122) (0.2830)
d ̸= d0 -0.8259*** -0.7984*** -0.7969*** -0.7843*** -0.799*** -0.797*** -0.786***

(0.0122) (0.0138) (0.0135) (0.0148) (0.0138) (0.0135) (0.0148)
d ̸= d0× untenured 0.4762*** 0.3233*** 0.3819*** 0.3117*** 0.324*** 0.382*** 0.314***

(0.0981) (0.1194) (0.1195) (0.1171) (0.1193) (0.1194) (0.1169)
d ̸= d0× exp 0.2675*** 0.2725*** 0.2953*** 0.2853*** 0.273*** 0.295*** 0.286***

(0.0314) (0.0322) (0.0336) (0.0337) (0.0322) (0.0336) (0.0337)
d ̸= d0×exp∈ [6, 10] 0.0847*** 0.0791*** 0.0875*** 0.0849*** 0.0793*** 0.0874*** 0.0852***

(0.0126) (0.0130) (0.0127) (0.0134) (0.0130) (0.0127) (0.0134)
d ̸= d0×exp∈ [11, 15] 0.0204* 0.0173 0.0308** 0.0084 0.0175 0.0309** 0.00929

(0.0114) (0.0118) (0.0123) (0.0109) (0.0118) (0.0123) (0.0109)
zd ̸= zd0 -0.0269*** -0.0307*** -0.0310*** -0.0345*** -0.0307*** -0.0311*** -0.0347***

(0.0048) (0.0059) (0.0059) (0.0068) (0.0059) (0.0059) (0.0068)
urban 0.0138*** 0.0243*** 0.0225*** 0.0205*** 0.0243*** 0.0225*** 0.0209***

(0.0021) (0.0027) (0.0026) (0.0031) (0.0027) (0.0026) (0.0031)
suburban 0.0115*** 0.0103*** 0.0123*** 0.0021 0.0102*** 0.0122*** 0.0021

(0.0021) (0.0022) (0.0022) (0.0025) (0.0022) (0.0022) (0.0025)
ln(distance) -0.0194*** -0.0227*** -0.0241*** -0.0237*** -0.0227*** -0.0241*** -0.0235***

(0.0019) (0.0021) (0.0021) (0.0024) (0.0021) (0.0021) (0.0024)
large metro 0.0962*** 0.0855*** 0.0866*** 0.0798*** 0.0844*** 0.0858*** 0.0751**

(0.0278) (0.0280) (0.0273) (0.0303) (0.0280) (0.0273) (0.0303)
N 60841 52439 53310 46906 52439 53310 46906

Notes: Estimates of Aux 1; Column 1 shows the estimates also shown in column 1 of Table 2 of the paper.

Columns 2-4 assume noise in the measures of teacher effectiveness for both teachers and districts, with

various variances; and columns 5-7 assume noise in the measures of teacher effectiveness only for districts,

with various variances. Robust standard errors in parentheses.
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Table B12: OLS of Teacher-District Matches (Aux 1a): Baseline and Excluding Matches for
Teachers with c1i or c2i Below the 10th Percentile

Baseline Robustness

Teacher’s Choice Set Inferred Offer Seta Inferred Offer Setb

wage 0.001 (0.0002) 0.002 (0.0003)

eλd -0.002 (0.008) -0.007 (0.0142

c1×λd 0.57 (0.28) 0.83 (0.38)

I (d ̸= d0) -0.83 (0.01) -0.81 (0.02)

I (d ̸= d0)× untenured 0.48 (0.10) 0.37 (0.11)

I (d ̸= d0)×exp ∈ [4, 5] 0.27 (0.03) 0.31 (0.04)

I (d ̸= d0)×exp ∈ [6, 10] 0.09 (0.01) 0.10 (0.02)

I (d ̸= d0)×exp ∈ [11, 15] 0.02 (0.01) 0.01 (0.01)

I (zd ̸= zd0) -0.03 (0.005) -0.04 (0.007)

ln(distance) -0.019 (0.002) -0.20 (0.002)

qd : urban 0.01 (0.002) 0.003 (0.003)

qd : suburban 0.01 (0.002) 0.01 (0.003)

qd : large metro 0.10 (0.03) 0.08 (0.03)

# Obs 60,841 37,842

Notes:Estimates of Aux 1a on 2014 data. Column 1 baseline estimates; column 2 shows estimates obtained

ignoring teacher-district matches (i, d) for teachers with c1i or c2i below the 10th percentile of their respective

distribution when inferring matches. Robust standard errors are in parentheses.
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B7.4 Tables for Section B5

Table B13: Parameter Permutation Exercise: Change in Estimates of Auxiliary Models from
Parameter Perturbation

Parameter Group
Auxiliary Model: Teacher Preferences District Preferences Wage-Setting Resistance Costs
Aux 1a 29.10% 2.43% 0.00%
Aux 1b 32.95% 2.46% 0.00%
Aux 2 0.51% 0.04% 0.00%
Aux 3 51.30% 14.03% 27.06%
Aux 4 1.35% 0.03% 5.33%

Notes: Estimates of changes in auxiliary model estimates when we perturb the true preference parameters.
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B7.5 Tables for Section B6

Table B14: Allocating Teachers at Will

% Dictator1-Base
|Base|

Dictator2-Base
|Base|

TC 30.97 7.84

c1 19.37 70.55

c2 42.75 -55.85

Notes: Policy impacts when teachers are allocated to districts at will.

Table B15: State-Funded Teacher Bonuses: Extensive Margin

(%) New1-Base
|Base|

New2-Base
|Base|

Entry/Exit Elasticity - 0.5 1.0 1.5 - 0.5 1.0 1.5

TC for all students 0.26 0.55 0.56 0.86 0.04 0.21 0.53 0.81

c1for low-achieving students -0.06 0.14 0.26 0.50 0.35 0.22 0.64 0.88

c2for high-achieving students 0.59 0.97 0.87 1.22 -0.26 0.20 0.41 0.75

Notes: Policy impacts when allowing for exit and entry into the market, with the elasticities reported in the

column headers.
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Table B16: State-Funded Teacher Bonuses: Extensive Margin and Repeated Game

(%) New1-Base
|Base|

New2-Base
|Base|

Entry/Exit Elasiticity - 1.0 - 1.0

Repeated Game (5 Yrs) No Yes No Yes

TC for all students (efficiency) 0.26 2.99 0.04 2.08

c1for low-achieving students -0.06 2.87 0.35 2.49

c2for high-achieving students 0.59 3.13 -0.26 1.60

Notes: Policy impacts when allowing for exit and entry into the market, with the elasticities reported in the

column headers, and assuming districts play a repeated static game.

Table B17: State-Funded Bonuses

(%) New1-Base
|Base|

New2-Base
|Base|

New3-Base
|Base|

New4-Base
|Base|

State TC 0.26 0.04 0.15 0.18
C1 -0.06 0.35 0.16 -0.01
C2 0.59 -0.26 0.14 0.37

4th quartile λd districts TC -0.33 1.01 0.47 -0.4
C1 0.07 1.12 0.73 -0.06
C2 -1.23 0.77 -0.12 -1.17

3rd quartile λd districts TC -0.34 0.69 0.21 -0.08
C1 0.21 0.72 0.48 0.24
C2 -1.09 0.64 -0.15 -0.50

2nd quartile λd districts TC 0.41 0.27 0.32 0.35
C1 0.33 0.32 0.28 0.31
C2 0.49 0.22 0.35 0.38

1st quartile λd districts TC 1.08 -1.37 -0.27 0.67
C1 -1.05 -1.28 -1.27 -0.66
C2 2.17 -1.41 0.25 1.35

Bonus Rates (r0, r1) (2.3, 3.1) (0, 7.0) (1.6, 4.3) (3.8, 0)
Program cost ($1,000 per teacher) 1.62
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Table B18: Higher Bonus Rates

(%) New1-Base
|Base|

1.5New1-Base
|Base|

2New1-Base
|Base|

2.5New1-Base
|Base|

TC for all students in the state (efficiency) 0.26 0.32 0.34 0.34
C1 for low-achieving students in the state -0.06 -0.58 -0.87 -1.01
C2 for high-achieving students in the state 0.59 1.09 1.38 1.51
TC in 4th quartile λd districts -0.33 -0.59 -1.04 -1.26
TC in 3rd quartile λd districts -0.34 -0.61 -0.76 -0.81
TC in 2nd quartile λd districts 0.41 0.63 0.64 0.86
TC in 1st quartile λd districts 1.08 1.50 2.00 2.05
Bonus Rates (r0, r1) (2.3, 3.1) (3.45, 4.65) (4.6, 6.2) (6.9, 9.3)
Program cost ($1,000 per teacher) 1.62 2.12 2.49 2.98

Table B19: Program Effects with R (·) = 0

(%) New1-Base
|Base|

New2-Base
|Base|

New3-Base
|Base|

New4-Base
|Base|

TC for all students in the state (efficiency) 0.34 0.14 0.28 0.29
C1 for low-achieving students in the state 0.31 0.45 0.42 0.18
C2 for high-achieving students in the state 0.37 -0.18 0.15 0.41
TC in 4th quartile λd districts 0.46 1.02 0.69 0.05
TC in 3rd quartile λd districts 0.45 0.78 0.94 0.27
TC in 2nd quartile λd districts 0.52 0.003 0.66 0.39
TC in 1st quartile λd districts 0.02 -0.92 -0.85 0.42
Bonus Rates (r0, r1) (2.3, 3.1) (0, 7.0) (1.6, 4.3) (3.8, 0)
Program cost ($1,000 per teacher) 3.34 3.26 3.29 3.34
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B7.6 Additional Tables: Data and Model Fit

Table B20: Teacher and District Characteristics (2010)

A. Teacher Characteristics All x1< 3 x1≥ 10
x1: Experience 15.6 (9.6) 1.6 (0.5) 20.2 (7.7)

x2: MA or above 0.55 (0.50) 0.05 (0.22) 0.66 (0.48)

10c1 0.11 (0.25) 0.07 (0.27) 0.11 (0.25)

10c2 0.12 (0.30) 0.06 (0.32) 0.12 (0.29)

Corr (c1, c2) 0.65 - -

# Teachers 6,741 391 4,675

B. District Characteristics All λd 1st Quartile λd 4th Quartile

Urban 0.04 0.02 0.03

Suburban 0.15 0.34 0.09

λd 0.50 (0.12) 0.34 (0.07) 0.64 (0.06)

Capacity 16.4 (30.7) 18.4 (16.2) 15.1 (46.2)

Budget/Capacity ($1,000) 52.4 (6.1) 54.3 (6.7) 51.2 (5.7)

Characteristics of District Incumbent Teachers (d0 = d)
Average experience 17.5 (5.1) 16.6 (4.6) 18.0 (5.6)

Share w/MA or above 0.52 (0.26) 0.57 (0.26) 0.48 (0.28)

Average 10c1 0.10 (0.10) 0.10 (0.09) 0.09 (0.13)

Average 10c2 0.11 (0.13) 0.11 (0.11) 0.09 (0.15)

# Districts 411 103 103

Notes: Means and std. deviations (in parentheses) of teacher (Panel A) and district (Panel B) characteristics.
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Table B21: Model Fit: Average District Employee Characteristics (d∗ (·) = d)

Experience Share MA or above 10c1 10c2
District Group Data Model Data Model Data Model Data Model

λd Quintile 1 14.7 13.5 0.53 0.48 0.13 0.14 0.11 0.13
Quintile 2 15.5 14.7 0.51 0.49 0.12 0.14 0.13 0.15
Quintile 3 15.6 14.7 0.48 0.46 0.14 0.14 0.12 0.13
Quintile 4 16.3 15.6 0.48 0.48 0.14 0.14 0.16 0.15

Budget
Capacity Quintile 1 11.5 11.8 0.29 0.33 0.14 0.15 0.12 0.14

Quintile 2 14.8 14.1 0.38 0.38 0.11 0.14 0.12 0.14
Quintile 3 15.9 15.0 0.48 0.46 0.13 0.13 0.12 0.13
Quintile 4 17.7 16.2 0.59 0.56 0.13 0.13 0.13 0.14

Urban 14.2 15.2 0.57 0.59 0.10 0.11 0.09 0.09
Suburban 14.7 12.7 0.60 0.52 0.14 0.13 0.13 0.12

Notes: Moments as specified in Aux 2. All estimates use data post-Act 10.

Table B22: Model Fit: OLS of District Wage Schedule

Auxiliary Model 3 ωd1 ωd2

Data Model Data Model

Composition of incumbent teachers (d0 = d)
Fr(experience 3-4) 0.01 0.001 1.57 5.02

Fr(experience 5-9) 0.01 0.01 1.50 -1.04

Fr(experience 10-14) -0.004 0.008 11.36 -0.44

Fr(experience ≥ 15) 0.03 -0.0001 -21.97 -0.49

Fr(MA or above) -0.03 -0.004 -11.88 -1.41

Average TC -0.52 0.61 200.40 2.16

Average TC among Tenured 0.38 -0.54 -508.90 -264.9

District Characteristics

λd 0.001 0.01 25.24 2.16

budget per teacher 0.002 0.001* 0.53 0.02

capacity -0.00002 0.0001 -0.35 -0.01*

urban -0.02 -0.01 19.77 1.84

suburban -0.02 -0.004* 2.59 1.69

large metro 0.02 -0.056 97.94 3.45

share Democratic votes (2012) 0.03 0.04 -56.46 -45.42

Teachers in nearby districts (zd0 = zd, d0 ̸= d)
Average TC -0.65 0.10 1206.19 -70.72

Share of Tenured -0.04 0.02 143.830 5.19

# obs. 411 411

Notes: OLS estimates of Aux 3. * denotes model estimates outside of the 95% CI of the estimates from the

data.
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Table B23: Model Validation: Average District Employee Characteristics (pre-Act 10)

Experience Share MA or above 10c1 10c2
District Group Data Model Data Model Data Model Data Model

λd Quintile 1 16.1 15.8 0.56 0.52 0.10 0.11 0.11 0.12

Quintile 2 16.4 16.0 0.51 0.50 0.10 0.10 0.11 0.11

Quintile 3 17.6 16.8 0.46 0.46 0.10 0.11 0.13 0.13

Quintile 4 17.5 16.9 0.52 0.50 0.09 0.10 0.10 0.11
Budget
Capacity Quintile 1 13.5 13.5 0.27 0.29 0.10 0.11 0.12 0.13

Quintile 2 17.7 16.9 0.42 0.42 0.11 0.12 0.12 0.12

Quintile 3 17.2 16.6 0.52 0.51 0.09 0.09 0.10 0.10

Quintile 4 18.7 17.5 0.60 0.56 0.08 0.09 0.10 0.10

Urban 15.2 15.5 0.56 0.56 0.14 0.14 0.13 0.13

Suburban 15.6 14.0 0.62 0.58 0.08 0.09 0.10 0.11

Notes: Moments as specified in Aux 2. All estimates use data pre-Act 10.
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B8 Figures

Figure B1: Distribution of teacher effectiveness
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Figure B2: Relationship between c1 and c2
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it using wage data from 2010.
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Figure B4: Relationship between deviations of true wages from wd (x, c|ω), obtained using
rules (13) and (14)

Note: Binned scatterplot of the difference between true 2014 teacher wages and wd (x, c|ω), calculated using

(13) (vertical axis) and (14) (horizontal axis).
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Figure B5: Relationship between deviations of true wages from wd (x, c|ω), obtained using
rules (13) and (15), where x1 = 1 for untenured teachers

Note: Binned scatterplot of the difference between true 2014 teacher wages and wd (x, c|ω), calculated using

(13) (vertical axis) and (15), where x1 = 1 for untenured teachers (horizontal axis).
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Figure B6: Relationship between deviations of true wages from wd (x, c|ω), obtained using
rules (13) and (15), where x1 = 1 for teachers with no experience

Note: Binned scatterplot of the difference between true 2014 teacher wages and wd (x, c|ω), calculated using

(13) (vertical axis) and (15), where x1 = 1 for teachers with no experience (horizontal axis).
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Figure B7: Share of Teachers Who Switch In and Out of Math Teaching, By Year

Note: Share of teachers who switch into or out of math teaching, in each year and out of the total number

of teachers in Wisconsin.
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Figure B8: Share of districts’ budgets spent on teacher salaries, by grade and subject

(a) Math, Grades 4-6 (b) Reading/ELA, Grades 4-6

(c) All Teachers, Grades 4-6 (d) All Teachers, Grades 1-3

Notes: The figure shows the mean and the interquartile range of the share of total wages paid to teach-

ers in each subgroup, calculated for each district.
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Figure B9: Identification Illustrated

(a) (b)

(c)

Notes: These figures show the results of our simple example to illustrate identification; see B4.3 for details.
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Figure B10: Distribution of λ across Wisconsin districts
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