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Abstract

This paper introduces Stein combination shrinkage for vector autoregressions (VARs). The

proposed methods shrink unrestricted least-squares VAR estimates towards multiple user-specified

linear constraints, including lag exclusion and autoregressive models. We propose weighted com-

bination estimators, where the weights minimize an estimate of the mean-squared error (MSE) of

a vector-valued parameter of interest. Particular attention is given to impulse response estimation

and multi-period point forecasting. The combination estimators are similar to Stein shrinkage es-

timators. Our proposed weights are specific to the horizon, which allows the degree of shrinkage to

adapt across horizons.

The proposed methods are evaluated in a careful simulation experiment. The simulation ev-

idence shows that the Stein combination methods have much lower MSE than conventional OLS

and BVAR methods. We illustrate the methods with an application to a standard seven-variable

system of U.S. macroeconomic aggregates.
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1 Introduction

A core tool for macroeconomic evaluation is linear vector autoregressive (VAR) models. Popu-

larized by the seminal work of Sims (1980), VAR models are routinely used for model comparison

and analysis, forecasting, and impulse response analysis.

VAR models are typically estimated either by least-squares or Bayesian methods. The latter

(typically referred to as Bayesian VAR or BVAR) have been particularly emphasized to counter

the high-dimensionality of VAR models, especially in the presence of a moderately large number of

variables. The Bayesian approach dates back to the work of Doan, Litterman and Sims (1984) and

is enshrined in the popular “Minnesota Prior” which is centered at a random walk with drift. In-

fluential papers include Sims and Zha (1998), Banbura, Giannone and Reichlin (2010) and recently

Giannone, Lenza and Primiceri (2015).

Bayesian methods produce estimates with low Bayes risk, but can have unbounded classical (e.g.

minimax) risk. In particular, Bayes methods are not designed to produce estimates for specific goals

such as multi-step point forecasting or impulse response estimation. In contrast, classical shrinkage

estimators of the James-Stein class can be designed for such purposes and are known to possess

optimal minimax properties. In recent work, Hansen (2015) has shown how to develop Stein-type

estimators taylored to specific user-selected loss functions. The goal of the present paper is to

apply similar techniques to the VAR setting, developing Stein combination shrinkage estimators

designed to minimize the weighted mean-squared error (MSE) of targeted parameters such as

impulse response coefficients and multi-step point forecasting coefficients. We compare the Stein

estimators with classical estimators (OLS and BVAR) in a simulation experiment calibrated to the

“medium model” setting explored in Giannone, Lenza and Primiceri (2015).

Shrinkage methods depend on both a shrinkage direction (the model towards which to shrink)

and a loss function (how to evaluate estimation efficiency). For our shrinkage direction, we consider

constrained models based on lag restrictions and autoregressive models. This effectively shrinks the

unrestricted models towards models with fewer lags, and towards an autoregression. In particular,

shrinkage towards an AR(1) is important as this is similar to shrinking towards a random walk,

which is the core of the Minnesota prior, and random walks are excellent forecasting defaults. One

advantage of our combination shrinkage method is that the shrinkage direction adapts with the

data.

Our shrinkage method is designed to minimize the mean-squared error of a targeted function

of the coefficients. Leading examples include impulse response coefficients and multi-step point

forecasting coefficients. Combination weights are selected to minimize an estimate of the MSE of

the targeted parameter of interest. Since the combination weights depend on the parameter of

interest, they (and the degree of shrinkage) will naturally vary with the latter, for example they

will vary across the impulse response or forecast horizon. This is intentional, as it is desireable to

impose greater shrinkage at longer horizons due to decreased estimation precision.

The methods developed here are a generalization of combination methods developed in the pre-

vious literature. Hansen (2008) proposed combination methods for one-step ahead forecasts based
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on the Mallows criteria. Cheng and Hansen (2015) proposed combination methods for multi-step

direct forecasts from factor models, using both Mallows and leave-h-out cross-validation criteria.

Hansen (2015) developed an asymptotic theory of estimation efficiency for combination in the con-

text of two estimators. Liu and Kuo (2016) propose a frequentist model averaging criteria for

one-step-ahead forecasts. Liao and Tsay (2016) generalized Hansen’s (2008) methods to VARs

based on a one-step-ahead Mallows criteria. Of these papers, only Hansen (2015) considered the

case where the parameters of interest are a nonlinear function of the regression coefficients, which

is important for multi-step impulse responses and multi-step forecast coefficients.

This paper also relates to the growing literature on high-dimensional VARs. Shrinkage allows

the consideration of larger models (more variables and more lags) than would be considered if

estimation is OLS. Our proposed combination method is probably best suited to “medium” sized

models, as it requires the estimation of the baseline “large” model by OLS, so the latter estimate

must be feasible and reasonably accurate. Generalizations of the methods here to allow for high-

dimensional models would be valuable. Some of the recent literature exploring VAR estimation with

many variables includes Carriero, Galvao, and Kapetanios (2015), Koop, Korobilis and Pettenuzzo

(2016), and Kapetanious, Marcellino and Venditti (2016).

The organization of the paper is as follows. Section 2 introduces the VAR model and notation.

Section 3 presents least-squares estimation and its asymptotic distribution. Section 4 presents sub-

model and combination estimates, and the asymptotic distribution of the latter under fixed weights.

Section 5 presents details on the constraint matrices. Section 6 derives the asymptotic MSE of the

combination estimates, proposes an estimator of the asymptotic MSE, and shows that the estimator

is an asymptotically unbiased estimate of the MSE. Section 7 proposes weight selection. Section 8

describes application of the method to multi-step point forecasting. Section 9 describes application

to impulse response estimation. Section 10 is a simulation study, exploring the MSE of the impulse

response estimates and the MSFE of the point forecasts in three simulation designs. The Stein

combination methods are compared with unrestricted OLS and BVAR methods. Section 11 is an

empirical application to a standard 7-variable model. Section 12 is a conclusion. Mathematical

proofs are provided in the appendix.

Matlab code which produces the simulation and empirical work reported in the paper is posted

on the author’s website http://www.ssc.wisc.edu/~bhansen/

2 Model

Take a standard vector autoregressive (VAR) model with  variables and  lags

 = 1−1 + · · ·+− +0 +  (1)

where  is an × 1 vector of endogenous variables,  is an × 1 of shocks, 1   are ×

coefficient matrices, and 0 is × 1. Observations are available for  = 1  . This is a system
of  equations, where each equation has  = +1 coefficients. We assume that the shock vector
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 satisfies −1 = 0 We also define the covariance matrix of the shocks Σ = (
0
).

It is convenient to write the VAR equation in the regression format

 = −1 + 

where

 = [1 · · ·   0]

is an ×  matrix of coefficients and

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝



−1
...

−+1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is  × 1.

It will also be useful to write the coefficients in the vector format  = vec(0) = (01  
0
),

where 0 is the 
 row of  and hence is the coefficient for the  variable. Note that  is  × 1

and  is × 1.
The goal is estimation of a  × 1 differentiable function of the coefficients  = (). Examples

include multi-step point forecasts and impulse response estimation, as will be described in detail

in Sections 8 and 9.

3 Least-Squares Estimation

The least-squares estimate of , ,  and Σ are

b =

Ã
X
=1


0
−1

!Ã
X
=1

−10−1

!−1

b = vec( b0) =
⎛⎜⎜⎝

b1
...b
⎞⎟⎟⎠

b = 
³b´

bΣ = 1

− 

X
=1

bb0
where b =  − b−1 are the least-squares residuals.

3



Define the components of the asymptotic variance

 =
¡
 ⊗−1

¢
Ω
¡
 ⊗−1

¢
 = 

¡
−10−1

¢
Ω = 

¡


0
 ⊗ −10−1

¢
and the least-squares estimates

b =
³
 ⊗ b−1´ bΩ³ ⊗ b−1´

b = 1



X
=1

−10−1

bΩ = 1

− 

X
=1

¡bb0 ⊗ −10−1
¢


The asymptotic distribution of the estimates is known (e.g. Hamilton (1994)), but the following

formulation will be convenient for our development.

Theorem 1. If  is strictly stationary,  kk4 ∞, −1 = 0 and () = 
0 () is continuous

at the true value  then √

³b − 

´
→  ∼  (0  ) 

√

³b − 

´
→ 

0

b → 

where  = ().

4 Sub-Model and Combination Estimates

A sub-model of the VAR model (1) is any restriction on the coefficients, including variable

exclusions, lag exclusions, order of integration constraints, and random walk constraints. We focus

on linear constraints. These can be written as

0 =  (2)

where  is ×  and  is × 1. Each constraint can be viewed as a model (a parametric restriction
on the VAR). We will index the models by , and write the constraint matrices as (() ()) for

 = 1  so that there are  models. We describe the form of the restriction matrices () for

our recommended sub-models in Section 4.

For each sub-model the constrained least-squares estimator of  can be written as

b() = b −c−1
 ()

³
()0c−1

 ()
´−1 ³

()0b − ()
´

4



wherec = ⊗ b. More generally for a arbitrary weight matrixc, b() is the minimum distance
estimator of  under the constraint (2).

The constrained estimator b() for  is constructed by stacking the estimates

b() =
⎛⎜⎜⎜⎜⎝

b1()0b2()0
...b()0

⎞⎟⎟⎟⎟⎠ 

and that for  is b() = 
³b()´  The residuals are b() =  − b()−1 and an estimate of Σ is

bΣ() = 1

− 

X
=1

bb0
where  is the average number of coefficients in each equation. In our applications all equations

have the same number of coefficients but otherwise this an ad hoc degree of freedom adjustment.

A combination estimator assigns a weight () to each model where () ≥ 0 andP
=1() =

1. Set w = ((1)  ()) The combination estimator is

b(w) = X
=1

()b()
For an asymptotic distribution theory, we assume that the coefficients  are local to the restric-

tions, thus ()0 = () + −12()

Theorem 2. Under the assumptions of Theorem 1, plus ()0 = () + −12()

√

³b(w)− 

´
→ 

0 [( −(w)) + (w)]

where

(w) =

X
=1

()−1
 ()

¡
()0−1

 ()
¢−1

()0

(w) =

X
=1

()−1
 ()

¡
()0−1

 ()
¢−1

()

 =  ⊗

Theorem 2 shows that that the combination estimator with fixed weights is asymptototically

normal with a bias component. The weights affect the balance between variance and bias. Efficient

estimation requires a careful choice for these weights, and this is explored in Sections 6 and 7.
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5 Constraint Matrices

The sub-model estimates b() can easily be calculated by least-squares on regressor subsets.
However, for some purposes the explicit constraint matrices () are required. We discuss two

classes of contraints which we recommend for applications: lag restrictions and autoregressive

restrictions. These are both exclusion restrictions for which () = 0

Lag restrictions correspond to VAR(r) models with    The constraint matrices equal

() =  ⊗()

() =

⎡⎢⎣ 0×(−)
(−)
01×(−)

⎤⎥⎦ 
Autoregressive restrictions correspond to AR(r) models with  ≤ . We can write the constraint

matrices as

() = diag {1()  ()}

() =

⎛⎜⎝  ⊗  0×(−)
0(−)×(−1) (−)
01×(−1) 01×(−)

⎞⎟⎠
where  is the × (− 1) matrix equalling the identity  with the  column deleted.

The combination estimator b(w) allows inclusion of a large set of constrained models. We
recommend using the following models

1. VAR(1) through VAR(p)

2. AR(1) through AR(p)

Constrained sub-models allows the estimator to shrink the unrestricted VAR(p) specification

towards the constrained model, which effectively shrinks the less-precisely-estimated coefficients.

Inclusion of lag constraints allows the estimator to shrink the larger lag matrices. Inclusion of

the autoregressive models allows the estimator to shrink towards an autoregression (which often

produce excellent point forecasts). In particular, the AR(1) model allows shirnkage towards a

model close to the random walk, which has been a successful approach in BVAR applications via

the Minnesota prior.

6 Mean-Squared Error

The combination estimate b(w) can be evaluated based on weighted squared error
(w) = 

³b(w)− 
´0


³b(w)− 
´
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where  is a ×  weight matrix. In some examples (such as point forecasting) the weight matrix

will be naturally determined. In other cases, it can be selected by the user. If the components ofb have similar variance we can set  =  If they have differing variances, or if it is desirable

to render the criterion invariant to re-scaling, it is advisable to set  = (0 )−1 the inverse
of the asymptotic variance of the least-squares estimator for . This is identical to the weight

matrix choice used for efficient minimum distance estimation. We will recommend specific chocies

for forecasting (Section 7) and impulse response estimation (Section 8).

Technically, the mean-squared error  ((w)) is difficult to evaluate so we analyze instead the

asymptotic trimmed MSE:

(w) = lim
→∞

lim inf
→∞ min ((w) ) 

Theorem 3. Under the assumptions of Theorem 2

(w) = (w)0
0(w) + tr

¡


0(w) (w)0
¢− 2 X

=1

()() + tr
¡


0 
¢

where

() = tr
³


0−1
 ()

¡
()0−1

 ()
¢−1

()0 
´

Theorem 3 shows that the mean-squared error of the combination estimator b(w) can be approx-
imated by (w). The first component represents the squared bias due to constrained estimation.

The remaining components represent estimation variance.

Ideally, the optimal weights w should be selected to minimize (w). However the latter is

unknown so such weights are infeasible. We thus propose estimation of (w), and then select

weights which minimize this estimate. Our proposed estimator for (w) is

b(w) = 
³b(w)− b´0c

³b(w)− b´− 2 X
=1

() b() + tr³c
b0 b b´ (3)

with

b() = trµc
b0c−1

 ()
³
()0c−1

 ()
´−1

()0 b b¶ (4)

b = (b)
and c is an estimate of  .

Theorem 4. Under the assumptions of Theorem 2 and in addition c →  then

lim
→∞

lim inf
→∞ min

³ b(w) ´ = (w)

Theorem 4 shows that b(w) is an asymptotically unbiased estimate of the MSE. The weight
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vector w which minimizes b(w) is thus an estimate of the infeasible optimal weight vector w which
minimizes (w).

7 Weight Estimation

We propose selecting the combination weights by minimizing the MSE estimate b(w). Since
the third term in (3) does not depend on the weight vector w it can be omitted. Taking the first

two terms and rewriting in matrix notation we obtain

b(w) = w0Jw− 2w0 bK (5)

where J is the  × matrix

J = 
³
 − b´0c

³
 − b´

 =
hb(1)  b()

i
bK =

h b(1)  b()
i0

Thus b(w) is a simple quadratic in the weight vector w.
The weight vector which minimizes b(w) solves the minimization problem

bw = argmin
w

b(w) (6)

subject to () ≥ 0 and
P

=1() = 1. This is a quadratic programming problem, for which

algorithms are widely available. For example, in Matlab the command is “quadprog”. Given bw the

feasible combination estimator of  is

b∗ = b(bw) =  bw
This estimator is completely feasible and does not depend on tuning parameters.

We call b∗ the Stein combination estimator as it is a multi-model generalization of the classic
Stein estimator.

8 VAR Point Forecasts

We now describe the precise form of the combination estimator for multi-step point forecasting

from the VAR.

It is convenient to write the model in the first-order Markov form

 = −1 +  (7)
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where  is the  ×  matrix

 =

"




#
  =

"
(−1) 0(−1)× 0(−1)×1
01×(−1) 01× 1

#

and

 =

"


0

#


Iterating the Markov equation  times after the final observation  we obtain

+ =  + −1+1 + · · ·+ +

Since the shocks + for  ≥ 1 are unforecastable at time , the optimal point forecast for the 
variable + is the 

 element of , or 
0
1 where

1 = 1() =
³

´0
 (8)

and  is a  × 1 selector vector with a 1 in the  place (and the remainder 0). Thus multi-step
forecasting requires an estimate of the -vector 1 = 1() as defined in (8). This coefficient 1

varies across forecast variable  and horizon .

Theorem 5. For 1() defined by (8),

1 =


0
1() =

X
=1

µ

0


³
−

´0
 ⊗  −1

¶

where we have used the shorthand  0 =  and

 =

Ã


0(−)×

!


The matrix 1 is specific to the forecast horizon  and forecast variable .

The least-squares estimates of  , 1 and 1 are

b = " b


#
b1 = ³ b

´0


b1 = X
=1

µ

0


³ b−
´0
 ⊗ b −1

¶


and the least-squares forecast for + is b+ = b01. This is equivalent to the point forecastb+ found by iterating the estimated VAR.
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The sub-model estimates are

b () = " b()


#
b1() = ³ b ()´0 

and the sub-model forecast for + is b+() = b1()0.
The mean-squared forecast error from any estimator e1 is

(w) = 
³
+ − e01´2

= 
³¡
+ − 01

¢− 0
³e1 − 1

´´2
= 

³
0
³e1 − 1

´´2
+

¡
+ − 01

¢2
' 

µ³e1 − 1

´0

³e1 − 1

´¶
+

¡
+ − 01

¢2


The first component on the right-hand-side is the weighted MSE of the estimate e1 with the
weight matrix  =  The second component on the right-hand-side is the variance of the

infeasible optimal error which is independent of the estimator e1. It follows that the estimator
which minimizes the MSFE is the estimator which minimizes the weighted estimation MSE with

the weight matrix  =  Hence for point forecasting we recommend setting  =  andc = b.
In summary, for -step point forecasting of the  variable +, the recommended combina-

tion forecast is

b∗+ = X
=1

b1()b+()
where

bw1 = argmin
w

b1(w)
b1(w) = w0J1w− 2w0 bK1

J1 = 
³
1 − b1´0 b³1 − b1´

1 =
hb1(1)  b1()ibK1 =
h b1(1)  b1()

i0
b1() = tr

µ b b01c−1
 ()

³
()0c−1

 ()
´−1

()0 b b1¶
Our forecast combination weights are specific for the forecast horizon  and forecast variable 

so should be calculated separately for each  and .
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Alternatively the weights could be aggregated across forecast variables and/or forecast horizons.

This would be achieved by stacking the desired forecast coefficients 1. Our recommendation to

calculate the weights specific to the forecast variable and forecast horizon is because we expect that

the best-fitting model is likely to vary across forecast variable and (especially) forecast horizon.

9 Impulse Response Functions

For impulse response analysis it is typical to decompose the equation error from model (1) into

structural shocks as  =  where  is × and identified and 
0
 = . In our application

we will focus on the recursive case where  is lower triangular but other identifying structures can

be used.

The impulse responses can be calculated from model (1) setting 0 = 0. It is convenient to

write the model in the Markov format (7) with the matrix  replaced by

0 =

"
1 · · ·  0



#
 (9)

Iterating the equation + 1 steps we find

+ = +1
0 −1 + 

0

Ã


0

!
+ −1

0

Ã
+1

0

!
+ · · ·+

Ã
+

0

!


The -step impulse response of  with respect to the shock vector  is the × derivative

Γ =


0
+ = 

0



0 

The  −  element Γ is the impulse response of the the 
 variable + with respect to the

 shock . We can write this as an 2 × 1 coefficient vector as

2 = 2() = vec(Γ
0) (10)

This impulse response coefficient varies across horizon .

Theorem 6. For 2() defined by (10),

2 =


0
2() =

X
=1

µ

0


³
−
0

´0
 ⊗  −1

0 

¶

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The least-squares estimates of 0, Γ, 2 , and 2 are

b0 = " b1 · · · b 0



#
bΓ = 

0


b
0 

b
b2 = vecµ b 00

³ b
0

´0


¶
b2 = X

=1

µ

0


³ b−
0

´0
 ⊗ b −1

0 
b¶ 

where bΣ = b b 0 is the structural decomposition of bΣ.
The sub-model estimates are

b0() = " b1() · · · b() 0



#
bΓ() = 

0


b0()
b()

b2() = vecµ b()00 ³ b0()´0 

¶


where bΣ() = b() b()0 is the structural decomposition of bΣ().
For the weighted mean-squared error, we recommend setting c =

³ b02 b b2´−1 as a normal-
ization.

Our theory for weight selection is developed for the case where the parameter of interest is a

function of the regression coefficients b. Impulse responses are a bit more complicated in that they
are also functions of the shock matrix b. Thus our theory technically applies only in the case
where  is known and not estimated. For now, we effectively ignore the estimation error in b.

In summary, for -step impulse response analysis the recommended combination estimate is

bΓ∗ = X
=1

b2()bΓ()

12



where

bw2 = argmin
w

b2(w)
b2(w) = w0J2w− 2w0 bK2

J2 = 
³
2 − b2´0 ³ b02 b b2´−1 ³2 − b2´

2 =
hb2(1)  b2()

i
bK2 =

h b2(1)  b2()
i0

b2() = tr

µ³ b02 b b2´−1 b02c−1
 ()

³
()0c−1

 ()
´−1

()0 b b2¶
These weights are specific for the horizon  so should be calculated separately for each .

Alternatively the weights could be aggregated across horizons, or calculated separately by row

or column of Γ. We do not recommend aggregating across horizons as we expect the best-fitting

models to vary considerably across horizons. We also do not recommend calculating the weights

separately by row or column of Γ unless  is large.

10 Simulation

10.1 Impulse Response Analysis

We carefully explore the performance of our proposed impulse response estimator using sim-

ulation designs motivated by typical applied VARs. We take the VAR model (1) with  = 7

variables,  = 5 lags, and  = 200 observations. We compare impulse response estimates at

horizons  = 1 4 8 12 16 and 20. We compare three methods:

1. OLS

2. Default BVAR posterior mode from Giannone, Lenza and Primiceri (2015) (we use their

provided MATLAB code).

3. Stein combination of models AR(1) through AR(p) and VAR(1) through VAR(p)

We focus on the BVAR method from Giannone, Lenza and Primiceri (2015) as this is the state-

of-the-art in the published BVAR literature, they documented impressive performance in their

forecasting experiments, and they have tested MATLAB code for implementation.

We consider three simulation designs. The first generates each variable as an independent

AR(1), thus 1 =  and 2 = 3 = 4 = 5 = 0 The error  is generated as iid (0 2)

with  = 0027 to match the innovation variance of 4 ln( ) (to be consistent with the prior of

GLP.) We vary  among [05 06 07 08 09 095 098] The results are calculated by simulation

using 10,000 replications.
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We compare the methods at the forecast horizons  = 1 4 8 12 16 and 20 by unweighted MSE,

defined as

() =

X
=1

X
=1



µ³bΓ − Γ´2¶
where Γ is the true impulse response and bΓ is an estimate. We report the results as the ratios
of the square root of the MSE of each method relative to that of OLS. Thus root MSE ratios

less than one indicate better performance than OLS, and root MSE ratios over one indicate worse

performance than OLS. The results are presented in Table 1

Table 1: Impulse Response Estimates, Root MSE Relative to OLS, Design 1

  = 1  = 4  = 8  = 12  = 16  = 20

05 BVAR 071 057 042 027 020 016

Stein 056 038 005 001 000 000

06 BVAR 067 072 083 137 254 464

Stein 058 043 012 005 002 001

07 BVAR 131 241 410 767 130 217

Stein 060 049 026 012 007 005

08 BVAR 096 175 282 456 700 103

Stein 063 056 046 026 019 016

09 BVAR 051 062 091 121 159 202

Stein 066 064 066 062 058 057

095 BVAR 048 044 061 080 102 126

Stein 068 069 077 079 080 081

098 BVAR 045 027 028 033 039 047

Stein 070 074 084 087 089 091

There are several striking features in Table 1. First, the Stein method uniformly has lower

root MSE than OLS. In many cells the root MSE ratio is less than one-half, and is as low as 0.00.

Second, the root MSE of the Stein method relative to OLS decreases with the horizon  for low

, but increases with  when the persistence parameter  is close to one. Also the root MSE of

Stein relative to OLS increases with , indicating that the estimation problem is more difficult.

Third, the root MSE of of the Stein method is typically much smaller than the BVAR method,

except when the persistence parameter  is close to one. Except for  = 098 the Stein method

has uniformly smaller root MSE than BVAR for  ≥ 12. Fourth, the BVAR method in many cases
has higher root MSE than OLS. It has lower root MSE for lower  and high  but can have much

higher root MSE in other cases. Fifth, in some cases the BVAR method has incredibly high root

MSE. The worst case is  = 07 and  = 20 where the root MSE of BVAR is 22 times that of OLS

(yet the Stein method has a relative root MSE of 005). This occurs because in this setting, the

BVAR algorithm has high probability (about one-third) of placing its posterior mode on the pure

random walk model. Apparantly, the process looks close enough to a random walk that the BVAR
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shrinks it all the way to this model. While this may be acceptable for one-step horizons (for which

the likelihood is calibrated) it produces very poor multi-step impulse response estimates (1 versus

7 for the own responses).

In recent work, Giannone, Lenza and Primiceri (2016) have introduced cointegration priors into

their BVAR method which improves performance at long horizons. It is possible, though not likely,

that cointegration priors will rectify the problems with the BVAR method revealed in Table 1.

Our second design is the following VAR(5):

( − ) ( − ) ( − )
¡
 + 2

¢
 = 

where  is the lag operator and  is an × matrix of ones. Equivalently

 = 1−1 +2−2 +3−3 +4−4 +5−5 + 

1 = (+ ) + 

2 = − (+ )  − (+ )

3 = (+ ) + (+ ) 

4 = − − (+ )

5 = 

We set  = 03  = 01 and  = 03 and again vary . (Some experimention showed that  is the

key parameter which affects the results.) The results are presented in Table 2.

Table 2: Impulse Response Estimates, Root MSE Relative to OLS, Design 2

  = 1  = 4  = 8  = 12  = 16  = 20

05 BVAR 099 069 058 050 046 044

Stein 085 061 038 018 009 005

06 BVAR 104 074 065 060 058 062

Stein 085 068 046 023 011 006

07 BVAR 107 078 076 081 094 119

Stein 086 074 055 034 021 014

08 BVAR 107 081 085 099 121 153

Stein 087 079 069 051 041 034

09 BVAR 101 077 079 092 115 155

Stein 088 082 083 076 070 065

095 BVAR 103 076 066 065 072 083

Stein 088 085 089 087 085 084

098 BVAR 105 076 062 053 050 050

Stein 089 087 093 093 092 092
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The results in Table 2 are qualitatively similar to those in Table 1, but with much less extremes.

With the more complicated correlation patterns, the BVAR method is less likely to put the posterior

mode on the pure random walk, and hence is better behaved. Still, the overall patterns show that

major efficiency improvements are achieved by the Stein combination method, and the performance

of the BVAR method is sensitive and dependent on the parameterization.

The third design is based on a common empirical VAR. The seven-variable system used in

Giannone, Lenza and Primiceri (2015) is estimated by OLS as a VAR(5) on an updated sample

(quarterly data, 1959-2015, discussed in Section 11). The OLS coefficients estimates are used to

parameterize a VAR(5), with the errors drawn as i.i.d. (0Σ) where Σ is set equal to the estimated

error covariance matrix. In this design we report the MSE of the impulse response estimates for

each variable separately. Thus we calculate

( ) =

X
=1



µ³bΓ − Γ´2¶

for each horizon  and variable . Again we report the ratios of the root MSE of the BVAR and

Stein estimates relative to the OLS estimates. The results are reported in Table 3.

Table 3: Impulse Response Estimates, Root MSE Relative to OLS, Design 3

 = 1  = 4  = 8  = 12  = 16  = 20

Real GDP BVAR 083 085 124 133 141 164

Stein 095 094 096 097 096 097

GDP Deflator BVAR 126 191 222 240 248 249

Stein 097 097 097 097 096 097

Real Comsumption BVAR 099 102 126 130 145 172

Stein 094 094 097 097 096 097

Real Investment BVAR 088 070 103 104 104 130

Stein 095 095 097 098 096 093

Hours BVAR 090 114 167 183 189 211

Stein 097 095 095 097 096 093

Real Compensation BVAR 108 123 184 235 266 280

Stein 094 094 095 096 096 098

Fed Funds Rate BVAR 100 141 201 1244 275 296

Stein 096 094 095 094 096 094

There are several notable features about the results in Table 3. First, once again the Stein

method has uniformly lower root MSE than OLS, though the differences are small. This appears

to be because the DGP is highly persistent, which is similar to the  = 098 case in the design 2.

Second, the Stein method has uniformly lower root MSE than the BVAR method for  ≥ 8, but the
two methods are competitive for  = 1. Third, for large , the BVAR method once again displays

quite large root MSE.
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10.2 Multi-Step Point Forecast

We compare the point forecast accuracy of our proposed Stein combination method using the

same simulation design as for impulse response estimation. We express the results as the the ratio

of the root mean-squared forecast error (MSFE) of the Stein and BVAR point forecasts relative to

the OLS point forecasts. The results are calculated by simulation using 10,000 replications.

For simulation designs 1 and 2, we compare the methods at the forecast horizons  = 1 4 8

and 12 by unweighted MSFE, defined as

() =

X
=1

 (+ − b+)2
where + is out-of-sample observation and b+ is the point forecast.

The results for design 1 are presented in Table 4.

Table 4: Point Forecasts, Root MSFE Relative to OLS, Design 1

  = 1  = 4  = 8  = 12

05 BVAR 093 095 099 100

Stein 091 095 099 100

07 BVAR 096 108 120 125

Stein 091 093 096 098

09 BVAR 091 092 096 100

Stein 091 090 091 092

095 BVAR 090 089 090 093

Stein 090 089 089 089

098 BVAR 089 085 083 084

Stein 090 089 088 088

The results in Table 4 are similar to those in Table 1, but milder. First, the Stein method

uniformly has lower root MFSE than OLS. The ratio of the root MSFE is about 090 in most cells,

but close to 1 for smaller  and high . The root MSFE of the Stein and BVAR methods is similar

in many cells, though there are some settings ( = 07 most notably) where the BVAR method has

quite high root MSFE. For  = 098, the BVAR method has the lowest root MSFE.

The results for design 2 are presented in Table 5. The results in Table 5 are qualitively similar

to those in Table 4, but with less extremes. Both the BVAR and Stein combination methods have

lower MSFE than OLS, and neither one dominates the other.
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Table 5: Point Forecasts, Root MSFE Relative to OLS, Design 2

  = 1  = 4  = 8  = 12

05 BVAR 096 095 098 099

Stein 094 094 098 099

07 BVAR 097 095 097 099

Stein 094 094 095 098

09 BVAR 097 093 094 098

Stein 094 092 091 091

095 BVAR 097 090 089 091

Stein 093 091 090 089

098 BVAR 097 088 085 084

Stein 093 092 090 089

The results for design 3 are presented in Table 6. For this design we report the root MSFE

separately for each variable.

Table 6: Point Forecasts, Root MSFE Relative to OLS, Design 3

 = 1  = 4  = 8  = 12

Real GDP BVAR 098 100 099 098

Stein 097 098 099 099

GDP Deflator BVAR 103 115 122 125

Stein 099 100 100 100

Real Comsumption BVAR 098 099 099 100

Stein 097 099 099 099

Real Investment BVAR 097 098 098 097

Stein 098 099 099 099

Hours BVAR 099 104 107 105

Stein 097 098 099 099

Real Compensation BVAR 098 103 113 120

Stein 097 098 098 099

Fed Funds Rate BVAR 103 114 127 135

Stein 097 097 098 098

There are several notable features about the results in Table 6. First, the Stein method has

uniformly lower root MSFE than OLS, though the improvements are quite modest. Second, the

Stein method has nearly uniformly smaller root MSFE than the BVAR. The only exception is for

Real Invesment, though the differences are modest. Third, the BVAR method has higher MSFE

than OLS in many cases, especially for longer horizons. The differences are particularly large for

the GDP deflator and the Fed Funds rate.
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10.3 Summary of Simulation Evidence

The simulation carefully explored the MSE of the impulse response estimates and MSFE of the

point forecasts. The simulation show that the performance of the BVAR method is quite sensitive to

the parameterization. For parameterizations close to a random walk it can perform quite well, but

for other parameterizations it can perform particularly poorly, especially at longer horizons. This

performance is consistent with excessive shrinkage and hard thresholding. It is not a recommended

empirical procedure.

The simulations also show that the Stein combination method achieves much lower MSE and

MSFE than OLS, uniformly in the parameterization, and in some cases dramatically so. The

evidence shows that the method is much preferred to OLS.

11 Empirical Application

The methods are illustrated using a standard empirical VAR. We estimate the seven-variable

(medium) model of Giannone, Lenza and Primiceri (2015) with updated data. The sample are U.S.

macroeconomic variables, quarterly, 1959:1 to 2016:1, extracted from the FRED database. The

variables are listed in Table 7, along with their FRED labels and data transformations.

Table 7

Description FRED Transformation

Real Gross Domestic Product GDPC96 4 · log
GDP Implicit Price Deflator GDPDEF 4 · log
Real Personal Consumption Expenditure PCECC96 4 · log
Real Gross Private Domestic Investment GPDIC1 4 · log
Hours Worked: Nonfarm Business Sector HOANBS 4 · log
Real Compensation per Hour COMPRNFB 4 · log
Federal Funds Rate FF ÷100

Following the prior literature, we use a VAR(5) model in the seven variables.

We first compare impulse response estimates of the variables in response to a monetary (fed

funds) shock. The VAR shocks are identified recursively in the order listed in Table 7. We compare

three methods: (1) OLS with 5 lags, (2) the default Bayesian posterior mode of Giannone, Lenza and

Primiceri (2015), and (3) our Stein combination estimator. The estimates are displayed in Figure

1. Several features can be observed. First, the three estimation methods produce quite similar

estimates for short horizons, but diverge at the longer horizons. Second, the impulse responses of

some variables (Real GDP, Consumption) are similar across methods, but others (GDP Deflator,

Investment, Hours, Real Compensation per Hour) are quite different.

Second, we compare the point forecasts generated by the methods. In Figure 2 we display point

forecasts for the seven variables for 2016:2 through 2019:1 (1 through 12 quarters), comparing

forecasts obtained by OLS with a VAR(5), the default BVAR posterior mode point forecast, and
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Figure 1: Impulse Response Estimates Due to a Monetary (Fed Funds) Shock
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the Stein combination point forecast. The forecasts for all variables except the Fed Funds rate are

expressed as cumulative percentage changes relative to 2016:1. The forecasts for the Fed Funds

rate is displayed as a percentage rate.

We can see from the Figure that the three forecasts are quite similar for the short horizons, but

diverge at longer horizons. In general, the BVAR forecasts are the most optimistic (highest real

growth and lowest inflation), the OLS forecasts most pessimistic (lowest real growth and highest

inflation) and the Stein forecasts intermediate. The Stein forecasts for the next 12 quarters are for

Real GDP to increase by about 5.4%, the GDP Deflator to increase by 5.6%, Real Consumption

to increase by 5.8%, Real Investment to increase by 6.3%, Total Hours to increase by 1.2%, Real

Compensation to increase by 1.4%, and the Fed Funds rate to increase to 1.2% .

To gain further insight, in Figures 3 and 4 we plot the combination weights for the impulse

responses (Figure 3) and for the real GDP point forecasts (Figure 4) as a function of the horizon

. For simplicity we aggregate the five autoregressive models together. In FIgure 3 we can see

that for impulse response estimation most weight (for most horizons about 07) is put on the full

VAR(5) model. The VAR(3) receives the second most weight for the longer horizons. In Figure

5 we see that for forecasting real GDP there is a difference between short and long horizons. For

short horizons the largest weight is put on the VAR(2) model. As the horizon increases the weight

on VAR(2) falls, and the weights on VAR(3) and the autoregressive models increase, with each

receiving about weight 05 for  = 12. The AR models which receive the weight are the AR(3) for

short horizons and the AR(1) for the long horizons.

12 Conclusion

This paper has developed a new Stein combination criterion for Vector Autoregressions. The

criterion is an estimate of the risk (expected squared error) of a vector-valued parameter of interest.

While our criterion is appropriate for any nonlinear function of the coefficients, we pay particular

attention to impulse response estimation and point forecasting. The criterion is quadratic, so weight

selection is a simple quadratic programming problem. In three simulation experiments, we show

that the method produces impressive reductions in MSE relative to OLS, and also show that BVAR

estimates have erratic MSE. Finally, we illustrate the results on a standard macroeconomic VAR.

While the results are promising, more tasks need to be done. The current methods rely on

estimation of a default or baseline model, which limits application to only medium-sized VARs,

effectively excluding the “large VAR” models currently being explored. It would be useful to

explore the performance in higher dimensional systems, and to develop alternative criteria which

do not rely on a baseline model. The methods also only produce point forecasts: no theory of

inference is currently available.
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Figure 2: Quarterly Point Forecasts, 1 to 12 steps
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Figure 3: Impulse Response Combination Weights
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Figure 4: GDP Forecast Combination Weights
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13 Mathematical Proofs

Proof of Theorem 1. Set  = vec (−10) =  ⊗ −1. Observe that −1 = 0 and 
0
 =


¡


0
 ⊗ −10−1

¢
= Ω. By the CLT for square integrable MDS

1√


X
=1

 →  (0Ω)

and the WLLN b = 1



X
=1

−1−1 → 

Using the fact vec () = ( 0 ⊗) vec ()  the above WLLN and CLT

√

³b − 

´
= vec

⎛⎝Ã 1


X
=1

−1−1

!−1Ã
1√


X
=1

−10

!⎞⎠
=
³
 ⊗ b−1´Ã 1√



X
=1



!
→  =

¡
 ⊗−1

¢
 (0 ) =  (0  ) 

Since  = () is a smooth function of , by the Delta method

√

³b − 

´
= 0

√

³b − 

´
+ (1)→ 

0

By standard manipulations, it can also be shown that bΩ→ Ω and thus b →  . ¥

Proof of Theorem 2. Since () = ()0 − −12()

b() = b −c−1
 ()

³
()0c−1

 ()
´−1 ³

()0
³b − 

´
+ −12()

´


Note that c−1
 =

³
 ⊗ b−1´→

¡
 ⊗−1

¢
=

Using Theorem 1

√

³b()− 

´
=

µ
 −c−1

 ()
³
()0c−1

 ()
´−1

()0
¶√


³b − 

´
+c−1

 ()
³
()0c−1

 ()
´−1

()

→

³
 −−1

 ()
¡
()0−1

 ()
¢−1

()0
´


+−1
 ()

¡
()0−1

 ()
¢−1

()
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and this convergence is uniform across . By the delta method

√

³b()− 

´
= 0

√

³b()− 

´
+ (1)
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The derivative matrix  is the same as in Theorem 1 because the function  = () is unchanged.

By linearity,

√

³b(w)− 

´
=

X
=1

()
√

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= 0 [( −(w)) + (w)]

as stated. ¥

Proof of Theorem 3. Theorem 2 implies

(w) = 
³b(w)− 
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³b(w)− 
´
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£
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¢
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¤
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By the standard properties of asymptotic trimmed moments
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as stated. ¥

Proof of Theorem 4. Theorem 2 implies

√

³b(w)− b´→ 
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Hence

b(w)→
e(w) = (−(w) + (w))0
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For Theorems 5 and 6 the following result is convenient.

Lemma 1. If  is × ,  is (−) ×  and  =

"




#
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Since  0 = [0  0] then
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Proof of Theorem 5.  =
¡

¢0
 = vec

³¡

¢0


´
takes the form of Lemma 1 with  = ,

 =  and  =  . ¥

Proof of Theorem 6.  = vec(Γ
0) = vec

³
 00

¡

0

¢0


´
takes the form of Lemma 1 with

 = ,  =  and  = . ¥
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